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Introduction

The world’s forests are an immense car-
bon sink, with above- and below-ground
stocks in tropical forests accounting for
the majority of the global forest carbon
sink (Pan et al. 2024). However, the tropi-
cal carbon sink is threatened by deforesta-
tion, drought, and fires (Qie et al. 2017,
Yang et al. 2018). Human activities are
largely responsible for impacts on the car-
bon sink through land-use changes for agri-
culture and forest degradation from log-
ging (Gatti et al. 2021, Berenguer et al.
2014). Logging primarily affects above-
ground carbon stocks through tree re-
moval, especially at higher logging intensi-
ties, and these effects may persist for
decades (Rozak et al. 2018, Stas et al.
2020). The impacts of logging on carbon
pools are not limited to the above-ground

Impacts of logging on below-ground carbon stocks are less well understood
than those on above-ground carbon stocks. Consequently, there is a sizeable
knowledge gap regarding fine root recovery and their contribution to below-
ground carbon stocks. The objective of this study was to quantify whether
short-term recovery of fine root carbon stock occurred after harvesting opera-
tions. Three blocks each consisting of a single skid trail and an undisturbed
old-growth forest (control) were utilized. Skid trails were heavily compacted
by 12 tractor passes during the dry season. After nearly 3 years, 60 samples of
fine root biomass (FRB) were collected, along with 60 additional soil samples
for chemical analysis. Results showed that despite similar soil chemical prop-
erties between skid trails and controls, there was no apparent short-term re-
covery of FRB. Indeed, there was a 57.1% difference between fine root carbon
stocking in skid trails at 1.0 Mg ha™' compared to the undisturbed controls with
1.8 Mg ha™'. These results indicate that the recovery of FRB and C stocks takes
at least several years; as such, skid trails should be planned to minimize dis-
turbance to the forest floor, which will help reduce impacts on below-ground
carbon pools. More research is needed to ascertain when fine roots do re-
cover, so that future assessments of below-ground carbon stocks can be ac-
complished with greater confidence.
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carbon pool. Indeed, Chiti et al. (2016)
found impacts on soil organic carbon 45
years after selection logging at a depth of 1
m in Ghana. The degradation of soil organic
carbon is primarily driven by logging infra-
structure, such as skid trails, log landings,
and roads (Tchiofo Lontsi et al. 2019, Sha-
baga et al. 2017). Studies on the impacts of
logging infrastructure in both temperate
and tropical forests have consistently
shown that increases in soil compaction
are correlated with decreases in soil or-
ganic carbon (Naghdi et al. 2016, Tavankar
et al. 2022, DeArmond et al. 2024a).

In addition to impacts on soil organic car-
bon, the forest site’s capacity for carbon
storage is diminished by the impoverish-
ment of fine roots. This is because fine
roots are an important contributor to soil
organic matter accumulation and provide
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substantial soil C from root exudates and
necromass (Germon et al. 2020, Zhao et al.
2024). Logged forests have been shown to
have higher fine root turnover, accompa-
nied by a greater increase in fine root de-
bris to the soil organic matter pool, com-
pared to unlogged forests (Riutta et al.
2021). However, after several decades, Da
Silva et al. (2020) found no difference in
fine root biomass between old-growth and
logged forests in Malaysia. In other tropical
forests, logged stands had higher FRB lev-
els after 6 years in Cameroon and after 54
years in Ghana (Addo-Danso et al. 2018,
Ibrahima et al. 2010).

Fine roots are mostly affected by logging,
which compacts soil with logging machin-
ery (Latterini et al. 2024, Jourgholami et al.
2021a). This is because fine root production
occurs predominantly at soil depths of 2.5
to 10 cm (Cordeiro et al. 2020, Sciumbata et
al. 2023), which is also where soil distur-
bance by construction and the use of skid
trails and landings is substantial. In some
cases, this soil degradation from logging
has resulted in fine root impoverishment in
skid trails for decades (DeArmond et al.
2023, Jourgholami et al. 2019).

