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Change Detection methods for forest expansion assessment in the last 
twenty years in the Mediterranean Basin
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The evaluation of natural forest expansion is a crucial issue for understanding 
fundamental  processes  related  to  climate  change  and  carbon  uptake.  The 
identification of forest expansion/reduction dynamics at a regional scale has 
been provided through multitemporal analyses of high-resolution satellite im-
ages. This study aims to compare different Change Detection (CD) techniques 
to assess forest expansion in the Basilicata region (Southern Italy). Landsat 5 
TM image from 2003 and Landsat 8 OLI image from 2019 were used for this 
purpose. The CD methods implemented were NDVI Differencing and Post-Clas-
sification Comparison (PCC). Using a confusion matrix, PCC showed better per-
formance than NDVI Differencing (Overall Accuracy of 0.85 and 0.62, respec-
tively). The comparison of the evaluated forest expansion areas with inventory 
data shows the good performance of CD procedures in assessing forest land 
use changes. The use of satellite images and Change Detection techniques can 
be applied where a high temporality and a wide geographical extension are re-
quired, conditions in which traditional procedures involving field surveys are 
too expensive in terms of time and money. Furthermore, the use of satellite 
images allows  for the detection of changes in the Earth’s surface in particu-
larly inaccessible areas of the globe.

Keywords: Change Detection, Forest Expansion, NDVI-Differencing, Post-Classi-
fication Comparison, PCC, Land Use Change, Climate Change, Land Abandon-
ment, Mediterranean Land System Dynamics

Introduction
Land  use/land  cover  (LULC)  can  be  de-

fined  as  the  set  of  land  surface  features 
that  include  both  natural  and  anthropo-
genic  elements  covering  the  Earth’s  sur-
face and is one of the most important envi-
ronmental  factors  (Fazal  2000).  It  is  evi-
dent  that,  in  relation  to  both  anthro-
pogenic and naturally occurring factors, as 
well as climate change, land-use/land-cover 
(LULC)  varies  at  varying  rates  over  time 
and space (Usman et al. 2015).

The  identification of  LULC change is  es-
sential for managing resources, protecting 
ecosystems and their biodiversity, biogeo-

chemical  cycles,  soil  fertility,  hydrological 
cycles,  energy  balance,  soil  productivity 
and  ecosystem  services  (Lugo  2008). 
Moreover,  LULC change is  a  key  decision 
support for sustainable development, rep-
resenting the most critical aspect of global 
environmental change (Usman et al. 2015).

The  more  rapidly  land use changes,  the 
more drivers (climatic, socio-economic, and 
political) are found to be acting simultane-
ously  in  a  given  area.  These  factors  and 
their mechanisms operate at different spa-
tio-temporal scales (Lambin et al. 2003). In-
deed,  the  factors  that  cause  significant 
changes in land use involve a complex sys-
tem of dependencies and interactions, af-
fecting a wide range of sectors at different 
spatial  and  temporal  levels.  In  recent 
decades, land use changes have become a 
major concern in studies focused on global 
warming (Lambin et al. 2003), the varying 
capacities of natural  resources to seques-
ter carbon, and the ability of different eco-
systems to adapt to climate change (Xue et 
al. 2022). The analysis of LULC change con-
sists of identifying how and where changes 
are occurring, the rates at which they are 
occurring, and the socio-economic factors 
driving these changes (Othman et al. 2012).

A  key element  of  spatio-temporal  varia-
tion of LULC is that forest dynamics can in-
volve  contrasting processes  of  deforesta-
tion  and  natural  forest  expansion  (FAO 
2020). Forests contribute to the economic 
development of many countries by provid-

ing livelihood for millions of people.  They 
also  provide  a  wide  range  of  ecosystem 
services  and  serve  as  important  carbon 
sinks, contributing to the reduction of car-
bon dioxide in the atmosphere (Ge et  al. 
2023).  Forests  resulting  from  the  natural 
processes of  expansion can contribute to 
improved  hydrological  conditions,  in-
creased  biodiversity  and  productivity  of 
agricultural  systems,  climate  change  miti-
gation and adaptation, and increased eco-
system  services,  in  general  (Matos  et  al. 
2020).  However,  uncontrolled  forest  ex-
pansion can also  have adverse effects  by 
causing  a  range  of  social,  environmental, 
and  economic  impacts,  including  loss  of 
cultural  landscapes  and  habitat  diversity, 
reduced  levels  of  biodiversity  and  eco-di-
versity (Suárez-Seoane et al.  2002), waste 
of economic and natural resources, loss of 
productive land, negative impacts on agri-
cultural productivity and human health, de-
pletion  of  some  environmental  services, 
and an increase in natural hazards such as 
floods,  landslides,  and  fires  (Höchtl  et  al. 
2005). Socio-economic dynamics related to 
forest  expansion  in  many  Mediterranean 
areas, especially mountainous regions, are 
also  significant.  This  included  issues  like 
population aging,  depopulation,  marginal-
ization, and the erosion of traditional rural 
knowledge (Piussi & Pettenella 2000).

