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Applying complex network metrics to individual-tree diameter growth 
modeling
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Mathematical  approaches that  explain growth increments,  while accounting 
for inter-tree competition, are advancing. As interactions between trees rep-
resent a network structure within an ecological system, they can be described 
by  topological  metrics.  These  metrics  may  support  individual-tree  growth 
modeling in line with ecological processes. Our objective was to compare the 
performance of traditional indices and complex network metrics in modeling 
diameter growth. The study area is a semi-deciduous seasonal montane forest 
in Brazil, where Copaifera langsdorffii was naturally dominant from 2010 to 
2017. We selected this species as the subject tree in our study. Tree competi-
tors were identified using the Bitterlich procedure (basal area factor = 4). The 
periodic annual diameter increment (PAId) was modeled using four strategies, 
including a genetic algorithm and the random forest method, which involved 
different  competition  metrics:  distance-dependent,  distance-independent, 
and semi-independent indices,  as well  as  topological  metrics  from complex 
networks. We assessed modeling performance based on the analysis of error 
metrics. The approach developed using topological metrics shows strong po-
tential to explain the PAId through a competition network within an ecological 
context. The innovative approach used in this study offers robust modeling to 
support forest growth analysis.  Therefore, we encourage the application of 
this interdisciplinary tool to generate insights into forest science.
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Introduction
Understanding  the  dynamics  of  tropical 

forests  is  crucial  for  developing  effective 
conservation  strategies  and  sustainable 
management practices. Tropical forests are 
complex  ecosystems  characterized  by  a 
high diversity of  species interactions,  fea-
turing a rich variety of trees and fauna with 
high  levels  of  endemism  (Rezende  et  al. 
2018). Given the severe risks posed by land-
use changes in these global hotspots, ad-
dressing the knowledge gap in tree growth 
dynamics, particularly the diameter growth 
of tropical species, is essential for support-
ing restoration and sustainable production 
efforts.  Tree size and neighborhood com-

petition are key drivers of tree growth pat-
terns (Zhang et al.  2016).  In  this  context, 
addressing inter-tree competition is crucial, 
as  its  intensity significantly influences the 
dynamics of  resource availability  for  each 
tree.

Inter-tree  competition  quantifies  spatial 
interactions between trees and their neigh-
borhoods through mathematical  formulas 
that  measure  the  effect  of  the  neighbor-
hood (competitor trees) on a target or sub-
ject  tree  (Aakala  et  al.  2013,  Sun  et  al. 
2018). These formulas consist of competi-
tion indices derived from field data, name-
ly, distance-dependent, semi-distance-inde-
pendent, and distance-independent indices 

(Ledermann 2010). Although these indices 
perform adequately, a critical issue is that 
all  traditional  approaches have limitations 
in  capturing  the effects  of  local  variation 
(Ledermann 2010).  Moreover,  there  is  no 
consensus on a superior approach due to 
the inherent variability of forest conditions 
(Contreras et al. 2011,  Kuehne et al. 2019). 
The  frontiers  of  science  highlight  new 
methods  and  data  to  deepen  our  under-
standing  of  inter-tree  competition  behav-
ior, such as airborne laser scanning (Peder-
sen et al. 2013), spatial structure (Hui et al. 
2018),  crown  area  (Kuehne  et  al.  2019), 
light interception (Boeck et al.  2014),  and 
complex networks (Mongus et al. 2018).

Complex network (CN) science is an inter-
disciplinary  field  that  applies  concepts 
from statistical physics, computer science, 
biology,  and  sociology  (Boccaletti  et  al. 
2006,  Mata 2020).  CNs model  systems as 
mathematical graphs,  where nodes repre-
sent components and edges denote inter-
actions (Albert & Barabási 2002). In forest 
science,  pioneering  studies  by  Nakagawa 
et al.  (2016) and  Mongus et al.  (2018) ex-
plored the association of  spatial  patterns 
from CN metrics with tree growth and sur-
vival. Forests are natural complex systems 
where trees are spatially connected, form-
ing  ecological  networks  with  heteroge-
neous interactions. These networks can be 
represented  as  graph  structures,  offering 
valuable  insights  for  ecological  modeling. 
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CNs  are  a  promising  technique  for  effec-
tively  organizing and analyzing data from 
complex natural systems, revealing under-
lying ecological  patterns  driven by  mean-
ingful  interactions  among system compo-
nents (Costa et al. 2008).

The novelty of the current study lies in in-
tegrating the CN approach into a  feature 
selection procedure, using a genetic algo-
rithm  combined  with  random  forest 
(GARF). GARF has proven efficient in mod-
eling forest attributes, in terms of accuracy 
and selecting the most important variables 
(Hong et al. 2018). Our study moves from a 
background  of  developing  models  based 
solely  on  statistical  assumptions  to  con-
tributing valuable insights into tree diame-
ter  modeling  with  ecological  significance. 
Our  primary  objective  was  to  investigate 
whether the CN approach overcomes the 
limitations of  traditional  methods by pro-
viding a more accurate prediction of tree 
growth  through  a  refined  representation 
of the ecological interrelationships govern-
ing the competition at  the individual  tree 
level.  Accordingly,  our  study  was  struc-
tured to test the following hypotheses: (i) 
dendrogram analyses reveal the dissimilar-
ity between traditional competition indices 
and  CN  metrics  in  quantifying  inter-tree 
competition; and (ii) incorporating CN met-
rics into a modeling tool (GARF algorithm) 
improves the predictive accuracy of tree di-
ameter increment estimates compared to 
traditional competition indices.

