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Ensemble modeling of Pinus cembroides Zucc. distribution under future 
CMIP6 climate scenarios in northern Mexico
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This study employed ensemble species distribution models (SDMs) using the 
“biomod2” package and different General Circulation Models (GCMs) to assess 
the  impacts  of  climate  change  on the  potential  distribution  of  Pinus  cem-
broides in Mexico. Using presence and pseudo-absence data, along with biocli-
matic variables from CHELSA v2.1, future habitat suitability was projected for 
the near future (2041-2060) and far future (2061-2080) under two CMIP6 sce-
narios (SSP245 and SSP585). Our results predict that under future climate con-
ditions, P. cembroides will likely undergo substantial range contractions, with 
losses of approximately 65%-85% of the current suitable habitat and no colo-
nization  of  novel  areas.  Temperature-related  predictors,  particularly  Bio8 
(mean temperature of the wettest quarter) and Bio9 (mean temperature of 
the driest quarter) were identified as the primary drivers of the species’ dis-
tribution. These results suggest that under warming scenarios,  P. cembroides 
will be confined to high elevation refugia, thereby increasing fragmentation 
and  reducing  its  adaptive  capacity.  Overall,  our  findings  provide  a  critical 
baseline for adaptive forest management strategies, such as assisted migration 
and the conservation of high elevation refugia, to mitigate the impacts of cli-
mate change on P. cembroides.
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Introduction
Climate change is altering forest ecosys-

tems  by  modifying  temperature  and  pre-
cipitation  regimes  (Khan  &  Verma  2022). 
Consequently,  species  are  migrating  to 
higher latitudes and elevations to find suit-
able climatic  conditions (Pecl  et  al.  2017). 
Moreover,  more  frequent  droughts,  wild-
fires, and pest outbreaks are driving wide-
spread  tree  mortality  and  ecosystem  de-
gradation, thereby threatening biodiversity 
and key ecosystem services, including car-
bon  sequestration  and  water  regulation 
(Anderegg  et  al.  2020,  Hartmann  et  al. 
2022). Thus, forecasting species’ responses 
to  climate-driven  changes  is  essential  for 
ecologists  and  land  managers  (Bellard  et 
al. 2012).

Mexico is particularly vulnerable to these 
climatic alterations. Mean annual tempera-

tures have increased by approximately 0.7 
°C over the past 50 years, accompanied by 
increased precipitation variability (Cavazos 
et al. 2020,  Murray-Tortarolo 2021). Projec-
tions  under  high-emissions  scenarios  indi-
cate an additional warming of up to 4.5 °C 
by 2100, and a decline in soil moisture (Al-
mazroui et al. 2021). Such changes have al-
ready  increased  mortality  rates  and  sup-
pressed radial growth in conifer forests at 
their  xeric  margins  (Manzanilla-Quijada et 
al. 2024).

Pinus cembroides Zucc., commonly known 
as  Mexican  pinyon,  occurs  on  dry,  rocky 
soils throughout the Sierra Madre Oriental, 
Sierra  Madre  Occidental,  and  Trans-Mexi-
can  Volcanic  Belt  (Constante-García  et  al. 
2009,  Martínez-Sifuentes  et  al.  2020).  P. 
cembroides reaches  up  to  15  m  in  height 
and 30-70 cm in diameter (Herrera-Soto et 

al.  2018).  Nutrient  limitations,  particularly 
nitrogen and phosphorus, can restrict both 
root development and crown expansion in 
this species (Constante-García et al. 2009). 
Individual trees typically establish on mildly 
acidic substrates (mean pH: 5.3; H+ ≈ 25% of 
exchangeable  cations)  under  warm  xero-
phytic  temperate  climates,  predominantly 
occupying  ecotones  between  arid  desert 
scrub  and  humid  montane  forests  (Rze-
dowski  1978).  Although  P.  cembroides  ex-
hibits  exceptional  drought  tolerance,  its 
distribution is primarily limited by tempera-
ture extremes during the wettest  (Bio 8) 
and driest (Bio 9) quarters (Martínez-Sán-
chez  et  al.  2023).  Under  future  warming 
scenarios,  models  project  range  contrac-
tions exceeding 75%, confining populations 
to  isolated  high-elevation  refugia  and 
threatening genetic  diversity  and connec-
tivity (Romero-Sánchez et al. 2017).

Species distribution models (SDMs) corre-
late species occurrences with environmen-
tal predictors, such as temperature, precip-
itation, and elevation, to estimate current 
habitat  suitability  and  forecast  future 
range shifts (Elith et al. 2006, Guisan et al. 
2013).  Algorithms  include  parametric  re-
gression (generalized linear models, gener-
alized  additive  models),  machine-learning 
methods (random forests, boosted regres-
sion trees, artificial neural networks), pres-
ence-only  techniques  (MaxEnt,  surface 
range envelopes), and mechanistic models 
integrating  species-specific  physiology. 
These methods have been successfully ap-
plied to diverse taxa, including conifers in 
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Mexico (Sáenz-Romero et al. 2017, Gómez-
Pineda et al. 2020), and provide critical pro-
jections to inform adaptive forest manage-
ment, such as assisted migration and con-
servation of high-elevation refugia, to miti-
gate climate change impacts (Bower et al. 
2024).

However, each SDM entails uncertainties 
arising  from the methodology,  data  qual-
ity, and assumptions underlying future cli-
mate scenarios (Araújo et al. 2019). To ad-
dress these challenges, ensemble modeling 
approaches  integrate  predictions  from 
multiple  SDMs  and  general  circulation 
models (GCMs), thereby enhancing the ro-
bustness  of  projections  and  reducing  un-
certainty (Thuiller et al.  2019,  Valavi  et  al. 
2022).

In this study, we assessed the impacts of 
climate  change  on  the  distribution  of  P. 
cembroides in  Mexico.  We  first  identified 
the key climatic drivers of its current range, 
and  then  projected  habitat  suitability  un-
der  two  climate  scenarios  (SSP245  and 
SSP585)  for  the  periods  2041-2060  and 
2061-2080  using  an  ensemble  modeling 

framework.  Finally,  we  mapped  areas  of 
habitat  loss,  stability,  and  potential  gain. 
Employing  multiple  algorithms  reduces 
model  uncertainty  and  increases  confi-
dence in future suitability predictions.

Methodology

Species presence records
Occurrence  records  for  P.  cembroides 

were  obtained  from  the  National  Forest 
and Soil Inventory and the National Biodi-
versity  Information  System  (CONABIO 
2020). Duplicate records were removed to 
match the spatial resolution of the climate 
data and prevent model overfitting. Over-
all,  1696  occurrence  records  were  ob-
tained.

