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Introduction

Climate change is altering forest ecosys-
tems by modifying temperature and pre-
cipitation regimes (Khan & Verma 2022).
Consequently, species are migrating to
higher latitudes and elevations to find suit-
able climatic conditions (Pecl et al. 2017).
Moreover, more frequent droughts, wild-
fires, and pest outbreaks are driving wide-
spread tree mortality and ecosystem de-
gradation, thereby threatening biodiversity
and key ecosystem services, including car-
bon sequestration and water regulation
(Anderegg et al. 2020, Hartmann et al.
2022). Thus, forecasting species’ responses
to climate-driven changes is essential for
ecologists and land managers (Bellard et
al. 2012).

Mexico is particularly vulnerable to these
climatic alterations. Mean annual tempera-

This study employed ensemble species distribution models (SDMs) using the
“biomod2” package and different General Circulation Models (GCMs) to assess
the impacts of climate change on the potential distribution of Pinus cem-
broides in Mexico. Using presence and pseudo-absence data, along with biocli-
matic variables from CHELSA v2.1, future habitat suitability was projected for
the near future (2041-2060) and far future (2061-2080) under two CMIP6 sce-
narios (SSP245 and SSP585). Our results predict that under future climate con-
ditions, P. cembroides will likely undergo substantial range contractions, with
losses of approximately 65%-85% of the current suitable habitat and no colo-
nization of novel areas. Temperature-related predictors, particularly Bio8
(mean temperature of the wettest quarter) and Bio9 (mean temperature of
the driest quarter) were identified as the primary drivers of the species’ dis-
tribution. These results suggest that under warming scenarios, P. cembroides
will be confined to high elevation refugia, thereby increasing fragmentation
and reducing its adaptive capacity. Overall, our findings provide a critical
baseline for adaptive forest management strategies, such as assisted migration
and the conservation of high elevation refugia, to mitigate the impacts of cli-
mate change on P. cembroides.
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tures have increased by approximately 0.7
°C over the past 50 years, accompanied by
increased precipitation variability (Cavazos
et al. 2020, Murray-Tortarolo 2021). Projec-
tions under high-emissions scenarios indi-
cate an additional warming of up to 4.5 °C
by 2100, and a decline in soil moisture (Al-
mazroui et al. 2021). Such changes have al-
ready increased mortality rates and sup-
pressed radial growth in conifer forests at
their xeric margins (Manzanilla-Quijada et
al. 2024).

Pinus cembroides Zucc., commonly known
as Mexican pinyon, occurs on dry, rocky
soils throughout the Sierra Madre Oriental,
Sierra Madre Occidental, and Trans-Mexi-
can Volcanic Belt (Constante-Garcia et al.
2009, Martinez-Sifuentes et al. 2020). P.
cembroides reaches up to 15 m in height
and 30-70 cm in diameter (Herrera-Soto et
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al. 2018). Nutrient limitations, particularly
nitrogen and phosphorus, can restrict both
root development and crown expansion in
this species (Constante-Garcia et al. 2009).
Individual trees typically establish on mildly
acidic substrates (mean pH: 5.3; H* = 25% of
exchangeable cations) under warm xero-
phytic temperate climates, predominantly
occupying ecotones between arid desert
scrub and humid montane forests (Rze-
dowski 1978). Although P. cembroides ex-
hibits exceptional drought tolerance, its
distribution is primarily limited by tempera-
ture extremes during the wettest (Bio 8)
and driest (Bio 9) quarters (Martinez-San-
chez et al. 2023). Under future warming
scenarios, models project range contrac-
tions exceeding 75%, confining populations
to isolated high-elevation refugia and
threatening genetic diversity and connec-
tivity (Romero-Sanchez et al. 2017).

Species distribution models (SDMs) corre-
late species occurrences with environmen-
tal predictors, such as temperature, precip-
itation, and elevation, to estimate current
habitat suitability and forecast future
range shifts (Elith et al. 2006, Guisan et al.
2013). Algorithms include parametric re-
gression (generalized linear models, gener-
alized additive models), machine-learning
methods (random forests, boosted regres-
sion trees, artificial neural networks), pres-
ence-only techniques (MaxEnt, surface
range envelopes), and mechanistic models
integrating species-specific physiology.
These methods have been successfully ap-
plied to diverse taxa, including conifers in
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Tab. 1 - The bioclimatic variables ana-
lyzed to quantify changes in the poten-
tial distribution of P. cembroides.