As skid trails alone can cover over 20% of
the logged area (DeArmond et al. 2021),
damage to fine roots and their ability to se-
quester carbon can be considerable. The
compacted soil environment of skid trails
inhibits root growth due to increased soil
strength, reduced macroporosity, and
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Fig. 1- Location of the study site.

changes to soil chemical properties (Nagh-
di et al. 2016, Jourgholami et al. 2021a).
Losses in macroporosity may lead to anaer-
obic soil conditions, resulting in reduced
fine root production and biomass (Yaffar et
al. 2023). Also, increased skidding traffic
has been shown to reduce soil levels of vi-
tal nutrients necessary for fine root growth
(Naghdi et al. 2016, Shabaga et al. 2017). In
contrast, skid trails have been shown to
have higher levels of Mg and Ca over time
(Jourgholami et al. 2019, DeArmond et al.
2024b). Because skid trail compaction may
alter soil chemistry, it is essential to evalu-
ate soil chemical concentrations relative to
FRB and their impacts on the recovery
process. For example, studies have demon-
strated that FRB is positively correlated
with Ca and negatively correlated with Mg
(Cavelier 1992, Swiatek & Pietrzykowski
2021). Soil compaction losses in phospho-
rus (P) could worsen in soils that are al-
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Fig. 2 - Total monthly precipitation at
the study site.

345

ready low in available phosphorus, which is
a limiting factor for fine root productivity in
the Amazon. (Cunha et al. 2022). However,
numerous studies have shown P accumula-
tion in skid trails after a decade or more
(Jourgholami et al. 2019, DeArmond et al.
2024b, Ebeling et al. 2017).

Given the critical role of fine roots in car-
bon stocks and net primary productivity
(NPP) in lowland rainforests (Huasco et al.
2021), it is essential to understand when re-
covery occurs in degraded forest soils. This
knowledge is crucial for properly assessing
and calculating forest carbon stocks and
NPP, especially in the compacted soils of
logging infrastructure. Several studies have
demonstrated an incomplete recovery of
FRB in skid trails after 5-7 years (Jourgho-
lami et al. 20213, Miyamoto et al. 2024). In
contrast, other studies have found no dif-
ference in fine root density or biomass
even 7, 13, and 20 years after logging and
compaction in skid trails (Ebeling et al.
2017, DeArmond et al. 2024b, Miyamoto et
al. 2024), with the earliest reported recov-
ery of FRB in Iranian skid trails after 5 years
(Jourgholami et al. 2021a).

The recovery timeline of fine root bio-
mass and fine root carbon stock in soils
compacted by logging machinery remains
uncertain. A recent meta-analysis on the
effects of ground-based machinery on fine
roots found no recovery trend in the in-
crease of fine roots over time. In contrast,
soil bulk density was reported to be highly
correlated with fine root distribution (Lat-
terini et al. 2024). Nonetheless, increases in
root growth do not necessarily result in de-
creases in soil bulk density (Keller et al.
2021). This is evident in a recent study in
the Amazon, which found that fine root
biomass in skid trails with the highest bulk
density was not different from that in
undisturbed old-growth forest (DeArmond
et al. 2024b). In this study, two hypotheses
were tested: (i) soil chemical properties in-
fluence fine root biomass recovery in heav-
ily compacted experimental skid trails, and

(ii) in heavily compacted skid trails, fine
root biomass and carbon stock do not re-
cover in the short term.

Materials and methods

Study area

The study site is located in the Amazon
biome (Fig. 1) in the state of Amazonas,
Brazil, north of the capital city of Manaus
(02° 38’ S, 60° 09" W). According to the
Koéppen classification system, the area has
a tropical climate (Af) with a mean temper-
ature of 26 °C, and an annual precipitation
of more than 2200 mm (Alvares et al. 2013).
One month before sampling, site precipita-
tion was 178 mm, and a week prior, 22 mm
(Fig. 2). The topography consists of a
plateau with a forest where soil has been
classified as a Geric Ferralsol (Alumic, Hy-
perdystric, Clayic - Quesada et al. 2010). At
this site, soil texture at the surface 5 cm is
68% clay, 21% silt, and 11% sand (DeArmond
et al. 2024a).