Material and methods

Site description and tree database
The experimental area covers 5.8 ha of a 

seasonal  semi-deciduous  montane  forest 
located at 21° 13′  45″ S and 44° 58′  20″ W, 
approximately 930 m above sea level (Fig.
1). The soil types are mainly dystrophic Red-

Yellow Argisol (PVAd) and eutroferric Red 
Nitosol  (NVef).  According  to  the  Köppen 
climate classification, the area falls within a 
humid  subtropical  zone  with  dry  winters 
and  temperate  summers  (Cwb).  Most  of 
the precipitation (80%) occurs between Oc-
tober and March, while the dry season ex-
tends from April to September (Alvares et 
al. 2013). The study forest has a long-term 
census program measuring trees with a di-
ameter at breast height (DBH) of 5 cm or 
greater.  For  this  study,  we analyzed data 
from the 2010-2017 measuring period. Dur-
ing  this  interval,  the  stand density  varied 
between  872  and  953  trees  ha-1,  and  the 
basal area ranged from 20.7 to 23.3 m2 ha-1. 
Copaifera  langsdorffii was  selected  as  the 
subject tree species for our analysis due to 
its high absolute dominance (3.97 m2 ha-1) 
and relative dominance (17.05%) compared 
to the other 181 species in the study area, 
based on a phytosociological survey. In to-
tal, 154 C. langsdorffii trees were included in 
the  analysis.  We  applied  the  Bitterlich 
method (basal  area factor, BAF = 4),  and 
the  maximum  distance  (L  =  0.5  ×  DBHi /
√BAF) was used to define the competition 
buffer area around each subject  tree,  for 
both traditional and complex network ap-
proaches,  to  quantify  inter-tree  competi-
tion.  To address  edge effects  and ensure 
accurate competition assessment, trees lo-
cated along the boundary of the area were 
excluded.

Inter-tree competition indices
The  growth  rate  of  individual  trees  re-

flects  their  capacity  to  adapt  to  environ-
mental  conditions  and  competitive  pres-
sures  over  time.  Competition  can  alter 
both  the  tree  structure  and  the  arrange-
ment  of  forest  canopy.  In  this  study,  we 
tested  four  strategies  (three  traditional 
competition  procedures  and  one  using 

complex  network  metrics)  within  individ-
ual-tree growth models. After removing in-
consistent data by detecting outliers using 
the interquartile range method, we calcu-
lated the correlation between the competi-
tion  metrics/indices  and  the  periodic  an-
nual  diameter  increment  (PAId).  We  then 
applied  cluster  analysis  to  compare  the 
similarities among the competition metrics 
and  their  respective  categories.  The  Eu-
clidean distance was used as the dissimilar-
ity measure to distinguish the groups, and 
Ward’s  method was employed as  the ag-
glomerative  hierarchical  clustering  proce-
dure. The optimal number of clusters was 
determined through a visual analysis of the 
dendrogram, where the cut-off point was 
defined as  the distance corresponding to 
the longest branches, ensuring a clear sep-
aration  between  merged  clusters  while 
avoiding the creation of tiny segments. Ad-
ditionally, the quality of the generated clus-
ters  was  validated  using  the  cophenetic 
correlation  coefficient  (CCC),  with  values 
greater  than  0.7  indicating  well-formed 
clusters (Rohlf 1970). The CCC (eqn. 1) mea-
sures the degree of fit between the similar-
ity matrix (phenetic matrix F) and the ma-
trix resulting from the simplification based 
on the clustering method (cophenetic ma-
trix C).

(1)

Complex network metrics
We  propose  an  inter-tree  competition 

network,  derived  from  complex  network 
tools, to analyze the relationships between 
trees. This competition is quantified by us-
ing  topological  metrics  from  the  graph 
structure G.  In this  context,  complex net-
works  characterize  the  spatial  arrange-
ment of individual  trees.  The CN is  repre-
sented by a graph  G  = (N, E), defined by a 
set of nodes N ={ni} and edges E ={eij} con-
necting them. Each node ni denotes a sub-
ject  tree,  and  its  interaction  with  a  com-
petitor (nj) is established as a directed net-
work if nodes i and j are connected. A con-
nection between nodes occurs only when 
the competing tree is within the competi-
tion zone of the subject tree, which is de-
termined by the DBH of the subject tree ac-
cording to the Bitterlich method. We also 
incorporated  a  diameter-based  function, 
√max(DBHi,DBHj)-1, to weight the edges be-
tween nodes i and j (wij). According to this 
function, the subject tree is influenced by 
the size of the largest individual.

The  analysis  was  performed  using  the 
“igraph”  package (Csardi  2015)  in  R  soft-
ware  (R  Core  Team  2018)  to  extract  the 
topological characteristics of the competi-
tion  network.  These  characteristics  were 
used to quantitatively assess the competi-
tive  influence  of  neighboring  trees  on  a 
given tree. A more detailed explanation of 
the analysis can be found in  Dale & Fortin 
(2021).  Furthermore,  Tab.  S1  (Supplemen-
tary material)  provides a broader ecologi-
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Fig. 1 - Study area and the spatial arrangement of trees.
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cal interpretation of the formal definitions 
presented in this study. Then, we extracted 
the most straightforward topological met-
ric,  the  node  degree,  which  defines  the 
number  of  nodes  connected  to  a  given 
node by edges. Within the graph structure 
G = (N,E), N represents the total number of 
nodes, and aij indicates the presence (adja-
cency) or absence (non-adjacency) of a di-
rected connection between nodes i and j in 
the graph, as defined by the adjacency ma-
trix A. This means that the matrix element 
aij = 1 if there is a directed connection from 
node i to node j, and aij = 0, otherwise. The 
directed network allows the calculation of 
two  components:  the  number  of  edges 
that leave node  i,  named  ki

out (out-degree, 
eqn. 2), and the number of nodes that ar-
rive at node i, named ki

in (in-degree, eqn. 3) 
(Latora et al. 2017). The sum of these com-
ponents yields the total degree of node  i 
(eqn. 4). The higher this value, the greater 
the  number  of  connections  of  that  node 
(Mo & Deng 2019):