Environmental data
We analyzed 19 bioclimatic variables rep-

resenting current and future climate condi-
tions to quantify changes in the potential 
distribution of P. cembroides. Climate layers 
were derived from CHELSA v. 2.1, which in-
tegrates  surface  observations,  satellite 
data,  and the ERA5 reanalysis  at  approxi-
mately  1-km spatial  resolution.  (Karger  et 
al. 2017). To reduce multicollinearity, we re-
tained predictors with VIF<10 (Kaky et al. 
2020 -  Tab. 1). We focused on climate driv-
ers, since broad-scale temperature and pre-
cipitation gradients determine range limits. 
In contrast, static factors (e.g., soil, topog-
raphy)  cannot  be  projected  under  future 
scenarios (Zamora-Maldonado et al. 2025). 
This  climate-only  framework  isolates  the 
effects of  climate change on habitat  suit-
ability (Pearson & Dawson 2003). We then 
projected suitability for 2041-2060 (near fu-
ture) and 2061-2080 (far future) under the 
SSP2-4.5 and SSP5-8.5 scenarios (Eyring et 
al. 2016) using the Python package “chelsa-
cmip6” ver. 1.0 (Karger et al. 2023). To ad-
dress  GCM  uncertainty,  we  generated  a 
multi-model  ensemble (MME) by compar-
ing monthly temperature and precipitation 
outputs  against  CRU observations  (Harris 
et  al.  2014).  We  evaluated  model  perfor-

mance using the normalized standard devi-
ation,  centered  root-mean-square  error, 
Taylor skill score, pattern correlation coeffi-
cient,  and  mean  bias  (Harris  et  al.  2014, 
Goberville  et  al.  2015).  These  metrics 
guided the selection  of  models  that  best 
capture regional climate variability (Knutti 
et al. 2017).

Ensemble modelling
We  implemented  ensemble  distribution 

modeling in R using the “BIOMOD2” v. 4.2-
2  package  (R  Core  Team  2020).  We  in-
cluded  nine  correlative  modeling  algo-
rithms: Generalized Linear Models (GLM  – 
McCullagh & Nelder 1989), a parametric re-
gression  framework;  Generalized Additive 
Models (GAM  – Hastie & Tibshirani 1990), 
which use spline-based smoothing; Gener-
alized Boosted Models  (GBM  – Ridgeway 
1999), a gradient-boosted ensemble of de-
cision  trees;  Classification  Tree  Analysis 
(CTA – Breiman 2001), based on CART; Flex-
ible Discriminant Analysis (FDA  – Hastie et 
al.  1994),  discriminant  analysis  with  non-
parametric  smoothing;  Artificial  Neural 
Networks  (ANN  – Ripley  1996),  feed-for-
ward neural  networks;  Maximum Entropy 
(MaxEnt – Phillips et al. 2006), a presence-
only  maximum-entropy  method;  Random 
Forest (RF – Breiman 2001), a bootstrap-ag-
gregated decision-tree ensemble; and, Sur-
face  Response  Envelopes  (SRE  – Busby 
1991), a climatic-envelope model based on 
predictor ranges. Each model was trained 
on 75% of the data and evaluated on the re-
maining 25% (Phillips et al. 2006). We gen-
erated  10,000  random  pseudo-absences 
for each model using a random cross-vali-
dation strategy (Guisan et al. 2017). Default 
algorithm  parameters  were  used  to  mini-
mize  overfitting.  To  enhance  robustness, 
each algorithm was run three times (Khan 
& Verma 2022). We assessed performance 
using the area under the ROC curve (AUC, 
0-1),  partial  AUC (pAUC,  FPR ≤  0.10),  and 
True Skill  Statistic  (TSS,  -1  to  1),  retaining 
only models with TSS > 0.8 for ensemble in-
tegration (Fielding & Bell 1997,  Lobo et al. 
2008,  Kaky et al. 2020). The AUC indicates 
relatively good to excellent model perfor-
mance when values exceed 0.8 and 0.9, re-
spectively (Fielding & Bell 1997). pAUC pro-
vides  a  firmer  foundation  for  evaluating 
predictions  from  ecological  niche  models 
(Peterson et al. 2008). TSS combines sensi-
tivity  (true  positive  rate)  and  specificity 
(true  negative  rate)  to  assess  a  model’s 
ability  to  predict  presence  and  absence. 
The closer the TSS is  to 1,  the higher the 
prediction accuracy (Allouche et al. 2006). 
Only models with TSS > 0.8 were retained 
for ensemble integration. Finally, we used 
BIOMOD_EnsembleModelling  to  generate 
two  consensus  projections:  EMmean  (un-
weighted  mean)  and  TSS-weighted  mean 
to  reduce  model-specific  uncertainty 
(Huang et al. 2024).

Variable importance
To quantify the relative influence of each 
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Tab.  1 -  The  bioclimatic  variables  ana-
lyzed to quantify changes in the poten-
tial distribution of P. cembroides.

Variable Description

Bio 2 Mean diurnal range

Bio 3 Isothermality

Bio 7 Temperature annual range

Bio 8 Mean temperature of wettest 
quarter

Bio 9 Mean temperature of driest 
quarter

Bio 12 Annual precipitation

Bio 14 Precipitation of driest month

Bio 18 Precipitation of warmest 
quarter

Bio 19 Precipitation of coldest 
quarter

Tab.  2 -  Mean and standard deviation evaluation metrics by algorithm for P.  cem-
broides:  True  Skill  Statistic  (TSS),  Area  Under  the  Curve  (AUC),  and  partial  AUC 
(pAUC).

Algorithm TSS mean TSS std AUC mean AUC std PAUC mean PAUC std

ANN 0.740 0.001 0.914 0.047 0.662 0.097

CTA 0.736 0.014 0.882 0.013 0.692 0.004

FDA 0.728 0.012 0.919 0.005 0.678 0.002

GAM 0.735 0.020 0.930 0.005 0.734 0.001

GBM 0.758 0.012 0.946 0.004 0.821 0.002

GLM 0.772 0.022 0.942 0.004 0.779 0.002

MAXENT 0.780 0.024 0.947 0.005 0.841 0.018

RF 0.711 0.034 0.957 0.003 0.924 0.091

SRE 0.524 0.004 0.762 0.005 0.500 0.000

EMmean 0.775 0.018 0.948 0.004 0.885 0.021

EMwmean 0.777 0.016 0.949 0.004 0.890 0.019
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Potential distribution of Pinus cembroides in Mexico

bioclimatic predictor on the distribution of 
P. cembroides, we employed the permuta-
tion-importance method (Elith et al. 2005). 
Each predictor was permuted in turn while 
holding  all  other  variables  constant;  we 
then quantified the reduction in model pre-
dictions relative to the original output. We 
then corrected this reduction by account-
ing for the correlation between permuted 
and  original  predictions  (Ahmad  et  al. 
2019). Larger corrected reductions indicate 
greater  variable  importance,  whereas  a 
zero reduction denotes no contribution.

Spatial distribution
We computed the  Habitat  Suitability  In-

dex (HSI) for each model as the predicted 
probability  of  species  occurrence.  We de-
rived the ensemble HSI by averaging pre-
dictions from the EMmean and EMwmean 
methods. We then normalized raw HSI val-
ues  (0-1000)  to  a  scale  of  0-1.  Suitability 
classes were defined as highly suitable (HIS 
≥  0.8),  moderately  suitable  (0.6  ≤  HIS  < 
0.8), marginally suitable (0.4 ≤ HIS < 0.6), 
and unsuitable (HIS < 0.4 – Sun et al. 2024).