Variable Description

Bio 2 Mean diurnal range

Bio 3 Isothermality

Bio 7 Temperature annual range

Bio 8 Mean temperature of wettest
quarter

Bio 9 Mean temperature of driest
quarter

Bio 12 Annual precipitation

Bio 14 Precipitation of driest month

Bio 18 Precipitation of warmest
quarter

Bio 19 Precipitation of coldest

quarter

Mexico (Sdenz-Romero et al. 2017, Gémez-
Pineda et al. 2020), and provide critical pro-
jections to inform adaptive forest manage-
ment, such as assisted migration and con-
servation of high-elevation refugia, to miti-
gate climate change impacts (Bower et al.
2024).

However, each SDM entails uncertainties
arising from the methodology, data qual-
ity, and assumptions underlying future cli-
mate scenarios (Aradjo et al. 2019). To ad-
dress these challenges, ensemble modeling
approaches integrate predictions from
multiple SDMs and general circulation
models (GCMs), thereby enhancing the ro-
bustness of projections and reducing un-
certainty (Thuiller et al. 2019, Valavi et al.
2022).

In this study, we assessed the impacts of
climate change on the distribution of P.
cembroides in Mexico. We first identified
the key climatic drivers of its current range,
and then projected habitat suitability un-
der two climate scenarios (SSP245 and
SSP585) for the periods 20412060 and
20612080 using an ensemble modeling
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framework. Finally, we mapped areas of
habitat loss, stability, and potential gain.
Employing multiple algorithms reduces
model uncertainty and increases confi-
dence in future suitability predictions.

Methodology

Species presence records

Occurrence records for P. cembroides
were obtained from the National Forest
and Soil Inventory and the National Biodi-
versity Information System (CONABIO
2020). Duplicate records were removed to
match the spatial resolution of the climate
data and prevent model overfitting. Over-
all, 1696 occurrence records were ob-
tained.

Environmental data

We analyzed 19 bioclimatic variables rep-
resenting current and future climate condi-
tions to quantify changes in the potential
distribution of P. cembroides. Climate layers
were derived from CHELSA v. 2.1, which in-
tegrates surface observations, satellite
data, and the ERA5 reanalysis at approxi-
mately 1-km spatial resolution. (Karger et
al. 2017). To reduce multicollinearity, we re-
tained predictors with VIF<10 (Kaky et al.
2020 - Tab. 1). We focused on climate driv-
ers, since broad-scale temperature and pre-
cipitation gradients determine range limits.
In contrast, static factors (e.g., soil, topog-
raphy) cannot be projected under future
scenarios (Zamora-Maldonado et al. 2025).
This climate-only framework isolates the
effects of climate change on habitat suit-
ability (Pearson & Dawson 2003). We then
projected suitability for 2041-2060 (near fu-
ture) and 2061-2080 (far future) under the
SSP2-4.5 and SSP5-8.5 scenarios (Eyring et
al. 2016) using the Python package “chelsa-
cmip6” ver. 1.0 (Karger et al. 2023). To ad-
dress GCM uncertainty, we generated a
multi-model ensemble (MME) by compar-
ing monthly temperature and precipitation
outputs against CRU observations (Harris
et al. 2014). We evaluated model perfor-

Tab. 2 - Mean and standard deviation evaluation metrics by algorithm for P. cem-
broides: True Skill Statistic (TSS), Area Under the Curve (AUC), and partial AUC

(pAUC).

Algorithm  TSS mean TSSstd AUCmean AUCstd PAUC mean PAUC std
ANN 0.740 0.001 0.914 0.047 0.662 0.097
CTA 0.736 0.014 0.882 0.013 0.692 0.004
FDA 0.728 0.012 0.919 0.005 0.678 0.002
GAM 0.735 0.020 0.930 0.005 0.734 0.001
GBM 0.758 0.012 0.946 0.004 0.821 0.002
GLM 0.772 0.022 0.942 0.004 0.779 0.002
MAXENT 0.780 0.024 0.947 0.005 0.841 0.018
RF 0.711 0.034 0.957 0.003 0.924 0.091
SRE 0.524 0.004 0.762 0.005 0.500 0.000
EMmean 0.775 0.018 0.948 0.004 0.885 0.021
EMwmean 0.777 0.016 0.949 0.004 0.890 0.019

mance using the normalized standard devi-
ation, centered root-mean-square error,
Taylor skill score, pattern correlation coeffi-
cient, and mean bias (Harris et al. 2014,
Goberville et al. 2015). These metrics
guided the selection of models that best
capture regional climate variability (Knutti
etal. 2017).