(2)

(3)

(4)

The weighted average nearest-neighbors’ 
degree (Kw

nn,i) measures the probability of 
a given node connecting with nodes of sim-
ilar  or  differing  degrees.  In  other  words, 
when  nodes  with  a  high  degree  have  a 
larger probability of being connected with 
nodes  that  also  have  a  high  degree,  the 
network has a positive correlation (assorta-
tive network). Conversely, a negative cor-
relation  (disassortative  network)  occurs 
when most of the neighbors connected to 
high-degree  nodes  have  a  lower  degree 
(Wang et al. 2017). In weighted networks, 
the kw

nn,i (eqn. 5) is calculated based on the 
normalized  weight  of  the  connecting 
edges,  wij/si, where  si (eqn. 6) is the node 
strength:

(5)

(6)

We also calculated the eigenvector  cen-
trality  (CE)  for  each node,  which depends 
on the degrees  of  its  neighbors  (eqn.  7). 
This metric is derived from an eigenvector 
of the adjacency matrix  A and a constant 
(λ). For instance, node i,  with fewer neigh-
bors, can exert more influence in the net-
work  than  node  j,  despite  having  more 
links,  if  the neighbors of node  i,  on aver-
age, have more connections than those of 
node j (Moghadam et al. 2019).

(7)

Closeness centrality (Cl) is another metric 
used to assess the accessibility of a given 
node, where  dij is  the distance between  i  
and  j  (eqn.  8).  This  measure  indicates  a 

node’s  centrality  based  on  its  distance 
from all other nodes (Liu et al. 2016). In this 
context,  we  measured  the  distance  be-
tween  any  two  nodes  according  to  the 
number of edges between them (Sun et al. 
2016). For weighted networks, this is mea-
sured  based  on  the  weights  (values)  ap-
plied to the edges (Tsiotas & Charakopou-
los 2018).

(8)

We  also  considered  coreness  (c),  which 
measures the influence of a node based on 
its location within the network. Nodes with 
high coreness are interpreted as the most 
central  in a network (Lü et al.  2016). This 
value  is  determined  through  an  iterative 
process of k-core decomposition (Gao et al. 
2019), which categorizes the network into 
hierarchical shells from the core to the pe-
riphery  (Liu  et  al.  2016).  Thus,  node  i  be-
longs to shell  layer  c(i,G)  that  consists  of 
the coreness of node i (eqn. 9):

(9)

Another useful metric is the local cluster-
ing  coefficient  (C),  which  measures  the 
density of triangles in a network. Triangles 
are subgraphs of the network that provide 
a detailed view of neighborhood intercon-
nection (eqn. 10): 

(10)

where  ki is  the  number  of  neighbors  of 
node i (degree of node i), |ε(Γi)| is the num-
ber of  real  edges between the neighbors 
of node i, and ki(ki - 1) is the maximum num-
ber of possible edges between them (i.e., 
the  total  number  of  triangles  formed  by 
node i – Ghanbari  et  al.  2018, Tsiotas  & 
Charakopoulos 2018).

Betweenness  centrality  (BC)  is  another 
important centrality measure that indicates 
a node’s ability to control the flow of the 
network (eqn. 11). It functions as a bridge, 
connecting any two nodes via the shortest 
path between them. Higher BC values char-
acterize the most central nodes in the net-
work, which frequently occur on the short-
est  paths  between  any  pair  of  nodes 
(Maglaras et al. 2016). In eqn. 11,  bjh corre-
sponds  to  the  total  number  of  possible 
minimum  paths  between  nodes  j and  h, 
and  bjh(i)  represents  the number  of  mini-
mum  paths  between  them  that  pass 
through node i.

(11)

Traditional competition indices
Traditional  competition  indices  incorpo-

rate the tree size and geographic location 
to measure inter-tree competition, employ-
ing a range of strategies to assess competi-
tion  at  the  individual  tree  level.  In  this 
study, we applied 19 indices categorized as 
distance-dependent,  distance-independent 

and  semi-distance-independent  indices 
(see Tab. S2 in Supplementary material).

Tree diameter increment modeling
Several  growth  models  have  been  em-

ployed to predict  the annual  diameter in-
crements  of  individual  trees  over  time, 
with inter-tree competition indices demon-
strating high explanatory power (Maleki et 
al. 2015,  Kuehne et al. 2019). In our study, 
the  modeling  process  focuses  on  PAId as 
the  dependent  variable:  PAId  =  (DBHe 

-DBHb )/R, where DBHe = DBH at the end of 
the evaluated growth period (cm); DBHb  = 
DBH  at  the  beginning  of  the  evaluated 
growth period (cm);  and R  =  the growth 
period.  The  independent  variables  were: 
DBH  (cm);  cross-sectional  area  (SA,  cm2); 
the  geographic  coordinates  (X  and  Y)  at 
the individual tree level; traditional compe-
tition indices; and topological metrics. The 
modeling strategies (S) were: S1, distance-
dependent (DD);  S2,  distance-independent 
(DI); S3, semi-distance-independent (SI) in-
dices; S4, topological metrics from the com-
plex  network  approach.  All  strategies  in-
corporate attributes at the individual tree 
level.