Bastin et al. (2019) estimated that, glob-
ally, 9 million km2 of land area have suitable 
conditions  for  forest  expansion,  either 
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through replanting new forest stands or by 
natural  forest  expansion.  However,  the 
phenomenon  can  be  observed  at  small 
scales and local levels worldwide, primarily 
due to social factors related to land aban-
donment  (Li  et  al.  2017). To  comprehend 
these  land  use  changes,  it  is  essential  to 
place them within the framework of envi-
ronmental policies that promote the devel-
opment of multifunctional landscapes and 
enhance  ecosystem  services,  especially 
those connected to regulatory and cultural 
aspects.  Forests  represent  important  car-
bon sinks:  from 2001 to 2010,  the carbon 
absorbed by forest recolonization areas ac-
counted for more than 60% of the total car-
bon sink of forests (1.3 out of 2.15 Pg yr -1), 
and  the  carbon  stored  by  forests  ac-
counted for approximately 45% of the total 
carbon pool of terrestrial ecosystems. Tem-
perate forests represent an important car-
bon sink in this context (Pugh et al. 2019). 
Carbon sinks from natural forest expansion 
are  primarily  represented  by  deciduous 
broadleaves and evergreen conifers in tem-
perate  zones,  while  the  majority  of  the 
world’s forests are tropical and boreal.  In 
temperate habitats,  the processes  of  for-
est recolonization can be easily traced back 
to the abandonment of silvicultural activi-
ties (FAO 2020). In Europe, the largest in-
crease in forest  area (approximately  35%) 
has been recorded in eastern Europe and 
can be attributed to natural  processes of 
forest  recolonization  of  agricultural  lands 
that  have  been  abandoned following the 
collapse of the former Soviet Union (Song 
et al. 2018). Mediterranean Europe has also 
experienced a relatively sustained increase 
in forest area in recent years, primarily due 
to natural forest expansion. In the Mediter-
ranean regions, this is fundamentally linked 
to  the  abandonment  of  agricultural  prac-
tices and to the reduction in livestock pres-
sure, which have been the primary drivers 
of  change  in  the  Italian  rural  landscape 
over the last fifty years (Piussi & Pettenella 
2000). The causes can be traced back to ru-
ral migration, crop abandonment, particu-
larly in mountainous areas, and the intensi-
fication of  agricultural  production in  low-
land areas (Cruz-Alonso et al. 2019). 

Assessing  the  expansion  of  natural  for-
ests can enhance understanding of funda-
mental  processes,  particularly  those  re-
lated to climate change and carbon uptake. 
Conventional  methods  of  forest  mapping 
to  identify  expansion/reduction  dynamics 
by field surveys are very costly in terms of 
financial  and  human  resources,  and  ex-
tremely challenging in rugged morpho-to-
pographic areas.  The growing variety and 
availability of remote sensing data, which is 
often  freely  accessible,  along with  ad-
vanced remote  data processing technolo-
gies, allows to obtain information on forest 
expansion  at different  scales and at a low 
cost  (Gudex-Cross et al. 2017). In this con-
text,  data  obtained  from various  Landsat 
missions  has  proven  invaluable  for  con-
ducting  multitemporal  analyses  on  forest 

expansion dynamics due to its good spec-
tral,  geometric,  and  temporal  resolution 
(Collins & Woodcock 1996,  Mancino et al. 
2014, Li et al. 2017) and its extensive cover-
age  of  nearly  50  years.  Additionally,  re-
motely  sensed  data  has  yielded  positive 
outcomes in producing forest maps (Gud-
ex-Cross  et  al.  2017)  and  studying  the 
stages of forest stand growth (Cohen et al. 
2002), taking into account the scale and ra-
diometric and geometric resolution of the 
changing  areas.  Short  satellite  revisiting 
times,  the  integration  of  remote  sensing 
data from various missions and satellites, 
continuous  improvements  in  geometric 
and spectral image resolution, and the in-
creasing  sophistication  of  change  detec-
tion techniques all contribute to the ability 
to  monitor  large-scale  changes  on  the 
Earth’s surface in very short time. 

Change detection is the process of identi-
fying differences in the state of an object 
by  observing  it  at  different  times  (Singh 
1989). Since the 1980s, numerous reviews 
on change detection techniques have been 
published (Singh 1989,  Lu et al. 2004,  Jen-
sen 2015),  including analyses of  the accu-
racy of maps derived from change detec-
tion analysis (Morisette & Khorram 2000). 
These  techniques  have  been  applied  in 
many fields, allowing not only the assess-
ment of LULC changes but also their inten-
sity,  trajectories,  and the drivers  involved 
(Li  et  al.  2016).  In  the  forestry  sector, 
change  detection  techniques  have  been 
applied to identify the extent, type, and dy-
namics of forest expansion (Lu et al. 2014, 
Wang et al.  2018),  forest  biomass estima-
tion (Galidaki et al. 2017), the detection of 
biotic and abiotic damage (Hargrove et al. 
2009) or forest fires (Yan et al. 2022), the 
assessment of fire-prone areas (Bourgeau-
Chavez et al.  2002), and forest responses 
to climate change (Sarti et al. 2020). How-
ever,  the  improvement  of  change  detec-
tion algorithms and procedures in forestry 
is an ongoing challenge (Song & Woodcock 
2003,  Mancino et al. 2014) because of sev-
eral  potential  source  of  errors  in  image 
analysis, such as the effect of atmospheric 
scattering,  the  presence  of  clouds  and 
shadows, or different sun angle (Hermosil-
la et al. 2015), but also to the variability of 
the radiometric response of vegetation as 
a function of topography, forest type, and 
phenology (De Beurs & Henebry 2005).