Ensemble modelling

We implemented ensemble distribution
modeling in R using the “BIOMOD2” v. 4.2-
2 package (R Core Team 2020). We in-
cluded nine correlative modeling algo-
rithms: Generalized Linear Models (GLM -
McCullagh & Nelder 1989), a parametric re-
gression framework; Generalized Additive
Models (GAM - Hastie & Tibshirani 1990),
which use spline-based smoothing; Gener-
alized Boosted Models (GBM - Ridgeway
1999), a gradient-boosted ensemble of de-
cision trees; Classification Tree Analysis
(CTA - Breiman 2001), based on CART; Flex-
ible Discriminant Analysis (FDA - Hastie et
al. 1994), discriminant analysis with non-
parametric smoothing; Artificial Neural
Networks (ANN - Ripley 1996), feed-for-
ward neural networks; Maximum Entropy
(MaxEnt - Phillips et al. 2006), a presence-
only maximum-entropy method; Random
Forest (RF — Breiman 2001), a bootstrap-ag-
gregated decision-tree ensemble; and, Sur-
face Response Envelopes (SRE - Busby
1991), a climatic-envelope model based on
predictor ranges. Each model was trained
on 75% of the data and evaluated on the re-
maining 25% (Phillips et al. 2006). We gen-
erated 10,000 random pseudo-absences
for each model using a random cross-vali-
dation strategy (Guisan et al. 2017). Default
algorithm parameters were used to mini-
mize overfitting. To enhance robustness,
each algorithm was run three times (Khan
& Verma 2022). We assessed performance
using the area under the ROC curve (AUC,
0-1), partial AUC (pAUC, FPR < 0.10), and
True Skill Statistic (TSS, -1 to 1), retaining
only models with TSS > 0.8 for ensemble in-
tegration (Fielding & Bell 1997, Lobo et al.
2008, Kaky et al. 2020). The AUC indicates
relatively good to excellent model perfor-
mance when values exceed 0.8 and 0.9, re-
spectively (Fielding & Bell 1997). pAUC pro-
vides a firmer foundation for evaluating
predictions from ecological niche models
(Peterson et al. 2008). TSS combines sensi-
tivity (true positive rate) and specificity
(true negative rate) to assess a model’s
ability to predict presence and absence.
The closer the TSS is to 1, the higher the
prediction accuracy (Allouche et al. 2006).
Only models with TSS > 0.8 were retained
for ensemble integration. Finally, we used
BIOMOD_EnsembleModelling to generate
two consensus projections: EMmean (un-
weighted mean) and TSS-weighted mean
to reduce model-specific uncertainty
(Huang et al. 2024).

Variable importance
To quantify the relative influence of each
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bioclimatic predictor on the distribution of
P. cembroides, we employed the permuta-
tion-importance method (Elith et al. 2005).
Each predictor was permuted in turn while
holding all other variables constant; we
then quantified the reduction in model pre-
dictions relative to the original output. We
then corrected this reduction by account-
ing for the correlation between permuted
and original predictions (Ahmad et al.
2019). Larger corrected reductions indicate
greater variable importance, whereas a
zero reduction denotes no contribution.

Spatial distribution

We computed the Habitat Suitability In-
dex (HSI) for each model as the predicted
probability of species occurrence. We de-
rived the ensemble HSI by averaging pre-
dictions from the EMmean and EMwmean
methods. We then normalized raw HSI val-
ues (0-1000) to a scale of o-1. Suitability
classes were defined as highly suitable (HIS
> 0.8), moderately suitable (0.6 < HIS <
0.8), marginally suitable (0.4 < HIS < 0.6),
and unsuitable (HIS < 0.4 — Sun et al. 2024).