The modeling process utilized the genetic 
algorithm (GA) and random forest (RF) ap-
proaches.  We  applied  the  GA  to  select  a 
subset of variables during the RF training 
process.  The  GA  is  a  stochastic  search 
method inspired by biological and genetic 
theories for solving several problems (Cer-
rada et al. 2015). The advantage of a hybrid 
algorithm (GARF)  is  related to  the reduc-
tion in model complexity (Hong et al. 2018, 
Jadhav et al. 2018). Before implementation, 
we  set  tuning  parameters  for  both  algo-
rithms for better performance: GA - popu-
lation size (400); generations (10); tourna-
ment  operator,  crossover  (0.5);  mutation 
(0.1); stop criteria (10 generations) and RF - 
ntree  (1500);  mtry  (1);  nodesize  (5).  Data 
processing and computational coding were 
conducted  using  R  software,  v.  3.5.1  (R 
Core Team 2018), and the “randomForest” 
package (Liaw & Wiener 2002). The multi-
objective  optimization  problem  was  de-
fined  with  a  fitness  function  (eqn.  12) 
aimed at reducing the number of variables 
and  minimizing  the  mean quadratic  error 
(out-of-bag).  The  normalized  solution  in-
corporates  two  terms:  (i)  the  ratio  be-
tween the out-of-bag (OOB) error and the 
maximum possible error calculated by pre-
liminary  tests;  (ii)  the  ratio  between  the 
number of selected variables n and the to-
tal  N. Furthermore, the importance of pre-
dictor variables was assessed based on the 
increment in mean square error (%IncMSE). 
Predictor variables with a high %IncMSE are 
considered the most important. Their omis-
sion implies a reduction in the model’s pre-
dictive power in terms of the MSE (Miao et 
al. 2018).

(12)
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Goodness-of-fit metrics for evaluating 
the modeling strategies

The  predictive  performance  of  each 
tested model was evaluated using several 
criteria:  R2,  coefficient  of  determination 
(eqn. 13); MSE (eqn. 14); RMSE, root mean 
square error (eqn. 15); MBE, mean bias er-
ror (eqn. 16); and MAE, mean absolute er-
ror (eqn. 17): 

(13)

(14)

(15)

(16)

(17)

In  these  equations,  yi is  the  measured 

value of PAId for observation i and ŷi is the 
predicted value of observation  i for  n ob-
servations. To compare the models, a scor-
ing  procedure  was  applied  to  select  the 
best model strategy based on a set of crite-
ria. The scores, ranging from 1 to 4, repre-
sent  accuracy,  with  1  indicating  the  best 
performance and 4 the worst for each er-
ror metric. The overall index is the sum of 
the scores for each method, with the low-
est  value  indicating  the  most  accurate 
strategy.

Furthermore, to assess the biological con-
sistency of the modeled tree diameter in-
crement curves,  we used the first  deriva-
tive  of  the  Chapman-Richards  function 
(eqn. 18) as a benchmark: 

(18)

where  y’ is  the  diameter  growth  rate 
(PAId),  βi represents  function  parameters, 
and x is the DBH. This function is widely ap-
plied  in  forest  management  due  to  its 
strong biological foundation and ability to 

describe realistic growth patterns. We used 
the “minpack.lm” R package (Elzhov et al. 
2016) with the Levenberg-Marquardt meth-
od  to  fit  the  function,  and  compared  its 
trends with the best modeling strategy se-
lected in this study. The goal was to deter-
mine whether  the proposed model  main-
tains biological plausibility by aligning with 
an  established  reference.  Ultimately,  as-
sessing both models against observed data 
provides  the  most  robust  evaluation  of 
their biological consistency.

Results

Forest structure and inter-tree 
competition

The studied area showed no disturbance 
or ecological  sustainability  risks,  showcas-
ing a resilient stand structure characterized 
by  diameter  distribution  frequencies  typi-
cal  of  uneven-aged  forests.  This  stand 
demonstrated a positive balance between 
ingrowth  (11.12%)  and  mortality  (3.37%). 
Consequently,  the  remaining  forest  re-
flected the natural dynamics and structure 
over time, highlighting its stability and sus-
tainability.

The  inter-tree  competition  indices  and 
metrics exhibited contrasting trends across 
diameter classes. Overall, they presented a 
clear  increasing/decreasing pattern across 
the diameter classes (Tab. 1). Regardless of 
the  method,  the  increasing  trends  were 
predominant.  The  set  of  distance-depen-
dent  indices  had  similar  behavior,  except 
for the DD1 and DD3 indices. Higher values 
of DD2 suggest a negative effect of com-
petitor  tree  size  and  distance  on  subject 
trees  across  diameter  classes.  However, 
this index does not take into account sub-
ject tree size. DD1 and DD3 demonstrated a 
size  advantage  for  C.  langsdorffii over  its 
competitors  as  the  diameter  class  in-
creased. The DD5 value increased approxi-
mately 39-fold as the central diameter class 
expanded from 10 to 40 cm. Similarly, the 
DD6  value  exhibited  an  even  more  pro-
nounced  increase,  rising  63-fold  with  the 
same  diameter  class  increment.  This  pat-
tern highlights a stronger response of both 
indices  to  diameter  class  expansion,  as 
higher values were directly associated with 
larger subject trees and greater distances, 
emphasizing the positive effect of increas-
ing  diameter  class  on  these  indices.  Con-
ceptually, lower values of these indices in-
dicate  greater  competition.  The  semi-dis-
tance-independent indices exhibited a simi-
lar increasing trend across diameter classes 
(Glover and Hool index, SI2) and cross-sec-
tional area (Stage index, SI1).  Considering 
distance-independent  indices,  the  Muga-
sha  index  (DI2)  revealed  that  individuals 
with DBH > 15 cm had competitors with a 
smaller  size.  The  Pedersen  index  (DI9) 
showed a similar trend related to the qua-
dratic mean diameter of the plot.