Study design and sample collection

The experiment was established in 2021
to compare the impacts of increased log-
ging traffic and seasonal differences in soil
moisture on soil compaction. The initial
study included three blocks, each with six
treatments and a control. Treatments in-
cluded skid trails with traffic intensities of 1,
3, and 12 machine cycles in both the wet
and dry seasons. A machine cycle consisted
of one ingress followed by the skid trail’s
subsequent egress. These differing ma-
chine cycles were meant to represent the
various skid trail traffic intensities of log-
ging operations: 1 - tertiary skid trails, 3 -
secondary trails, and 12 - primary skid trails.
In 2023, small-scale logging in the area
reused most of the skid trails for log skid-
ding. However, the dry season treatment
consisting of 12 machine cycles, as well as
the undisturbed controls, were not used in
the small-scale logging. These unaffected
trails and controls were preserved for the
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25
|

Fig. 3 - Sampling schema at the study site, which included three blocks, each having a
treatment skid trail compacted by 12 machine cycles and a control (C).
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present study (Fig. 3). In each of the three
blocks, two sub-blocks were designated: a
control replicate and a skid trail replicate.
The dry-season skid trails with 12 machine
cycles were previously compacted to a
mean bulk density of 1.05 g cm3, represent-
ing a 28% increase over the undisturbed
old-growth forest controls at 0.82 g cm3
(DeArmond et al. 2024a).

At the end of June 2024, approximately 3
years after skid trail construction in the dry
season, samples for soil chemical proper-
ties and fine root biomass (FRB) were col-
lected. Before collecting the samples, a 25
m metric tape was stretched across each
sub-block replicate, and a random number
generator was used to select the sampling
locations. Soil samples were collected in
the mineral soil surface (0-5 cm) in skid trail
tracks and undisturbed old-growth forest,
after the litter layer and organic matter
were gently scraped away. In each sub-
block replicate, 10 samples for FRB and 10
samples for soil chemical properties were
collected. For the skid trail sub-blocks, half
the samples were taken from the right
tracks and the other half from the left
tracks. Samples were placed in sealable
plastic bags before transport to the labora-
tory. In total, 60 samples for FRB (skid
trails n = 30, controls n = 30) and 60 sam-
ples for soil chemical properties (skid trails
n = 30, controls n = 30) were collected. The
FRB samples were collected with steel
sampling cores 5 cm in height, 100 cm3. Ad-
jacent to the FRB sample location, a 5 x 5 x
5 c¢cm soil block was excavated for soil
chemical analysis.

For FRB samples, soil was carefully
washed away under running water using
mesh screens to capture root tips and frag-
ments. All fine roots < 2 mm were then
dried for 72 h at 65 °C and weighed. Fine

Fig. 4 - Soil profile of (A) &4
skid trail soil with orange "%}
mottles and (B) undis- §
turbed forest soil with
extensive macroporosity.
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Tab. 1 - Mean values and standard deviations () for soil chemical properties and fine
root biomass ( < 2 mm) in controls and skid trails.

Variable Controls Skid trails F P

pH (H;0) 4.201 + 0.11 4.309 £ 0.12 6.349  0.065
Ca” (cmol. kg™) 0.019 + 0.02 0.026 + 0.02 0.795  0.423
Mg (cmol. kg™) 0.074 + 0.02 0.068 + 0.02 0.586  0.487
AP (cmol. kg') 1.973 £ 0.20 1.952 + 0.29 0.025 0.883
Fine root biomass (g m?) 409.0 +92.3 220.1 £ 99.9 67.158  0.001

root C stocking was calculated as 45% of
dry FRB (Huasco et al. 2021). Sampling for
soil chemical properties, including pH, Ca*,
Mg, and A3, was conducted at INPA’s soil
laboratory (Laboratério Temdtico de Solos e
Plantas — LTSP). Soil pH was determined us-
ing 10 g of dry soil and 25 mL of distilled
water, which was agitated for 1 minute. For
exchangeable cations, 5 g of dry soil and 50
mL of a 1 mol L KCl solution were used for
a single extraction. Then Ca and Mg were
determined by atomic absorption, and Al
by titration. A more detailed description of
soil chemical analysis can be found in Teix-
eira et al. (2017).