Results

Model evaluation

The final ensemble models EMmean and
EMwmean achieved average AUC values of
0.948 and 0.949 across replicates (Tab. 2).
During calibration, AUCs were 0.987 for
EMmean and 0.999 for EMwmean. On in-
dependent validation data, AUCs were
0.954 and 0.955, with TSS of 0.775 and
0.777, demonstrating high predictive accu-
racy for P. cembroides. Among individual al-
gorithms, MaxEnt achieved the highest TSS

Fig. 1- Response curve of

Potential distribution of Pinus cembroides in Mexico

Tab. 3 - Mean variable importance scores of the selected bioclimatic variables for each
algorithm: Artificial Neural Networks (ANN), Classification Tree Analysis (CTA), Flexi-
ble Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized
Boosted Model (GBM), Generalized Linear Model (GLM), Maximum Entropy (MAX-
ENT), Random Forest (RF), Surface Range Envelope (SRE).

Variable  ANN CTA° FDA GAM GBM  GLM  MAXENT RF SRE
Bio 2 0.335 0.000 0.205 0.238 0.000 0.520 0.042 0.045 0.039
Bio 3 0.008 0.045 0.051 0.049 0.028 0.700 0.085 0.043  0.041
Bio 7 0.000 0.000 0.177 0.163 0.000 0.887 0.088 0.132 0.081
Bio 8 0.292 0.322 0.212 0.215 0.181 0.357 0.474 0.114 0.002
Bio 9 0.713 0.738 0.614 0.495 0.280 0.287 0.111 0.072  0.063
Bio 12 0.145 0.063 0.105 0.265 0.058 0.230 0.250 0.051 0.101
Bio 14 0.134 0.000 0.001 0.066 0.005 0.053 0.024 0.044 0.043
Bio 18 0.027 0.000 0.035 0.036 0.006 0.014 0.020 0.049 0.036
Bio 19 0.041 0.000 0.023 0.004 0.004 0.052 0.033 0.041  0.062

(0.780), followed by GLM (0.772) and GBM
(0.758). RF showed the highest AUC
(0.957), followed by MaxEnt (0.947). The
SRE model performed least favorably (AUC
= 0.762; TSS = 0.524), indicating limited dis-
crimination between presence and ab-
sence of the species. ANN (TSS = 0.740,
AUC = 0.914) and CTA (TSS = 0.736, AUC =
0.882) demonstrated moderate perfor-
mance. pAUC (FPR < 0.10) for single algo-
rithms ranged from o0.50 (SRE) to 0.99
(RF), with intermediate values for CTA
(0.74), FDA (0.71), GLM (0.81), MaxEnt
(0.84), ANN (0.75), GBM (0.81), and GAM
(0.76). These results demonstrate that in-
tegrating multiple algorithms into an en-
semble enhances the reliability of species
distribution predictions.

Bio.12.Ensemble

Bio.14.Ensemble

Variable importance

Tab. 3 summarizes the mean importance
scores for nine bioclimatic predictors
across the nine algorithms, revealing sub-
stantial variability. Temperature predictors
were the most influential: Bio 8 (mean tem-
perature of the wettest quarter) ranged
from 0.181 in GBM to 0.474 in MaxEnt (en-
semble = 0.321); Bio 9 (mean temperature
of the driest quarter) varied from 0.280 in
GBM to 0.738 in CTA (ensemble = 0.171);
Bio 3 (isothermality) scored 0.700 in GLM
(ensemble = 0.277); and Bio 7 (annual tem-
perature range) peaked at 0.887 in GLM
(ensemble = 0.340). In contrast, precipita-
tion predictors showed lower importance:
Bio 2 (mean diurnal range, ensemble =
0.201), Bio 12 (annual precipitation, 0.184),

Bio.18.Ensemble
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Fig. 2 - Current potential distribution of P. cembroides based on ensemble predictions derived from committee averaging (EMmean)

and weighted mean (EMwmean) methods.

Bio 14 (precipitation of the driest month,
0.043), Bio 18 (precipitation of the warm-
est quarter, 0.026), and Bio 19 (precipita-
tion of the coldest quarter, 0.045). These
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results confirm that seasonal temperature
extremes and variability (Bio 3, Bio 7, Bio 8,
and Bio 9) primarily determine the distribu-
tion of P. cembroides, whereas precipita-
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Fig. 3 - Projected future distribution of P. cembroides under climate change scenarios
SSP245 and SSP585 for the periods 2041-2060 and 2061-2080, based on ensemble pre-
dictions derived from committee averaging (EMmean) and weighted mean

(EMwmean) methods.

tion variables play a subordinate role.