Results

Model evaluation
The final ensemble models EMmean and 

EMwmean achieved average AUC values of 
0.948 and 0.949 across replicates (Tab. 2). 
During  calibration,  AUCs  were  0.987  for 
EMmean and 0.999 for EMwmean. On in-
dependent  validation  data,  AUCs  were 
0.954  and  0.955,  with  TSS  of  0.775  and 
0.777, demonstrating high predictive accu-
racy for P. cembroides. Among individual al-
gorithms, MaxEnt achieved the highest TSS 

(0.780), followed by GLM (0.772) and GBM 
(0.758).  RF  showed  the  highest  AUC 
(0.957),  followed by MaxEnt (0.947).  The 
SRE model performed least favorably (AUC 
= 0.762; TSS = 0.524), indicating limited dis-
crimination  between  presence  and  ab-
sence  of  the  species.  ANN  (TSS  =  0.740, 
AUC = 0.914) and CTA (TSS = 0.736, AUC = 
0.882)  demonstrated  moderate  perfor-
mance. pAUC (FPR ≤ 0.10) for single algo-
rithms  ranged  from  0.50  (SRE)  to  0.99 
(RF),  with  intermediate  values  for  CTA 
(0.74),  FDA  (0.71),  GLM  (0.81),  MaxEnt 
(0.84),  ANN (0.75), GBM (0.81),  and GAM 
(0.76).  These results demonstrate that in-
tegrating  multiple  algorithms  into  an  en-
semble enhances the reliability of species 
distribution predictions.

Variable importance
Tab. 3 summarizes the mean importance 

scores  for  nine  bioclimatic  predictors 
across the nine algorithms, revealing sub-
stantial variability. Temperature predictors 
were the most influential: Bio 8 (mean tem-
perature  of  the  wettest  quarter)  ranged 
from 0.181 in GBM to 0.474 in MaxEnt (en-
semble = 0.321); Bio 9 (mean temperature 
of the driest quarter) varied from 0.280 in 
GBM to  0.738  in  CTA (ensemble  =  0.171); 
Bio 3 (isothermality) scored 0.700 in GLM 
(ensemble = 0.277); and Bio 7 (annual tem-
perature  range)  peaked  at  0.887  in  GLM 
(ensemble = 0.340). In contrast, precipita-
tion predictors showed lower importance: 
Bio  2  (mean  diurnal  range,  ensemble  = 
0.201), Bio 12 (annual precipitation, 0.184), 
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Fig. 1 - Response curve of 
the EMwmean for Bio 12 

(annual precipitation), Bio 
14 (precipitation of driest 
month), Bio 18 (precipita-
tion of warmest quarter), 

Bio 19 (precipitation of 
coldest quarter), Bio 2 

(mean diurnal range), Bio 3 
(isothermality), Bio 7 (tem-

perature annual range), Bio 
8 (mean temperature of 

wettest quarter) and Bio 9 
(mean temperature of dri-

est quarter).

Tab. 3 - Mean variable importance scores of the selected bioclimatic variables for each 
algorithm: Artificial Neural Networks (ANN), Classification Tree Analysis (CTA), Flexi-
ble  Discriminant  Analysis  (FDA),  Generalized  Additive  Model  (GAM),  Generalized 
Boosted Model (GBM), Generalized Linear Model (GLM), Maximum Entropy (MAX-
ENT), Random Forest (RF), Surface Range Envelope (SRE).

Variable ANN CTA FDA GAM GBM GLM MAXENT RF SRE

Bio 2 0.335 0.000 0.205 0.238 0.000 0.520 0.042 0.045 0.039

Bio 3 0.008 0.045 0.051 0.049 0.028 0.700 0.085 0.043 0.041

Bio 7 0.000 0.000 0.177 0.163 0.000 0.887 0.088 0.132 0.081

Bio 8 0.292 0.322 0.212 0.215 0.181 0.357 0.474 0.114 0.002

Bio 9 0.713 0.738 0.614 0.495 0.280 0.287 0.111 0.072 0.063

Bio 12 0.145 0.063 0.105 0.265 0.058 0.230 0.250 0.051 0.101

Bio 14 0.134 0.000 0.001 0.066 0.005 0.053 0.024 0.044 0.043

Bio 18 0.027 0.000 0.035 0.036 0.006 0.014 0.020 0.049 0.036

Bio 19 0.041 0.000 0.023 0.004 0.004 0.052 0.033 0.041 0.062 iF
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Bio 14 (precipitation of  the driest  month, 
0.043), Bio 18 (precipitation of the warm-
est  quarter,  0.026),  and Bio 19 (precipita-
tion of the coldest quarter,  0.045). These 

results confirm that seasonal temperature 
extremes and variability (Bio 3, Bio 7, Bio 8, 
and Bio 9) primarily determine the distribu-
tion  of  P.  cembroides,  whereas  precipita-

tion variables play a subordinate role.

Response curves
Seasonal  temperature  extremes  (Bio  2, 

Bio 3, Bio 7, Bio 8, and Bio 9) primarily limit 
the suitability  of P.  cembroides.  Suitability 
declines sharply for the mean temperature 
of the wettest quarter (Bio 8) and the dri-
est quarter (Bio 9) above 20 °C. Still, it re-
mains at or above 0.6 between 15 °C and 20 
°C (Fig. 1). We also observed moderate ef-
fects  of  isothermality  (Bio  3)  and  annual 
temperature range (Bio 7), with suitability 
falling once Bio 7 exceeds roughly 25-30 °C.

In contrast, precipitation predictors have 
a  secondary  influence.  Habitat  suitability 
persists under the semi-arid regimes typical 
of  the  species’  range  and  declines  only 
modestly with reductions in annual or sea-
sonal precipitation. These findings demon-
strate that, despite its drought tolerance, 
P.  cembroides remains  vulnerable  to  ele-
vated temperatures and reduced moisture, 
factors  likely  to  constrain  its  distribution 
under future warming scenarios.

Current and future distribution
Under  current  climate  conditions  (1981-

2010), the ensemble models EMmean and 
EMwmean identify  P. cembroides primarily 
in  mountainous regions (Fig.  2).  Both ap-
proaches  consistently  indicate  high  suit-
ability  in  the  Sierra  Madre  Oriental  and 
Sierra  Madre  Occidental,  in  particular,  in 
the  regions  of  Chihuahua,  Durango,  and 
Nuevo León, and along the Trans-Mexican 
Volcanic  Belt.  Total  suitable  area  is  esti-
mated at 5.4 × 105 km2 for EMmean and 5.2 
×  105  km2 for  EMwmean.  Although 
EMwmean extends slightly further into the 
southwestern  Sierra  Madre  Occidental, 
both models converge on these mountain 
ranges as key refugia.

Under SSP245 (2041-2060), high-elevation 
areas  retain  moderate  to  high  suitability 
(HIS ≥ 0.6) but occur in more fragmented 
patches  than  during  the  baseline  period 
(Fig.  3).  By  2061-2080,  continuity  of  suit-
able habitat declines further, particularly in 
the central Sierra Madre Occidental, where 
areas with HIS ≥ 0.8 shrink sharply. Under 
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Fig. 2 - Current potential distribution of P. cembroides based on ensemble predictions derived from committee averaging (EMmean) 
and weighted mean (EMwmean) methods.

Fig. 3 - Projected future distribution of P. cembroides under climate change scenarios 
SSP245 and SSP585 for the periods 2041-2060 and 2061-2080, based on ensemble pre-
dictions  derived  from  committee  averaging  (EMmean)  and  weighted  mean 
(EMwmean) methods.
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the more extreme SSP585 scenario, losses 
intensify,  and by  2061-2080,  only  isolated 
pockets of moderate suitability (HIS = 0.4-
0.6)  persist  across  northern  and  central 
Mexico.  Although  EMwmean  occasionally 
predicts  slightly  larger  clusters  of  moder-
ate suitability, both ensembles agree on a 
pronounced contraction in the range.