The  complex  network  metrics  provided 
valuable insights into quantifying inter-tree 
competition  by  mapping  spatial  relation-
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Tab. 1 -  The pattern of competition metrics/indices within the diameter classes for 
Copaifera langsdorffii. The diameter class centers refer to the following diameter inter-
vals: 10 (5-15 cm), 20 (15-25 cm), 30 (25-35 cm), and 40 (35-45 cm).

Index/
metric

Diameter class center (cm)

10 20 30 40

DD1 3.50 2.32 2.21 1.92

DD2 31.95 50.85 66.35 78.33

DD3 7.74 2.12 1.60 1.05

DD4 1.45 1.57 1.58 1.55

DD5 5.19 41.65 84.66 203.18

DD6 2.79 31.93 68.49 174.63

DI1 0.81 2.48 3.23 5.07

DI2 1.49 0.62 0.52 0.39

DI3 3.55 6.40 8.11 10.93

DI4 37.10 143.07 246.86 446.08

DI5 6.88 5.37 5.75 6.02

DI6 0.26 0.56 0.71 0.87

DI7 0.63 2.63 4.23 6.61

DI8 0.64 1.36 1.70 2.13

DI9 1.75 0.77 0.61 0.48

DI10 0.31 4.14 10.34 23.81

DI11 0.69 0.47 0.37 0.18

SI1 1.23 8.03 12.64 28.91

SI2 0.93 3.20 4.46 7.19

kout 2.88 10.90 16.72 29.10

kin 2.33 2.42 3.26 1.80

k 5.20 13.31 19.98 30.90

C 0.47 0.21 0.16 0.09

c 3.37 4.42 5.28 5.00

CE 2E-02 3E-02 3E-02 3.E-03

BC 140.93 184.44 757.91 431.20

knn 8.64 7.87 9.25 7.80

Cl 47.22 108.53 215.03 309.97
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∑i=1

n
( y i− ȳ)2
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n

MAE=
∑i=1

n

|y i− ŷ i|
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ships among trees across the entire study 
area  (Figs.  S1-S9  in  Supplementary  mate-
rial).  The  in-degree  (kin)  pattern  demon-
strated that individuals with DBH > 35 cm 
were  less  likely  to  act  as  competitors  in 
network connections. Conversely, trees of 
intermediate size (25 cm < DBH ≤ 35 cm) 
exerted  a  greater  competitive  impact  on 
other trees. As tree size increased, compet-
itive pressure on the subject tree also grad-
ually  increased,  as  larger-diameter  trees 
tended  to  have  more  competitors  (kout), 
with their influence extending over a larger 
radius of competition. According to the to-
tal degree (k), the intensity of competitive 
interactions  increased  by  approximately 
493% as  tree size  increased from 5 to  45 
cm.  The  knn  evaluation  indicated  that 
smaller trees (5-15 cm) experienced higher 
levels  of  local  competitive  pressure  com-
pared to larger trees (35-45 cm). This sug-
gests that smaller trees were situated in ar-
eas of greater indirect competition, reflect-
ing a notable increase in competitive inten-
sity  as  tree  size  decreased.  The  coreness 
(c)  assumes  that  the  pivotal  trees  of  an 
ecological system are those with 25 cm ≤ 
DBH < 45 cm, which supports the connec-
tion  of  all  trees.  Dominant  trees  were 
sparse and spatially distant from other indi-
viduals  in the network,  as defined by the 
closeness centrality  metric.  The eigenvec-
tor  centrality  suggests  that  C.  langsdorffii 
trees in the lower stratum of the forest had 
more  competitors  than  the  dominant 
trees. Clustering coefficients decreased as 
tree size increased, suggesting that smaller 
trees (5-15 cm) were located in areas with a 
denser  competitive  network,  reflecting 
more  intense  local  competition  for  re-
sources.  In  contrast,  larger  trees  (35-45 
cm)  were  found  in  areas  with  more  dis-
persed  competition,  characterized  by 
fewer  connections  between local  groups. 
Intermediate-sized trees (25-35 cm) exhib-
ited the highest  BC values, indicating their 
central  role  in  connecting  different  com-
petitor groups and influencing competition 
dynamics.  Larger  trees  (35-45  cm)  also 
played  a  key  role  but  with  slightly  less 
prominence, suggesting that intermediate-
sized  trees  were  more  strategically  posi-
tioned within the competitive network.

Based  on  cluster  analysis,  we  observed 

similar  patterns  between  most  competi-
tion  indices  and  their  linear  correlation 
with diameter increment (Fig. 2). This anal-
ysis  identified  a  threshold  point  that  di-
vided  these  metrics  into  two  distinct 

groups,  characterized  by  heterogeneous 
linear  trends  (positive  and  negative)  ac-
cording  to  the  diameter  increment.  Our 
findings reveal a certain level of similarity 
between complex network metrics and tra-
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Tab. 2 - Statistical analysis of the periodic annual diameter increment (PAId) modeling strategies for  Copaifera langsdorffii. (MSE): 
mean square error; (RMSE): root mean square error; (MBE): mean bias error; (MAE): mean absolute error; (R 2): coefficient of deter-
mination; (n,1): scores. The sequence of numbers and letters defines the ranking scale and the optimal variable modeling strategy,  
respectively.