Response curves

Seasonal temperature extremes (Bio 2,
Bio 3, Bio 7, Bio 8, and Bio 9) primarily limit
the suitability of P. cembroides. Suitability
declines sharply for the mean temperature
of the wettest quarter (Bio 8) and the dri-
est quarter (Bio 9) above 20 °C. Still, it re-
mains at or above 0.6 between 15 °C and 20
°C (Fig. 1). We also observed moderate ef-
fects of isothermality (Bio 3) and annual
temperature range (Bio 7), with suitability
falling once Bio 7 exceeds roughly 25-30 °C.

In contrast, precipitation predictors have
a secondary influence. Habitat suitability
persists under the semi-arid regimes typical
of the species’ range and declines only
modestly with reductions in annual or sea-
sonal precipitation. These findings demon-
strate that, despite its drought tolerance,
P. cembroides remains vulnerable to ele-
vated temperatures and reduced moisture,
factors likely to constrain its distribution
under future warming scenarios.

Current and future distribution

Under current climate conditions (1981-
2010), the ensemble models EMmean and
EMwmean identify P. cembroides primarily
in mountainous regions (Fig. 2). Both ap-
proaches consistently indicate high suit-
ability in the Sierra Madre Oriental and
Sierra Madre Occidental, in particular, in
the regions of Chihuahua, Durango, and
Nuevo Ledn, and along the Trans-Mexican
Volcanic Belt. Total suitable area is esti-
mated at 5.4 x 105 km? for EMmean and 5.2
x 105 km* for EMwmean. Although
EMwmean extends slightly further into the
southwestern Sierra Madre Occidental,
both models converge on these mountain
ranges as key refugia.

Under SSP245 (2041-2060), high-elevation
areas retain moderate to high suitability
(HIS = 0.6) but occur in more fragmented
patches than during the baseline period
(Fig. 3). By 2061-2080, continuity of suit-
able habitat declines further, particularly in
the central Sierra Madre Occidental, where
areas with HIS > 0.8 shrink sharply. Under
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the more extreme SSP585 scenario, losses
intensify, and by 2061-2080, only isolated
pockets of moderate suitability (HIS = 0.4-
0.6) persist across northern and central
Mexico. Although EMwmean occasionally
predicts slightly larger clusters of moder-
ate suitability, both ensembles agree on a
pronounced contraction in the range.

Range-change statistics (Tab. 4) reveal se-
vere losses under all scenarios. For 2041-
2060, EMmean projects a 65.6% decline un-
der SSP245 and 74.1% under SSP58s;
EMwmean estimates losses of 67.8% and
76.7%, respectively. The most extreme con-
tractions occur during 2061-2080 under
SSP585, with projected losses of 84.6%
(EMmean) and 85.9% (EMwmean). No sce-
nario predicts net habitat gain. These
changes are particularly pronounced in
northern Mexico, along both the Sierra
Madre Oriental and Sierra Madre Occiden-
tal, where the current range is projected to
decline significantly.

Fig. 4 shows that the stable category is
most extensive between 22° and 26 °N and
at elevations of 1500-2500 m a.s.l. Habitat
gains remain marginal, accounting for less
than 5% of the landscape, and are re-
stricted to latitudes below 20° N and mid-
elevations (1000-1500 m). Under SSP245
(2041-2060), approximately 25% of stable
habitat is lost, whereas under SSP585
(2061-2080) losses exceed 50%, reflecting a
pronounced contraction of the species’
current range.

Discussion

Ensemble modeling and model
performance

SDMs are essential tools for understand-
ing the biogeographic patterns and poten-
tial future ranges of forest species, particu-
larly under scenarios of rapid climate
change (Elith & Franklin 2013). In Mexico,
SDMs for Pinus have often relied on a sin-
gle algorithm, such as MAXENT (Phillips et
al. 2006), due to its strong performance
with presence-only data (Cruz-Cardenas et
al. 2016, Martinez-Sifuentes et al. 2020).
Nonetheless, predictions generated from
individual models are vulnerable to algo-
rithmic biases, which can lead to an under-
estimation of overall model uncertainty
(Aradjo et al. 2019).