Range-change statistics (Tab. 4) reveal se-
vere  losses  under  all  scenarios.  For  2041-
2060, EMmean projects a 65.6% decline un-
der  SSP245  and  74.1%  under  SSP585; 
EMwmean  estimates  losses  of  67.8%  and 
76.7%, respectively. The most extreme con-
tractions  occur  during  2061-2080  under 
SSP585,  with  projected  losses  of  84.6% 
(EMmean) and 85.9% (EMwmean). No sce-
nario  predicts  net  habitat  gain.  These 
changes  are  particularly  pronounced  in 
northern  Mexico,  along  both  the  Sierra 
Madre Oriental and Sierra Madre Occiden-
tal, where the current range is projected to 
decline significantly.

Fig.  4 shows that the stable category is 
most extensive between 22° and 26 °N and 
at elevations of 1500-2500 m a.s.l. Habitat 
gains remain marginal, accounting for less 
than  5%  of  the  landscape,  and  are  re-
stricted to latitudes below 20° N and mid-
elevations  (1000-1500  m).  Under  SSP245 
(2041-2060),  approximately  25%  of  stable 
habitat  is  lost,  whereas  under  SSP585 
(2061-2080) losses exceed 50%, reflecting a 
pronounced  contraction  of  the  species’ 
current range.

Discussion

Ensemble modeling and model 
performance

SDMs are essential tools for understand-
ing the biogeographic patterns and poten-
tial future ranges of forest species, particu-
larly  under  scenarios  of  rapid  climate 
change (Elith & Franklin 2013). In Mexico, 
SDMs for  Pinus have often relied on a sin-
gle algorithm, such as MAXENT (Phillips et 
al.  2006),  due  to  its  strong  performance 
with presence-only data (Cruz-Cárdenas et 
al.  2016,  Martínez-Sifuentes  et  al.  2020). 
Nonetheless,  predictions  generated  from 
individual  models  are  vulnerable  to  algo-
rithmic biases, which can lead to an under-
estimation  of  overall  model  uncertainty 
(Araújo et al. 2019).

Our study demonstrates that the ensem-
ble  framework implemented in  BIOMOD2 
(Thuiller et al. 2025) yields robust and con-
sistent projections by integrating multiple 
SDMs and GCMs.  Averaging or  weighting 
these projections effectively captures inter-
model  variability,  thereby  refining  final 
habitat  suitability  maps  (Goberville  et  al. 
2015, Thuiller et al. 2019).

The  consensus  models  achieved  high 
evaluation  metrics,  with  TSS  values  of 
0.775 and 0.777 and AUC values of  0.945 
and 0.949 for EMmean and EMwmean, re-
spectively.  These  results  are  consistent 
with  previous  studies  employing  similar 
multi-model  frameworks  (Montoya-Jimén-

ez et  al.  2022).  Among individual  models, 
MAXENT, GLM, GBM, and RF showed the 
highest  predictive  performance,  whereas 
SRE, CTA, and FDA consistently underper-
formed  in  terms  of  TSS,  AUC,  and  pAUC 
metrics  (Kaky  et  al.  2020,  Khan &  Verma 
2022, Montoya-Jiménez et al. 2022).

Although  ensemble  approaches  do  not 
consistently  yield  improved  predictive  ac-
curacy,  our results  underscore their  value 
for  species  with  narrow  ecological  toler-
ances, where even minor prediction errors 
can  undermine  conservation  outcomes 
(Araújo & Guisan 2006).
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Tab. 4 - Summary of the range change statistics (in 105 km2) for P. cembroides under 
SSP245 and SSP585 scenarios in 2041-2060 and 2061-2080.

Scenario Ensemble Loss Stable Gain
Loss
(%)

Gain
(%)

Change
(%)

SSP245_2041_2060 EMmean 3.6 1.9 0.0 65.6 0.0 -65.6

SSP245_2041_2060 EMwmean 3.6 1.7 0.0 67.8 0.0 -67.8

SSP585_2041_2060 EMmean 4.0 1.4 0.0 74.1 0.0 -74.1

SSP585_2041_2060 EMwmean 4.0 1.2 0.0 76.7 0.0 -76.7

SSP245_2061_2080 EMmean 3.7 1.8 0.0 67.5 0.0 -67.4

SSP245_2061_2080 EMwmean 3.7 1.6 0.0 70.6 0.0 -70.6

SSP585_2061_2080 EMmean 4.6 0.8 0.0 84.6 0.0 -84.6

SSP585_2061_2080 EMwmean 4.5 0.7 0.0 85.9 0.0 -85.9

Fig. 4 - Latitudinal and elevational distributions of potential habitat area for  P. cem-
broides, showing area gained (blue), lost (orange), and stable (green) under SSP245 
and  SSP585  scenarios  for  2041-2060  (top  two  rows)  and  2061-2080  (bottom  two 
rows) for EMmean (a-d) and EMwmean (e-h).
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Environmental predictors
Seasonal temperature extremes emerged 

as the primary drivers of P. cembroides suit-
ability.  Bio  8  (mean  temperature  of  the 
wettest quarter) and Bio 9 (mean tempera-
ture  of  the  driest  quarter)  together  ac-
counted for the largest share of the varia-
tion in our ensemble models. This result is 
consistent  with  studies  on  Mexican  coni-
fers  (Aceves-Rangel  et  al.  2018,  García-
Aranda  et  al.  2018,  Gómez-Pineda  et  al. 
2020, Martínez-Sánchez et al. 2023), which 
also  emphasize  the  key  role  of  seasonal 
temperature variability in defining distribu-
tional limits.

Habitat  suitability  declined  markedly 
when mean temperatures in the wet and 
dry  quarters  exceeded  20  °C,  indicating 
thermal thresholds that delimit the climatic 
niche of P. cembroides. In contrast, precipi-
tation variables  exerted only  marginal  ef-
fects on suitability, indicating that, despite 
their  tolerance of semi-arid regimes,  tem-
perature extremes impose a  greater  con-
straint than moisture availability. This find-
ing  aligns  with  previous  studies  demon-
strating that seasonal temperature variabil-
ity  exerts  a  more  decisive  influence  than 
precipitation in  determining pine distribu-
tions (Aceves-Rangel et al. 2018).

Although  macroclimatic  drivers  govern 
distribution  patterns  at  broad  spatial 
scales,  local  edaphic  factors,  such  as  soil 
depth, aspect, and nutrient availability, be-
come critical at finer resolutions by modu-
lating microclimatic conditions in heteroge-
neous landscapes.

Future distribution
Climate change poses a significant threat 

to  coniferous  forests  in  topographically 
complex regions such as Mexico. Previous 
projections based on WorldClim and CMIP5 
scenarios  indicated  moderate  to  substan-
tial  habitat  contraction  for  temperate, 
tropical, and semi-arid species (Gómez-Díaz 
et al. 2011, Cruz-Cárdenas et al. 2016).