Statistic

Traditional competition indices
Complex network 
metrics (S4)

Distance-
dependent (S1)

Distance-
independent (S2)

Semi-distance-
independent (S3)

Training Validation Training Validation Training Validation Training Validation
MSE 0.004 0.008 2 0.005 0.008 4 0.005 0.008 3 0.005 0.007 1 

RMSE 0.065 0.089 2 0.068 0.092 4 0.071 0.090 3 0.071 0.086 1 

MBE -0.001 -0.007 2 -0.001 -0.007 3 -0.001 -0.010 4 0.000 -0.005 1 

MAE 0.052 0.073 1 0.055 0.080 4 0.057 0.077 3 0.056 0.076 2 

R 2 0.785 0.366 2 0.740 0.313 4 0.716 0.364 3 0.730 0.443 1 

Scores 9 b 19 d 16 c 6 a 

Fig. 2 - Cluster analysis of competition metrics and Pearson’s correlation of PAId. (DII): 
distance-independent  index;  (DDI):  distance-dependent  index;  (SII):  semi-indepen-
dent-distance index;  (TM):  topological  metrics  of  the network;  (SI1):  Stage (1973); 
(SI2):  Glover & Hool (1979); (DI1):  Daniels et al. (1986); (DI2):  Mugasha (1989); (DI3): 
Lorimer  (1983);  (DI4):  Looney et  al.  (2018);  (DI5):  Corona & Ferrara  (1989);  (DI6): 
Tomé & Burkhart (1989); (DI7): Glover & Hool (1979); (DI8): Stage (1973) based on the 
quadratic mean diameter; (DI9): Pedersen et al. (2013); (DI10): Stage (1973) based on 
cross-sectional area; (DI11):  Stage (1973) based on BAL; (DD1):  Hegyi (1974); (DD2): 
Rouvinen  and  Kuuluvainen  (symmetric,  1997);  (DD3):  Rouvinen  and  Kuuluvainen 
(asymmetric, 1997); (DD4): Martin & Ek (1984); (DD5): Staebler (1951); (DD6): Moore 
et al.  (1973);  (Knn):  weighted average nearest-neighbors’  degree;  (EC):  eigenvector 
centrality; (Kout): out-degree; (Kin): = in-degree; (K): total degree of the node; (c): core-
ness; (Cl): closeness centrality; (C): clustering coefficient; (BC): betweenness central-
ity.
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ditional competition indices. This similarity 
suggests  that  complex  network  metrics 
can be powerfully used as traditional com-
petition indices to corroborate information 
about  the  relationships  between  trees. 
They  are  also  suitable  for  describing 
growth  rates  and  the  PAId.  The  metrics 
generally  presented  positive  values  of 
Pearson’s  correlation  coefficient  (Fig.  2). 
The Stage index (DI8) exhibited the strong-
est  positive  correlation,  followed  by  DI7, 
DI6,  and  kout.  Conversely,  the  Pedersen 
(DI9), Stage-BAL (DI11), and Mugasha (DI2) 
indices,  as  well  as  the  clustering  coeffi-
cient, had the highest negative values.

Individual-tree diameter growth 
modeling performance

Variable selection using the random for-
est approach is enhanced by employing a 
multi-objective  genetic  algorithm  to  opti-
mize  the number  of  variables  while  mini-
mizing  errors.  Our  findings  suggest  that 
even the subset  of  individual  variables  at 
the tree level differed among the modeling 
strategies, revealing the importance of the 
interaction among all selected variables in 
capturing  the  growth  pattern.  Despite 
slight  differences  in  precision  among  the 
tested variables, all  inter-tree competition 
methods proved suitable for explaining in-

dividual-tree diameter growth with accept-
able limitations (Tab. 2). Notably, the com-
plex network metrics demonstrated signifi-
cant advantages over traditional indices for 
C. langsdorffii, as evidenced by residual plot 
analysis  (Fig.  3).  However,  there  was  a 
slight  tendency  to  overestimate  the  PAId 

across  all  strategies  based  on  the  his-
togram distribution.

The variable selection approach included 
a significant advanced feature search to im-
prove  overall  accuracy  and  reduce  noise 
across each modeling strategy, resulting in 
distinct  subsets  (Fig.  4).  Generally,  the 
most relevant variables were chosen to im-
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Fig. 3 - Analysis of residuals with marginal his-
tograms for all modeling strategies.

Fig. 4 - Analysis of the importance of selected 
variables for each modeling strategy. (Y): geo-
graphic coordinate (latitude); (SAr): square 
root of the cross-sectional area; (DBHs): square 
of DBH; (DD6): Moore et al. (1973); (DI8): Stage 
(1973) based on the quadratic mean diameter; 
(SI1): Stage (1973); (BC): betweenness central-
ity; (Kout): out-degree.
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prove  prediction  outcomes  in  a  multi-ob-
jective form. Our findings revealed an aver-
age reduction of 83% in the selected vari-
ables.  Local  site conditions may influence 
growth rates, as latitude (the Y coordinate) 
was  selected  for  the  distance-dependent 
strategy (S1). The DBH is usually a primary 
input for a range of growth models and bi-
ological  processes.  This  variable  was  se-
lected in all modeling strategies, even indi-
rectly,  since it incorporates the Moore in-
dex (DD6) and Stage index (DI8), with mi-
nor differences in  importance between S1 

(distance-dependent)  and  S2  (distance-in-
dependent). However, topological metrics 
from the network, such as kout and BC, were 
selected over others and demonstrated su-
perior  estimation capabilities  for  C.  langs-
dorffii.  These  metrics  effectively  captured 
the  negative  impacts  of  competitors  on 
subject  trees  by  associating  their  spatial 
distribution  and  neighborhood  density 
with the dynamics of tree growth.