Data analysis

All data were evaluated using a nested
ANOVA because only differences between
groups (treatment and control) were of in-
terest, not the differences between sub-
groups (replicates), which were random
(McDonald 2014). Respective replicates
were nested in either the skid trail treat-
ment (n = 3) or the control (n = 3). This ap-
proach was used because the data were
balanced and the nesting structure was
simple. Moreover, because the study was
not conducted across different areas, there
was no site-level random effect to con-

g
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sider. Additionally, Spearman’s correlation
coefficient (r;) was used to evaluate the re-
lationship between variables. The statisti-
cal software used was SPSS® Statistics ver.
29.0.2.0 (IBM, Armonk, NY, USA).

Results

Fine root biomass and soil chemical
properties

When stratified into skid trails or controls,
there were no correlations between fine
root biomass (FRB) and soil chemical prop-
erties. However, when combined, there
was a moderate negative correlation be-
tween pH and FRB (rs = - 0.408, p = 0.001).
Overall, soil chemical properties were simi-
lar across skid trails and controls (Tab. 1),
although orange soil mottles were ob-
served exclusively in the skid trails (Fig. 4).
However, the range of pH values was
slightly higher in the trails (4.05 - 4.65),
compared to the controls (3.92 - 4.52 - Fig.
5A). Exchangeable aluminum had a greater
range in the skid trails, 1.33 - 2.61 cmol. kg",
as opposed to 1.60 - 2.40 cmol. kg™ in the
controls (Fig. 5B). These two chemical
properties, pH and Al3*, where very strong-
ly and negatively correlated in the skid
trails (r, =-0.809, p < 0.001), whereas in the
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controls the relationship between the two
properties was weak (r; =-0.265, p = 0.156).
However, there was no observable influ-
ence from soil chemical properties evalu-
ated on FRB within the skid trails.

Short-term status of fine root biomass
and carbon stocks

Fine root biomass (FRB) in the skid trails
was substantially lower than in the con-
trols (Tab. 1). This resulted in a difference
of 57.1% between control and skid trail fine
root carbon stock (Fig. 6), with a mean of
1.8 Mg ha" for the controls and 1.0 Mg ha"
for the skid trails. In the skid trails, 76.7% of
all samples were below the minimum sam-
ple value of 264.9 g m? detected in the
controls, although in each of the three skid
trail replicates, there were samples found
near or above the control minimum, with a
single skid trail sample of 607.5 g m=.

Block Il

Discussion

Influence of soil chemical properties on
fine root biomass

No influence of soil chemical properties
on fine root biomass (FRB) was observed
in the present study, therefore the first re-
search hypothesis was not supported. Nev-
ertheless, soil mottles were observed in
the studied skid trails, which are indicative
of fluctuations between reducing and oxi-
dizing conditions (Jahn et al. 2006). Thus,
there is evidence that the skid trails experi-
ence longer periods of soil saturation than
the mottle-free controls. Soil mottling and
other hydromorphic features have also
been reported in compacted skid trails in
Canada and Germany (McNabb & Startsev
2022, Klein-Raufhake et al. 2024). This is an
issue for fine roots, as fine root productiv-
ity and biomass decline, along with in-
creased mortality, under anaerobic soil
conditions (Yaffar et al. 2023). Anaerobic

Fig. 6 - Box plots
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soil conditions are caused by heavy ma-
chinery traffic in high-use skid trails, which
destroys macropores (Naghdi et al. 2016).
The loss of macropores is also an issue for
fine roots, as roots prefer to grow in exist-
ing pores rather than to create new pores
through bioturbation (Keller et al. 2021).
Lastly, given that pH and exchangeable
cations were similar in both skid trails and
controls, it appears that the soil chemical
properties evaluated did not influence dif-
ferences in FRB.