Our  study  employed  high-resolution 
CHELSA  v.  2.1  data  and  updated  CMIP6 
Shared Socioeconomic Pathway scenarios, 
predicting a 65%-85% reduction in suitable 
habitat  for  P.  cembroides by  2080-2100. 
Losses  are  most  severe  under  SSP585, 
which is  characterized by elevated green-
house gas emissions and intensified warm-
ing (Almazroui et al. 2021). These contrac-
tions  suggest  that  remaining  populations 
will be confined to fragmented, high-eleva-
tion refugia in the Sierra Madre ranges. Al-
though local microclimates may allow per-
sistence or even limited expansion in some 
areas (Romero-Sánchez et al.  2017), at re-
gional  to national  scales,  P.  cembroides is 
expected to contract to elevations of 1500-
2500 m and latitudes of 22°-26° N (Romero-
Sánchez et al. 2017, Bower et al. 2024). Pro-
jected altitudinal  shifts  of 300-500 m and 
habitat  reductions  of  60%-75%  have  been 
reported for Pinus hartwegii  and Abies reli-
giosa (Alfaro-Ramírez et al. 2020, Martínez-
Sifuentes  et  al.  2020).  Pseudotsuga  men-

ziesii  may  lose  over  80%  of  its  Mexican 
range, persisting only in isolated high-ele-
vation  refugia  (Martínez-Sifuentes  et  al. 
2020). In contrast, Pinus oocarpa could gain 
a modestly novel habitat (Gómez-Pineda et 
al. 2020). These patterns demonstrate the 
importance of elevational connectivity and 
assisted  migration  for  conserving  genetic 
diversity under future warming, and high-
light the role of scale-dependent processes 
in species distribution modelling.

Conservation implications and future 
research

The projected contraction of  P. cembroi-
des habitat under high-emission scenarios 
presents  critical  conservation  challenges. 
Range reduction will  exacerbate fragmen-
tation and erode genetic diversity, a vulner-
ability  already  documented  in  Mexican 
conifer populations under climate-induced 
stress (Sáenz-Romero et al. 2012).

Assisted migration facilitates the translo-
cation  of  vulnerable  populations  into  re-
gions projected to remain climatically suit-
able  (Gustafson  et  al.  2023).  Establishing 
ecological corridors further enhances con-
nectivity among isolated stands, mitigating 
demographic  risks  associated  with  small 
populations.

Our  emphasis  on  macroclimatic  drivers 
underscores the importance of incorporat-
ing non-climatic factors into future Species 
Distribution Models (SDMs), including land-
use  change,  soil  properties,  and  species-
specific biotic interactions (Santos-Hernán-
dez  et  al.  2021).  Such  integrated  models 
would produce more realistic  projections, 
ultimately guiding more effective conserva-
tion interventions.

As  occurrence  records  and  high-resolu-
tion  climate  projections  continue  to  im-
prove,  ongoing  model  recalibration  will 
support adaptive forest management. This 
iterative  framework  will  inform  prioritiza-
tion efforts and help secure the long-term 
persistence of  P. cembroides and Mexico’s 
pine  ecosystems  under  intensifying  cli-
matic stressors.

Conclusions
This study employed SSP245 and SSP585 

projections  from  CHELSA  v.  2.1  within  a 
BIOMOD2 ensemble  framework to  assess 
the  future  distribution  of  P.  cembroides. 
Both ensemble approaches (EMmean and 
EMwmean)  and  MAXENT  consistently 
demonstrated high predictive accuracy, re-
inforcing  their  effectiveness  in  modeling 
semi-arid-adapted species.

Although  the  species  exhibits  consider-
able resilience, P. cembroides is anticipated 
to experience a marked range contraction 
with an estimated 65%-85% loss of its cur-
rent  habitat  by  the  end  of  the  century. 
High-elevation refugia are likely to remain 
climatically suitable, while the potential for 
new habitat emergence is  minimal.  These 
results highlight urgent conservation priori-
ties. The severe loss and fragmentation of 
suitable areas will likely diminish genetic di-

versity  and limit  adaptive capacity.  Proac-
tive  measures  are  essential,  including  as-
sisted migration to more humid lowlands, 
protection of montane refugia, and estab-
lishment of ecological corridors to maintain 
connectivity.  Overall,  this  study  demon-
strates  the  utility  of  ensemble  SDMs  for 
capturing  climate-driven  range  dynamics 
and emphasizes the critical need for adap-
tive  management  strategies  to  mitigate 
the rapid impacts of climate change on  P. 
cembroides.

Acknowledgements
JNM-S  and  GC-R  thank  SECIHTI  (Secre-

taría de Ciencia, Humanidades, Tecnología e  
Innovación, Mexico City, MX) for the schol-
arships granted.

References
Aceves-Rangel  LD,  Méndez-González  J,  García-

Aranda MA, Nájera-Luna JA (2018). Distribución 
potencial  de 20 especies  de pinos en México 
[Potential  distribution  of  20  pine  species  in 
Mexico]. Agrociencia 52: 1043-1057. [in Spanish]

Ahmad R, Khuroo AA, Charles B, Hamid M, Ra-
shid  I,  Aravind  NA  (2019).  Global  distribution 
modelling, invasion risk assessment and niche 
dynamics  of  Leucanthemum  vulgare (Ox-eye 
Daisy) under climate change. Scientific Reports 
9: 476-485. - doi: 10.1038/s41598-019-47859-1

Alfaro-Ramírez FU, Ramírez-Albores JE,  Vargas-
Hernández JJ, Franco-Maass S, Pérez-Suárez M 
(2020).  Potential  reduction of  Hartweg’s  pine 
(Pinus hartwegii Lindl.) geographic distribution. 
PLoS  One  15  (2):  e0229178.  -  doi:  10.1371/jour 
nal.pone.0229178

Allouche O, Tsoar A, Kadmon R (2006). Assess-
ing the accuracy of species distribution models: 
prevalence,  kappa  and  the  true  skill  statistic 
(TSS). Journal of Applied Ecology 43: 1223-1232. 
- doi: 10.1111/j.1365-2664.2006.01214.x

Almazroui M, Islam MN, Saeed F, Saeed S, Ismail 
M,  Ehsan  MA,  Diallo  I,  O’Brien  E,  Ashfaq  M, 
Martínez-Castro D, Cavazos T, Cerezo-Mota R, 
Tippett MK, Gutowski Jr WJ, Alfaro EJ, Hidalgo 
HG,  Vichot-Llano  A,  Campbell  JD,  Kamil  S, 
Rashid IU,  Sylla  MB, Stephenson T,  Taylor  M, 
Barlow M (2021). Projected changes in temper-
ature and precipitation over the United States, 
Central  America,  and the Caribbean in  CMIP6 
GCMs. Earth Systems and Environment 5: 1-24. - 
doi: 10.1007/s41748-021-00199-5

Anderegg WR,  Trugman AT,  Badgley G,  Ander-
son CM, Bartuska A, Ciais P, Cullenward D, Field 
CB, Freeman J, Goetz SJ, Hicke JA, Huntzinger 
D, Jackson RB, Nickerson J, Pacala S, Rander-
son  JT  (2020).  Climate-driven  risks  to  the  cli-
mate  mitigation  potential  of  forests.  Science 
367 (6485):  1027-1031.  -  doi:  10.1126/science.aa 
z7005

Araújo MB,  Guisan A (2006).  Five (or  so)  chal-
lenges for species distribution modelling. Jour-
nal of Biogeography 33: 1677-1688. - doi: 10.1111/ 
j.1365-2699.2006.01584.x

Araújo  MB,  Anderson  RP,  Barbosa  AM,  Beale 
CM, Dormann CF, Early R, Garcia RA, Guisan A, 
Maiorano L, Naimi B, O’Hara RB, Zimmermann 
NE, Rahbek C (2019). Standards for distribution 
models  in  biodiversity  assessments.  Science 
Advances  5:  eaat4858.  -  doi:  10.1126/sciadv.aa 

6 iForest 19: 1-8

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1007/s41748-021-00199-5
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1371/journal.pone.0229178
https://doi.org/10.1371/journal.pone.0229178
https://doi.org/10.1038/s41598-019-47859-1


Potential distribution of Pinus cembroides in Mexico

t4858
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, 

Courchamp F (2012). Impacts of climate change 
on the future of biodiversity. Ecology Letters 15 
(4):  365-377.  -  doi:  10.1111/j.1461-0248.2011.0173 
6.x

Bower AD, Frerker KL, Pike CC, Labonte NR, Pa-
lik  BJ,  Royo  AA,  Anderson  SM,  Ferreira  AR, 
Brandt LA (2024). A practical framework for ap-
plied  forestry  assisted  migration.  Frontiers  in 
Forests  and  Global  Change  7:  1454329.  -  doi: 
10.3389/ffgc.2024.1454329

Breiman  L  (2001).  Random  forests.  Machine 
Learning 45: 5-32. - doi:  10.1023/A:10109334043 
24

Busby JR (1991). BIOCLIM - a bioclimate analysis 
and  prediction  system.  In:  “Nature  Conserva-
tion: Cost Effective Biological Surveys and Data 
Analysis” (Margules CR, Austin MP eds). CSIRO, 
Melbourne, Australia, pp. 64-68.