Our study demonstrates that the ensem-
ble framework implemented in BIOMOD2
(Thuiller et al. 2025) yields robust and con-
sistent projections by integrating multiple
SDMs and GCMs. Averaging or weighting
these projections effectively captures inter-
model variability, thereby refining final
habitat suitability maps (Goberville et al.
2015, Thuiller et al. 2019).

The consensus models achieved high
evaluation metrics, with TSS values of
0.775 and 0.777 and AUC values of 0.945
and 0.949 for EMmean and EMwmean, re-
spectively. These results are consistent
with previous studies employing similar
multi-model frameworks (Montoya-Jimén-
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Tab. 4 - Summary of the range change statistics (in 105 km?) for P. cembroides under
SSP245 and SSP585 scenarios in 2041-2060 and 2061-2080.

Scenario Ensemble Loss Stable Gain L&S)S C:;;)n Ch(a%rl)ge
SSP245_2041_2060  EMmean 3.6 1.9 0.0 65.6 0.0 -65.6
SSP245_2041_2060  EMwmean 3.6 1.7 0.0 67.8 0.0 -67.8
SSP585_2041_2060  EMmean 4.0 1.4 0.0 74.1 0.0 -74.1
SSP585_2041_2060  EMwmean 4.0 1.2 0.0 76.7 0.0 -76.7
SSP245_2061_2080  EMmean 3.7 1.8 0.0 67.5 0.0 -67.4
SSP245_2061_2080  EMwmean 3.7 1.6 0.0 70.6 0.0 -70.6
SSP585_2061_2080 EMmean 4.6 0.8 0.0 84.6 0.0 -84.6
SSP585_2061_2080  EMwmean 4.5 0.7 0.0 85.9 0.0 -85.9

ez et al. 2022). Among individual models,
MAXENT, GLM, GBM, and RF showed the
highest predictive performance, whereas
SRE, CTA, and FDA consistently underper-
formed in terms of TSS, AUC, and pAUC
metrics (Kaky et al. 2020, Khan & Verma
2022, Montoya-Jiménez et al. 2022).

Although ensemble approaches do not
consistently yield improved predictive ac-
curacy, our results underscore their value
for species with narrow ecological toler-
ances, where even minor prediction errors
can undermine conservation outcomes
(Aradjo & Guisan 2006).
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Fig. 4 - Latitudinal and elevational distributions of potential habitat area for P. cem-
broides, showing area gained (blue), lost (orange), and stable (green) under SSP245
and SSP585 scenarios for 2041-2060 (top two rows) and 2061-2080 (bottom two
rows) for EMmean (a-d) and EMwmean (e-h).
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Environmental predictors

Seasonal temperature extremes emerged
as the primary drivers of P. cembroides suit-
ability. Bio 8 (mean temperature of the
wettest quarter) and Bio 9 (mean tempera-
ture of the driest quarter) together ac-
counted for the largest share of the varia-
tion in our ensemble models. This result is
consistent with studies on Mexican coni-
fers (Aceves-Rangel et al. 2018, Garcia-
Aranda et al. 2018, Gémez-Pineda et al.
2020, Martinez-Sénchez et al. 2023), which
also emphasize the key role of seasonal
temperature variability in defining distribu-
tional limits.

Habitat suitability declined markedly
when mean temperatures in the wet and
dry quarters exceeded 20 °C, indicating
thermal thresholds that delimit the climatic
niche of P. cembroides. In contrast, precipi-
tation variables exerted only marginal ef-
fects on suitability, indicating that, despite
their tolerance of semi-arid regimes, tem-
perature extremes impose a greater con-
straint than moisture availability. This find-
ing aligns with previous studies demon-
strating that seasonal temperature variabil-
ity exerts a more decisive influence than
precipitation in determining pine distribu-
tions (Aceves-Rangel et al. 2018).

Although macroclimatic drivers govern
distribution patterns at broad spatial
scales, local edaphic factors, such as soil
depth, aspect, and nutrient availability, be-
come critical at finer resolutions by modu-
lating microclimatic conditions in heteroge-
neous landscapes.