The benchmark analysis of accuracy and 
biological  consistency indicated a positive 
response to the complex network metrics 
(Fig.  5).  Incorporating  these  variables 
yielded graphical  results  that visually  out-
performed  the  Chapman-Richards  func-
tion, which had parameters β1 = 18.57332, β2 

= 0.01952, and β3 = 1.75503). The individual-
tree growth predictions of observed data 
(validation  set)  indicated  a  significant  ef-
fect  of  the  interaction  between  kout,  the 
square of DBH, and BC in capturing growth 
patterns. These curves validate that incor-
porate  inter-tree  competition  as  an  addi-
tional  factor,  enhances  our  ability  to  ex-
plain biological patterns, and confirms the 
robustness  of  the selected variables.  The 
competition effects quantified by complex 
network metrics more consistently approx-
imated the natural distribution and orienta-
tion of the real growth data than the Chap-
man-Richards function.

Discussion
Individual-tree growth models rely heav-

ily  on  competition  indices  widely  docu-
mented in the literature. The diverse com-
petitive abilities,  growth rates,  and shade 
tolerance  levels  among  species  require 
specific  adaptation  mechanisms,  which  in 
turn  influence  their  behavior  patterns 
(Kuehne et al. 2020). Defining the competi-
tive abilities of individual trees for natural 
resources (light,  water,  and nutrients)  re-
mains  a  persistent  challenge  in  forestry, 
particularly  in  highly  diverse  tropical  for-
ests.

The dimensional  characteristics of trees, 
such as DBH and SA, reflect forest develop-
ment and play a crucial role in determining 
their growth potential. Our study revealed 
that DBH and SA were the most influential 
factors  in  predicting  growth.  Crown  at-
tributes and competition also significantly 
contribute  to  diameter  growth (Cunha et 
al.  2016).  These  factors  are  considered 
modifiers of potential growth, as they ac-
count for the nature of the interactions be-

tween trees. Indeed, integrating variables 
that  quantify  competition  into  individual-
tree modeling is crucial for enhancing pre-
dictions of tree dimensions and the dynam-
ics of tree growth (Carrijo et al. 2020). The 
sensitivity of C. langsdorffii trees to compe-
tition is confirmed by the moderate linear 
associations between most competition in-
dices/metrics and PAId. The indices with the 
strongest positive and negative linear asso-
ciations were the Stage index (DI8) and the 
Pedersen  index  (DI9),  respectively.  Al-
though these indices are structurally differ-
ent,  both commonly incorporate the qua-
dratic  mean  diameter  of  the  plot.  This 
whole-stand  variable,  when  incorporated 
in distance-independent competition mea-
surements, corresponds to the hierarchical 
position of the subject tree within the plot 
(Moreno et al.  2017).  A similar relative di-
mension (ratio) used by DI8 was evaluated 
in the study of Sharma et al. (2019), which 
showed an increase in the diameter incre-
ment  of  Fagus  sylvatica L.  with  reduced 
competition,  as  expressed by  an increase 
in the ratio between the DBH and the qua-
dratic mean diameter.

C. langsdorffii trees face intense competi-
tion as  they strive for  canopy dominance 
by investing in height and forming symmet-
rical crowns (Costa et al. 2012). This situa-
tion is consistent with that observed in the 
study by  Stadt et al. (2007) in mature bo-
real  mixed forests,  where competition in-
dices were less effective for shade-intoler-
ant  species  compared  to  shade-tolerant 
ones. The authors attributed this finding to 
the majority of shade-tolerant species be-
ing in the sub-canopy, thus experiencing a 
greater variety of competition. Therefore, 
it  is advisable to test various competition 
indices to enhance model performance. In 
this  regard,  our  comparative approach of 
different  competition  indices/metrics  de-
monstrated  that  a  complex  network  de-
sign  could  better  represent  competition 

patterns. Our findings suggest that the net-
work structure addresses inter-tree compe-
tition in a more natural  and interpretable 
way,  providing  slight  superiority  in  ac-
counting for the effect of competition on 
the PAId of  C. langsdorffii.  As a result,  the 
competition  metrics  that  exhibited  the 
greatest  improvements  in  growth  esti-
mates were the topological metrics.

Another significant finding revealed a no-
table pattern, with the strategy based on 
distance-dependent  indices  (S1)  emerging 
as  the  second-best  strategy  for  C.  langs-
dorffii. This result is supported by the effect 
of neighborhood interactions on diameter 
growth,  which  supports  the  efficiency  of 
spatial indices as predictors in growth mod-
eling (Maleki  et  al.  2015).  In  this  context, 
the complex network is also a promising al-
ternative for representing distance depen-
dence, allowing for the examination of the 
spatial  distribution  patterns  of  individual 
trees (Mongus et al.  2018).  The statistical 
properties of a competition network struc-
ture help understand plant population dy-
namics (Nakagawa et al. 2016).  Mongus et 
al.  (2018) reported  that  clusters  and  be-
tweenness centralities have a greater influ-
ence on tree development than commonly 
used  parameters,  such  as  the  number  of 
competitors per tree and the distance be-
tween them.  Betweenness  centrality  was 
one of the variables selected as a predictor 
of diameter increment in C. langsdorffii indi-
viduals,  contributing to the greater  preci-
sion of the S4 strategy. This metric signifies 
the  greater  importance  of  trees  with 
higher participation in the set of competi-
tors for other trees, influencing the dynam-
ics of competition between groups. There-
fore,  our  results  reinforce  that  merely 
counting the number of competitors for an 
individual tree is insufficient to capture the 
full  effect  of  competition  on  its  develop-
ment pattern within a forest.