Cavazos T,  Luna-Niño R,  Cerezo-Mota R,  Fuen-
tes-Franco R,  Méndez M,  Pineda-Martínez LF, 
Valenzuela  E  (2020).  Climatic  trends  and  re-
gional  climate  models  intercomparison  over 
the CORDEX-CAM (Central America, Caribbean, 
and Mexico)  domain.  International  Journal  of 
Climatology  40:  1396-1420.  -  doi:  10.1002/joc. 
6276

CONABIO (2020). Sistema Nacional de Informa-
ción  sobre  Biodiversidad.  Registros  de  ejem-
plares [National Information System on Biodi-
versity. Specimen Records]. Comisión Nacional 
para el Conocimiento y Uso de la Biodiversidad 
– CONABIO, Ciudad de México,  México,  web-
site.  [in  Spanish]  [online]  URL:  http://www. 
snib.mx/ejemplares/descarga/

Constante-García  V,  Villanueva-Díaz  J,  Cerano-
Paredes J, Cornejo-Oviedo EH, Valencia-Manzo 
S  (2009).  Dendrocronología  de  Pinus  cem-
broides Zucc. y reconstrucción de precipitación 
estacional para el sureste de Coahuila [Dendro-
cronology of Pinus cembroides Zucc. and recon-
struction of seasonal precipitation for southern 
Coahuila].  Revista  Mexicana de Ciencias Fore-
stales 34: 17-39. [in Spanish]

Cruz-Cárdenas G, López-Mata L, Silva JT, Bernal-
Santana  N,  Estrada-Godoy  F,  López-Sandoval 
JA (2016). Potential distribution model of Pina-
ceae species under climate change scenarios in 
Michoacán.  Revista  Chapingo  Serie  Ciencias 
Forestales  y  del  Ambiente  22:  135-148.  -  doi: 
10.5154/r.rchscfa.2015.06.027

Elith  J,  Ferrier  S,  Huettmann  F,  Leathwick  J 
(2005). The evaluation strip: a new and robust 
method for plotting predicted responses from 
species distribution models. Ecological Model-
ling  186:  280-289.  -  doi:  10.1016/j.ecolmodel. 
2004.12.007

Elith J, Graham CH, Anderson RP, Dudik M, Fer-
rier S, Guisan A, Huettmann JJ, Leathwick JR, 
Lehmann  S,  Li  F,  Loiselle  SA  (2006).  Novel 
methods improve prediction of species’ distri-
butions  from occurrence data.  Ecography 29: 
129-151. - doi: 10.1111/j.2006.0906-7590.04596.x

Elith  J,  Franklin  J  (2013).  Species  distribution 
modelling.  In:  “Encyclopedia  of  Biodiversity” 
(Levin  S  ed).  Academic  Press,  Waltham,  MA, 
pp. 692-705.

Eyring V, Bony S, Meehl GA, Senior CA, Stevens 
B,  Stouffer  RJ,  Taylor  KE (2016).  Overview of 
the  Coupled  Model  Intercomparison  Project 

Phase 6 (CMIP6) experimental design and or-
ganization.  Geoscientific  Model  Development 
9: 1937-1958. - doi: 10.5194/gmd-9-1937-2016

Fielding AH, Bell JF (1997). A review of methods 
for the assessment of prediction errors in con-
servation  presence/absence  models.  Environ-
mental  Conservation  24:  38-49.  -  doi:  10.1017/ 
S0376892997000088

García-Aranda MA, Méndez-González J, Hernán-
dez-Arizmendi JY (2018). Potential distribution 
of  Pinus  cembroides,  Pinus  nelsonii  and  Pinus 
culminicola  in  northeastern  Mexico.  Ecosiste-
mas  y  Recursos  Agropecuarios  5:  3-13.  -  doi: 
10.19136/era.a5n13.1396

Goberville E, Beaugrand G, Hautekete C, Piquot 
Y, Luczak C (2015). Uncertainties in the projec-
tion of species distributions related to general 
circulation models. Ecology and Evolution 5 (5): 
1100-1116. - doi: 10.1002/ece3.1411

Gómez-Díaz  JD,  Monterroso-Rivas  AI,  Tinoco-
Rueda JA, Toledo-Medrano ML, Conde-Alvarez 
C,  Gay-García  C  (2011).  Assessing  current  and 
potential  patterns  of  16 forest  species  driven 
by climate change scenarios in México. Atmós-
fera 24: 31-52.

Gómez-Pineda  E,  Sáenz-Romero  C,  Ortega-Ro-
dríguez JM, Blanco-García A, Madrigal-Sánchez 
X, Lindig-Cisneros R, Lopez-Toledo L,  Pedraza-
Santos  ME,  Rehfeldt  GE  (2020).  Suitable  cli-
matic  habitat  changes  for  Mexican  conifers 
along  altitudinal  gradients  under  climatic 
change  scenarios.  Ecological  Applications  30 
(2): e02041. - doi: 10.1002/eap.2041

Guisan  A,  Tingley  R,  Baumgartner  JB,  Nau-
jokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan 
TJ,  Brotons L,  McDonald-Madden E,  Mantyka-
Pringle  C,  Martin  TG,  Rhodes  JR,  Maggini  R, 
Setterfield SA, Elith J, Schwartz MW, Wintle BA, 
Broennimann O,  Austin  M,  Ferrier  S,  Kearney 
MR,  Possingham HP,  Buckley  YM  (2013).  Pre-
dicting  species  distributions  for  conservation 
decisions. Ecological Letters 16 (12): 1424-1435. - 
doi: 10.1111/ele.12189

Guisan  A,  Thuiller  W,  Zimmermann  NE  (2017). 
Habitat suitability and distribution models with 
applications in R.  Cambridge University Press, 
Cambridge,  UK,  pp.  462.  [online]  URL:  http:// 
books.google.com/books?id=rYswDwAAQBAJ

Gustafson EJ,  Kern CC,  Kabrick JM (2023).  Can 
assisted  tree  migration  today  sustain  forest 
ecosystem goods and services for the future? 
Forest Ecology and Management 529: 120723. - 
doi: 10.1016/j.foreco.2022.120723

Harris I, Jones PD, Osborn TJ, Lister DH (2014). 
Updated  high-resolution  grids  of  monthly  cli-
matic observations - the CRU TS3.10 dataset. In-
ternational Journal of Climatology 34 (3): 623-
642. - doi: 10.1002/joc.3711

Hartmann  H,  Bastos  A,  Das  AJ,  Esquivel-Muel-
bert A, Hammond WM, Martínez-Vilalta J, Mc-
Dowell NG, Powers JS, Pugh TAM, Ruthrof KX, 
Allen CD (2022). Climate change risks to global 
forest  health:  emergence  of  unexpected 
events  of  elevated  tree  mortality  worldwide. 
Annual  Review of Plant Biology 73:  673-702.  - 
doi: 10.1146/annurev-arplant-102820-012804

Hastie TJ, Tibshirani RJ (1990). Generalized addi-
tive  models.  Chapman  and  Hall,  New  York, 
USA, pp. 352.