Future distribution

Climate change poses a significant threat
to coniferous forests in topographically
complex regions such as Mexico. Previous
projections based on WorldClim and CMIP5
scenarios indicated moderate to substan-
tial habitat contraction for temperate,
tropical, and semi-arid species (Gémez-Diaz
et al. 2011, Cruz-Cardenas et al. 2016).

Our study employed high-resolution
CHELSA v. 2.1 data and updated CMIP6
Shared Socioeconomic Pathway scenarios,
predicting a 65%-85% reduction in suitable
habitat for P. cembroides by 2080-2100.
Losses are most severe under SSP585,
which is characterized by elevated green-
house gas emissions and intensified warm-
ing (Almazroui et al. 2021). These contrac-
tions suggest that remaining populations
will be confined to fragmented, high-eleva-
tion refugia in the Sierra Madre ranges. Al-
though local microclimates may allow per-
sistence or even limited expansion in some
areas (Romero-Sanchez et al. 2017), at re-
gional to national scales, P. cembroides is
expected to contract to elevations of 1500-
2500 m and latitudes of 22°-26° N (Romero-
Sénchez et al. 2017, Bower et al. 2024). Pro-
jected altitudinal shifts of 300-500 m and
habitat reductions of 60%75% have been
reported for Pinus hartwegii and Abies reli-
giosa (Alfaro-Ramirez et al. 2020, Martinez-
Sifuentes et al. 2020). Pseudotsuga men-
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ziesii may lose over 80% of its Mexican
range, persisting only in isolated high-ele-
vation refugia (Martinez-Sifuentes et al.
2020). In contrast, Pinus oocarpa could gain
a modestly novel habitat (Gémez-Pineda et
al. 2020). These patterns demonstrate the
importance of elevational connectivity and
assisted migration for conserving genetic
diversity under future warming, and high-
light the role of scale-dependent processes
in species distribution modelling.

Conservation implications and future
research

The projected contraction of P. cembroi-
des habitat under high-emission scenarios
presents critical conservation challenges.
Range reduction will exacerbate fragmen-
tation and erode genetic diversity, a vulner-
ability already documented in Mexican
conifer populations under climate-induced
stress (Sdenz-Romero et al. 2012).

Assisted migration facilitates the translo-
cation of vulnerable populations into re-
gions projected to remain climatically suit-
able (Gustafson et al. 2023). Establishing
ecological corridors further enhances con-
nectivity among isolated stands, mitigating
demographic risks associated with small
populations.

Our emphasis on macroclimatic drivers
underscores the importance of incorporat-
ing non-climatic factors into future Species
Distribution Models (SDMs), including land-
use change, soil properties, and species-
specific biotic interactions (Santos-Hernan-
dez et al. 2021). Such integrated models
would produce more realistic projections,
ultimately guiding more effective conserva-
tion interventions.

As occurrence records and high-resolu-
tion climate projections continue to im-
prove, ongoing model recalibration will
support adaptive forest management. This
iterative framework will inform prioritiza-
tion efforts and help secure the long-term
persistence of P. cembroides and Mexico’s
pine ecosystems under intensifying cli-
matic stressors.

Conclusions

This study employed SSP245 and SSP585
projections from CHELSA v. 2.1 within a
BIOMOD2 ensemble framework to assess
the future distribution of P. cembroides.
Both ensemble approaches (EMmean and
EMwmean) and MAXENT consistently
demonstrated high predictive accuracy, re-
inforcing their effectiveness in modeling
semi-arid-adapted species.

Although the species exhibits consider-
able resilience, P. cembroides is anticipated
to experience a marked range contraction
with an estimated 65%-85% loss of its cur-
rent habitat by the end of the century.
High-elevation refugia are likely to remain
climatically suitable, while the potential for
new habitat emergence is minimal. These
results highlight urgent conservation priori-
ties. The severe loss and fragmentation of
suitable areas will likely diminish genetic di-

versity and limit adaptive capacity. Proac-
tive measures are essential, including as-
sisted migration to more humid lowlands,
protection of montane refugia, and estab-
lishment of ecological corridors to maintain
connectivity. Overall, this study demon-
strates the utility of ensemble SDMs for
capturing climate-driven range dynamics
and emphasizes the critical need for adap-
tive management strategies to mitigate
the rapid impacts of climate change on P.
cembroides.
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