Modeling  individual-tree  PAId is  a  chal-

iForest 18: 176-185 182

Fig. 5 - Predicted increment using the Chapman-Richards function and complex net-
work (S4) within the validation dataset.
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lenging task due to the interaction of sev-
eral  factors.  Two  primary  reasons  driving 
advances in this area are (i)  the need for 
more  accurate  quantification  of  competi-
tion, as it is required for developing growth 
and production models at the level of indi-
vidual trees (Contreras et al. 2011), and (ii) 
the difficulty in modeling the complex and 
non-linear nature of individual-tree growth 
(Vieira et al. 2018). In this study, we devel-
oped modeling strategies based on the RF 
regression method.  This  model  is  notable 
for its ability to handle the non-linear rela-
tionship  between  predictor  variables  and 
the  response  variable  without  requiring 
statistical assumptions (Ou et al. 2019). The 
application of RF has increased due to its 
efficiency in providing reliable estimates, as 
demonstrated  by  Ou  et  al.  (2019) and 
Tavares  Júnior  et  al.  (2020).  Additionally, 
using a GA together with RF, known as op-
timized RF, offers the opportunity to gen-
erate better results  by selecting the opti-
mal combination of variables (Hong et al. 
2018).  Our  findings  showed that  the ade-
quacy of strategies is associated with the 
importance of  choosing an optimized set 
of  competition  indices/metrics  and  forest 
attributes  to  improve  growth  estimates. 
Notably,  machine learning techniques  are 
not always sensitive to the local structure 
of the data, and these algorithms did not 
consistently  choose  the  ideal  set  of  vari-
ables  (Jadhav et  al.  2018).  Thus,  the esti-
mates  provided  by  the  RF  regression  in 
each modeling strategy may vary, depend-
ing  on  the  preliminary  variable  selection 
task conducted through a random search 
by the GA.

Another way to improve estimates is to 
better explore the effect of variables that 
significantly  contribute  to  understanding 
the response variable.  Complex networks 
offer the advantage of a flexible structure 
that enable to include information describ-
ing  the  complex  interactions  between 
trees. It is possible to incorporate charac-
teristics,  such as shade tolerance, aspects 
of soil,  climate,  water, and solar availabil-
ity, into the network as interaction weights 
using large datasets. This approach enables 
the  analysis  of  various  scenarios  corre-
sponding  to  silvicultural  treatments 
(Mongus et al. 2018). Therefore, this study 
promotes  scientific  progress  beyond  the 
existing literature to meet the need for de-
veloping growth and production models at 
the tree level, facilitating more precise de-
cision-making for forest management.

Conclusion
The resilience of tropical forests is highly 

dependent on the diametric structure over 
time, with each tree having adaptive mech-
anisms to overcome the adverse effects of 
competition.  In  general,  tree  species  ex-
hibit a wide range of interactions that influ-
ence  diameter  growth  patterns,  as  ob-
served in  C. langsdorffii. The PAId is closely 
associated  with  neighborhood  size,  the 
spatial  distribution  of  competing  trees, 

tree size, or canopy stratum position, and 
their  connections within a network struc-
ture.  All  categories  of  inter-tree  competi-
tion indices/metrics are suitable for model-
ing our dependent variable.  Although the 
Chapman-Richards growth function is pro-
minent  in  forest  management,  the  opti-
mized model (genetic algorithm + random 
forest)  combined  with  complex  network 
metrics  proved superior  in  describing the 
individual  growth  rate  of  tree  diameter. 
This  finding  supports  the  applicability  of 
complex  network  metrics  to  encompass 
ecological  significance  and  enhance  the 
generalization of growth models.
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Fig.  S1 -  The  representation  of  the  in-
degree metric, with nodes colored accord-
ing to each species and their sizes scaled 
according to their values. 

Fig.  S2 -  The  representation  of  the  out-
degree metric, with nodes colored accord-
ing to each species and their sizes scaled 
according to their values. 

Fig.  S3 -  The  representation  of  the  total 
degree metric, with nodes colored accord-
ing to each species and their sizes scaled 
according to their values. 

Fig. S4 - The representation of the nearest-
neighbors’  degree,  with  nodes  colored 
according to  each species  and their  sizes 
scaled according to their values. 

Fig.  S5 -  The representation of the eigen-
vector  centrality,  with  nodes  colored 
according to  each species  and their  sizes 
scaled according to their values. 

Fig.  S6 -  The representation of  the close-
ness centrality, with nodes colored accord-
ing to each species and their sizes scaled 
according to their values. 

Fig.  S7 -  The  representation  of  the  core-
ness, with nodes colored according to each 
species and their sizes scaled according to 
their values. 

Fig. S8 - The representation of the cluster-
ing coefficient, with nodes colored accord-
ing to each species and their sizes scaled 
according to their values. 

Fig.  S9 -  The  representation  of  the 
betweenness  centrality,  with  nodes  col-
ored according to  each species  and their 
sizes scaled according to their values. 

Tab. S1 - Ecological interpretations of Com-
plex Network metrics for tree competition. 

Tab.  S2 -  Inter-tree  competition  indices 
applied to Copaifera langsdorffii trees.

Link: Leite_4735@suppl001.pdf
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