Hastie T, Tibshirani R, Buja A (1994). Flexible dis-
criminant analysis  by optimal  scoring.  Journal 

of the American Statistical Association 89: 1255-
1270. - doi: 10.1080/01621459.1994.10476866

Herrera-Soto  G,  González-Cásares  M,  Pompa-
García M, Camarero JJ, Solís-Moreno R (2018). 
Growth of Pinus cembroides Zucc. in response 
to hydroclimatic variability in four sites forming 
the species latitudinal and longitudinal distribu-
tion limits. Forests 9 (7): 440. - doi: 10.3390/f90 
70440

Huang Y,  Li  T,  Chen W, Zhang Y,  Xu Y,  Guo T, 
Wang S, Liu J, Qin Y (2024). Analysis of the dis-
tribution  pattern  of  Phenacoccus  manihoti in 
China under climate change based on the BIO-
MOD2 model. Biology 13 (7): 538. - doi: 10.3390/ 
biology13070538

Kaky E,  Nolan V,  Alatawi A, Gilbert F (2020).  A 
comparison  between  ensemble  and  MaxEnt 
species  distribution modelling  approaches for 
conservation: a case study with Egyptian med-
icinal plants. Ecological Informatics 60: 101150. - 
doi: 10.1016/j.ecoinf.2020.101150

Karger DN, Conrad O, Böhner J, Kawohl T, Kreft 
H,  Wilber  R,  Zimmermann  NE,  Linder  HP, 
Kessler M (2017). Climatologies at high resolu-
tion for  the Earth’s  land surface areas.  Scien-
tific Data 4 (1): 1-20. - doi: 10.1038/sdata.2017.122

Karger DN, Chauvier Y, Zimmermann NE (2023). 
Chelsa-cmip6 1.0:  a  Python package to create 
high-resolution  bioclimatic  variables  based on 
CHELSA Ver.  2.  1  and CMIP6 Data.  Ecography 
2023 (6): e06535.

Khan S, Verma S (2022). Ensemble modeling to 
predict the impact of future climate change on 
the global distribution of Olea europaea subsp. 
cuspidata.  Frontiers  in  Forests  and  Global 
Change 5: 977691. - doi:  10.3389/ffgc.2022.9776 
91

Knutti  R,  Sedláček J,  Sanderson BM, Lorenz R, 
Fischer  EM,  Eyring  V  (2017).  A  climate  model 
projection  weighting  scheme  accounting  for 
performance  and  interdependence.  Geophysi-
cal  Research  Letters  24:  4529-4538.  -  doi: 
10.1002/2016GL072012

Lobo  JM,  Jiménez-Valverde  A,  Real  R  (2008). 
AUC: a misleading measure of the performance 
of predictive distribution models.  Global  Ecol-
ogy  and  Biogeography  17  (2):  145-151.  -  doi: 
10.1111/j.1466-8238.2007.00358.x

Manzanilla-Quijada GE, Osuna-Vallejo V, Zacarías-
Correa  AG,  Gómez-Pineda  E,  Gallardo-Salazar 
JL, Sáenz-Romero C (2024). Zonas de transfer-
encia  de  semillas  para  la  reforestación  en  la 
Reserva de la Biosfera Mariposa Monarca y la 
Meseta  Purépecha  ante  el  cambio  climático 
[Seed  transfer  zones  for  reforestation  in  the 
Monarch Butterfly Biosphere Reserve and the 
Meseta Purépecha facing climate change]. Re-
vista  Chapingo Serie  Ciencias  Forestales  y  del 
Ambiente 30 (2): 1-21. [in Spanish] - doi: 10.5154/ 
r.rchscfa.2023.11.056

Martínez-Sánchez JN, Cuéllar Rodríguez LG, Yer-
ena Yamallel JI, Cavazos Pérez MT, Gárate Es-
camilla  HA  (2023).  Comparación  de  bases  de 
datos climáticos en la modelación de distribu-
ción potencial de Pinus cembroides Zucc. [Com-
parison of climatic databases in modeling the 
potential  distribution  of  Pinus  cembroides 
Zucc.]. Revista Mexicana de Ciencias Forestales 
14 (79): 135-158. [in Spanish] - doi:  10.29298/rm 
cf. v14i79.1350

Martínez-Sifuentes  AR,  Villanueva-Díaz  J,  Man-

iForest 19: 1-8 7

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.29298/rmcf.v14i79.1350
https://doi.org/10.29298/rmcf.v14i79.1350
https://doi.org/10.5154/r.rchscfa.2023.11.056
https://doi.org/10.5154/r.rchscfa.2023.11.056
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1002/2016GL072012
https://doi.org/10.3389/ffgc.2022.977691
https://doi.org/10.3389/ffgc.2022.977691
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.1016/j.ecoinf.2020.101150
https://doi.org/10.3390/biology13070538
https://doi.org/10.3390/biology13070538
https://doi.org/10.1080/01621459.1994.10476866
https://doi.org/10.1146/annurev-arplant-102820-012804
https://doi.org/10.1002/joc.3711
https://doi.org/10.1016/j.foreco.2022.120723
http://books.google.com/books?id=rYswDwAAQBAJ
http://books.google.com/books?id=rYswDwAAQBAJ
https://doi.org/10.1111/ele.12189
https://doi.org/10.1002/eap.2041
https://doi.org/10.1002/ece3.1411
https://doi.org/10.19136/era.a5n13.1396
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1016/j.ecolmodel.2004.12.007
https://doi.org/10.1016/j.ecolmodel.2004.12.007
https://doi.org/10.5154/r.rchscfa.2015.06.027
http://www.snib.mx/ejemplares/descarga/
http://www.snib.mx/ejemplares/descarga/
https://doi.org/10.1002/joc.6276
https://doi.org/10.1002/joc.6276
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/ffgc.2024.1454329
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.3390/f9070440
https://doi.org/10.3390/f9070440
https://doi.org/10.1111/j.1461-0248.2011.01736.x
https://doi.org/10.1111/j.1461-0248.2011.01736.x


Martínez-Sánchez JN et al. - iForest 19: 1-8

zanilla-Quiñones U, Becerra-López JL,  Hernán-
dez-Herrera  JA,  Estrada-Avalos  J,  Velázquez-
Pérez AH (2020). Spatial modeling of the eco-
logical  niche  of  Pinus  greggii Engelm.  (Pina-
ceae): a species conservation proposal in Mex-
ico under climatic change scenarios. iForest 13: 
426-434. - doi: 10.3832/ifor3491-013

McCullagh P, Nelder JA (1989). Generalized lin-
ear models (2nd edn).  Chapman and Hall,  Lon-
don, UK, pp. 532.