Lack of recovery in the short-term for
fine root biomass and carbon stocks

There was no observable short-term re-
covery of fine root biomass (FRB) in skid
trails after almost 3 years, confirming the
second research hypothesis. The single iso-
lated and elevated FRB sample in the skid
trails was likely due to uncompacted soil
rather than recovery. The skid trail surfaces
were not scraped clean with the tractor
blade, leaving litter and large tree roots,
which could have protected the mineral
soil below. A lack of short-term recovery of
fine roots in skid trail tracks has been ob-
served in other regions, such as Germany,
after 6 years (Ebeling et al. 2017). Nonethe-
less, in another short-term study in Iran,
Jourgholami et al. (2021a) observed recov-
ery of FRB in skid trails with a dense over-
head canopy after 5 years, whereas FRB in
skid trails in clearcuts and natural gaps re-
mained impoverished. The absence of FRB
recovery in the present study is not surpris-
ing, considering FRB turnover. In the Cen-
tral Amazon, the average lifespan of FRB is
3.7 years (Cordeiro et al. 2020). As the pres-
ence of FRB is highly correlated with soil C
stock (Cordeiro et al. 2024, Cusack &
Turner 2021), more time is likely needed for
soil C stocks to build up from several turn-
over cycles. This is because fine roots are a
substantial contributor to soil organic mat-
ter (Lin & Zeng 2017). However, this proc-
ess is seriously inhibited in highly com-
pacted skid trails, as fine root presence is
negatively correlated with increased soil
compaction (Latterini et al. 2024). Studies
have consistently demonstrated that root
lengths, rooting depths, and root biomass
are substantially reduced in skid trails
(Cambi et al. 2017, Naghdi et al. 2016),
which results in lower contributions to soil
C stocks over time. Even after FRB recov-
ery, soil organic carbon had not recovered
in the same skid trails after 5 and 13 years
(Jourgholami et al. 2021a, DeArmond et al.
2024b). In contrast, after 28 and 30 years
of skid trail recovery, both FRB and soil C
had recovered (Tavankar et al. 2021, DeAr-
mond et al. 2023).

Due to the slow recovery process of FRB
and carbon stocks, improving degraded
skid trail soils would enhance carbon stor-
age and sequestration potential. Generally,
skid trails are left to recover naturally over
time, which may take decades or longer
(DeArmond et al. 2021). Nevertheless, sev-
eral studies have shown that there are

iForest 18: 344-349



methods to increase fine root production
in skid trails, with the added benefits of
lower soil bulk density and greater soil C
accumulation. After four years of recovery,
trails treated with various leaf mulch re-
vealed increased FRB and soil C compared
to untreated trails (Jourgholami et al.
2021b). Another approach involved plant-
ing a pioneer species — Alnus incana - adja-
cent to skid trails, which lowered soil bulk
density and increased fine root density in
the skid trails after 8 years (Flores Fernan-
dez et al. 2019). As the skid trails in the
present study will not receive any ameliora-
tion, the estimated recovery time for FRB
and carbon stocks will likely exceed a
decade, or approximately three fine root
turnover cycles. However, this study is lim-
ited to a single area in the humid tropics,
therefore care should be taken when ex-
trapolating these results elsewhere.

Conclusion

In the tropical forests of Amazonia, skid
trails are a vital component of logging op-
erations. Nevertheless, their implementa-
tion and use directly affect the fine root
carbon stock of the stand. This impact lasts
for years in heavily impacted primary skid
trails. Calculations of carbon stocking and
net primary productivity need to account
for reduced fine root capacity in logged
stands. However, primary skid trails are
just one part of a functioning skid trail sys-
tem, which includes many more tertiary
and secondary skid trails. Future research
should consider differences in skid trail
traffic intensity and their impacts on soil
carbon stocks, net primary productivity,
and recovery processes over time. Our re-
sults further emphasize the need to care-
fully plan skid trail systems in timber har-
vesting operations to protect the below-
ground carbon pool as much as possible.
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