Montoya-Jiménez  JC,  Valdez-Lazalde  JR,  Ange-
les-Perez G, De Los Santos-Posadas HM, Cruz-
Cárdenas G (2022). Predictive capacity of nine 
algorithms  and  an  ensemble  model  to  deter-
mine  the  geographic  distribution  of  tree 
species.  iForest  15:  363-371.  -  doi:  10.3832/ifor 
4084-015

Murray-Tortarolo  GN  (2021).  Seven  decades  of 
climate  change  across  Mexico.  Atmósfera  34 
(2): 217-226. - doi: 10.20937/ATM.52803

Pearson RG,  Dawson TP (2003).  Predicting the 
impacts of climate change on the distribution 
of  species:  are  bioclimate  envelope  models 
useful? Global Ecology and Biogeography 12(5): 
361-371. - doi: 10.1046/j.1466-822X.2003.00042.x

Pecl GT, Araújo MB, Bell JD, Blanchard J, Bone-
brake TC,  Chen C,  Clark  TD,  Colwell  RK,  Dan-
ielsen F,  Evengård B, Falconi L,  Ferrier S,  Fru-
sher S, Garcia RA, Griffis RB, Hobday AJ, Janion-
Scheepers C, Jarzyna MA, Jennings S, Williams 
SE (2017). Biodiversity redistribution under cli-
mate change: Impacts on ecosystems and hu-
man well-being. Science 355 (6332): eaai9214. - 
doi: 10.1126/science.aai9214

Peterson AT,  Papeş  M,  Soberón J.  (2008).  Re-
thinking receiver operating characteristic analy-
sis  applications  in  ecological  niche  modeling. 
Ecological Modelling 213: 63-72. - doi:  10.1016/j. 
ecolmodel.2007.11.008

Phillips  SJ,  Anderson  RP,  Schapire  RE  (2006). 
Maximum  entropy  modeling  of  species  geo-
graphic distributions. Ecological Modelling 190: 
231-259. - doi: 10.1016/j.ecolmodel.2005.03.026

R Core Team (2020). R: a language and environ-
ment  for  statistical  computing.  R  Foundation 
for Statistical Computing, Vienna, Austria. [on-
line] URL: http://www.r-project.org/

Ripley BD (1996). Pattern recognition and neural 
networks.  Cambridge  University  Press,  Cam-
bridge, UK, pp. 403.

Romero-Sánchez  ME,  González-Hernández  A, 
Pérez-Miranda  R,  Velasco-Bautista  E,  Moreno-
Sánchez F (2017). Efecto del cambio climático a 
nivel local en la distribución potencial de cuatro 
especies  de  la  cuenca  Río  Bravo-San  Juan, 
Coahuila, México [Effect of climate change at 
local level on the potential distribution of four 
forest species in the Río Bravo-San Juan Basin, 
Coahuila,  México].  Agroproductividad  10:  42-
47. [in Spanish]

Ridgeway G (1999). The state of boosting. Com-
puting Science and Statistics 31: 172-181.

Rzedowski J (1978). Vegetación de México [Veg-
etation of Mexico]. Limusa, Ciudad de México, 
MX, pp. 432. [in Spanish]

Sáenz-Romero C,  Rehfeldt  GE,  Duval  P,  Lindig-
Cisneros RA (2012).  Abies religiosa habitat pre-
diction in climatic change scenarios and impli-
cations for  monarch butterfly conservation in 
Mexico. Forest Ecology and Management 275: 
98-106. - doi: 10.1016/j.foreco.2012.03.004

Sáenz-Romero C, Lamy JB, Ducousso A, Musch 
B, Ehrenmann F, Delzon S, Cavers S, Chalupka 
W, Dagdas S, Hansen JK, Lee SJ, Liesebach M, 
Rau HM, Psomas A, Schneck V, Steiner W, Zim-
mermann NE,  Kremer A  (2017).  Adaptive  and 
plastic  responses  of  Quercus  petraea  popula-
tions to climate across Europe. Global Change 

Biology 23 (7): 2831-2847. - doi: 10.1111/gcb.13576
Santos-Hernández AF, Monterroso-Rivas AI, Gra-

nados-Sánchez D, Villanueva-Morales A, Santa-
cruz-Carrillo M (2021). Projections for Mexico’s 
tropical  rainforests  considering  ecological 
niche and climate change. Forests 12: 119. - doi: 
10.3390/f12020119

Sun Y, Zhang H, Jiang K, Xiang D, Shi Y, Huang S, 
Li Y, Han H (2024). Simulating the changes of 
habitat  suitability  of  chub mackerel  (Scomber 
japonicus) in the high seas of the North Pacific 
Ocean using ensemble models under medium 
to long-term future climate scenarios.  Marine 
Pollution  Bulletin  207:  116873.  -  doi:  10.1016/j. 
marpolbul.2024.116873

Thuiller  W,  Guéguen M,  Renaud J,  Karger  DN, 
Zimmermann NE (2019). Uncertainty in ensem-
bles  of  global  biodiversity  scenarios.  Nature 
Communications 10 (1):  1-9.  -  doi:  10.1038/s414 
67-019-09519-w

Thuiller  W,  Georges  D,  Gueguen  M,  Engler  R, 
Breiner F, Lafourcade B, Patin R, Blancheteau H 
(2025). BIOMOD2: ensemble platform for spe-
cies  distribution  modeling.  CRAN,  R  package 
version  42:6-2,  website.  [online]  URL:  http:// 
CRAN.R-project.org/package=biomod2

Valavi  R,  Guillera-Arroita  G,  Lahoz-Monfort  JJ, 
Elith J (2022). Predictive performance of pres-
ence-only species distribution models: a bench-
mark study with reproducible code. Ecological 
Monographs 92 (1): e01486. - doi:  10.1002/ecm. 
1486

Zamora-Maldonado  HC,  Avila-Foucat  VS,  Sán-
chez-Sotomayor  VG  (2025).  Modeling  climate 
change impacts on the potential distribution of 
bighorn sheep in Mexico. Frontiers in Climate 7: 
1386632. - doi: 10.3389/fclim.2025.1386632

8 iForest 19: 1-8

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.3389/fclim.2025.1386632
https://doi.org/10.1002/ecm.1486
https://doi.org/10.1002/ecm.1486
http://CRAN.R-project.org/package=biomod2
http://CRAN.R-project.org/package=biomod2
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.1038/s41467-019-09519-w
https://doi.org/10.1016/j.marpolbul.2024.116873
https://doi.org/10.1016/j.marpolbul.2024.116873
https://doi.org/10.3390/f12020119
https://doi.org/10.1111/gcb.13576
https://doi.org/10.1016/j.foreco.2012.03.004
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1126/science.aai9214
https://doi.org/10.20937/ATM.52803
https://doi.org/10.3832/ifor4084-015
https://doi.org/10.3832/ifor4084-015
https://doi.org/10.3832/ifor3491-013
http://www.R-project.org/
https://doi.org/10.1016/j.ecolmodel.2007.11.008
https://doi.org/10.1016/j.ecolmodel.2007.11.008
https://doi.org/10.1046/j.1466-822X.2003.00042.x

	Ensemble modeling of Pinus cembroides Zucc. distribution under future CMIP6 climate scenarios in northern Mexico
	Introduction
	Methodology
	Species presence records
	Environmental data
	Ensemble modelling
	Variable importance
	Spatial distribution

	Results
	Model evaluation
	Variable importance
	Response curves
	Current and future distribution

	Discussion
	Ensemble modeling and model performance
	Environmental predictors
	Future distribution
	Conservation implications and future research

	Conclusions
	Acknowledgements
	References