Several  change  detection  algorithms, 
techniques, and procedures have been re-
ported  in  the  scientific  literature, though 
none of them is deemed suitable to every 
scenario (Lu  et  al.  2004).  Desclée  et  al. 
(2006) identified  three  main  groups  of 
change detection techniques:  visual  inter-
pretation,  pixel-based  and  object-based 
methods.  The  first  is  time-consuming  as 
changes  are  identified  by  analyzing  the 
shape, tone, texture, pattern, size, and as-
sociation of various objects on the Earth’s 
surface; it also requires substantial opera-
tor experience (Lu et al. 2004) and is neces-
sarily applied to limited areas. Pixel-based 

methods are the most widely used proce-
dures in change detection analysis and pro-
vide satisfactory results in short times (Bo-
volo et al. 2008), though they are consid-
ered  scene-dependent  (Rogan  &  Miller 
2006). More recently, object-based change 
detection  methods  have  been  proposed 
that  combine  visual  interpretation  and 
quantitative  aspects,  taking  into  account 
the similarity of contiguous pixels (Peng & 
Zhang 2017). 

Pixel-based methods represent the most 
widely  used  and  the  better-performing 
technique of change detection (Wang et al. 
2019).  Within  this  category  two  different 
approaches  are  included:  (i)  an  approach 
based on simultaneous multitemporal anal-
ysis  of multispectral data using the single 
spectral bands or, more commonly, an in-
dex (e.g., NDVI) derived from the combina-
tion of the individual spectral bands; (ii) a 
post-classification  approach,  involving  the 
independent classification of two different 
dates to identify the occurred changes. The 
above methods have often demonstrated 
better performance than other algorithms 
and  procedures,  though  each  algorithm 
has several advantages and disadvantages 
in  detecting  changes  (Berberoglu  &  Akin 
2009).

The  study  aims  to  identify  and  quantify 
the natural forest recolonization during the 
last two decades in an area of the Mediter-
ranean basin (Basilicata, southern Italy) by 
comparing two different change detection 
techniques:  NDVI  Differencing  (Márquez-
Romance  et  al.  2022)  and  post-classifica-
tion comparison (Lunetta & Elvidge 1999). 
We  highlighted  the  strengths  and  weak-
nesses  of  each  procedure  and  discussed 
the  importance  of  accuracy  analysis  for 
performance evaluation.

Materials and methods

Study area
The  study  area  is  the  Basilicata  region 

(southern Italy) in the middle of the Medi-
terranean  Basin  (Fig.  1).  The landscape in 
the Mediterranean area is characterized by 
highly  variable  morpho-topographic  habi-
tats,  corresponding  to  very  different  cli-
matic conditions at the local level.  The di-
verse landscapes, shaped by a long history 
of  human interaction and recent  changes 
driven  by  climate  change  (Salvati  et  al. 
2014) and land management policies,  have 
resulted in the development of  highly  var-
ied  ecosystems.  These  landscapes  com-
prise  agricultural  areas  interspersed  with 
small-scale  tree crops,  horticultural  crops, 
hayfields,  and  patches  of  natural  vegeta-
tion,  including different forest  types  with 
varied  physiognomy  and  structure.  The 
Apennine  mountain  range  dominates  the 
western  part  of  the  region,  which  has  a 
typical  oromediterranean  climate.  In  con-
trast,  eastern territories are characterized 
by low hills and large valleys that gradually 
flatten towards the southern coast of the 
Ionian Sea,  where  the climate  is  typically 
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Satellite change detection to identify forest dynamics in the Mediterranean area

Mediterranean, with hot, dry summers and 
cold  autumn  and  winter  months,  when 
most rainfall occurs. 

Forests cover approximately 36% (355,367 
ha) of the total area of the region. Decidu-
ous oak forests are prevalent,  accounting 
for 51.8% of the forest cover. Beech forests 
can  be  found  at  higher  altitudes  (8.4%), 
while  as  elevation  decreases,  more  ther-
mophilous  forest  types  are  encountered, 
such  as  Mediterranean  macchia  (7.9%), 
thermophilous shrublands (6.9%), and gar-
rigue.  Reforested  areas  are  also  present, 
with Pinus nigra predominant at higher alti-
tudes and  Pinus halepensis in the hills and 
lowlands. 

Notably, the Mediterranean Basin is con-
sidered one of the regions most vulnerable 
to climate change, with future projections 
predicting  an  increase  of  approximately 
twice the average global warming temper-
ature (Ozturk et al. 2015). This has implica-
tions for vegetation dynamics and changes 
in  land  use  between  agricultural  and 
forested areas, which can significantly im-
pact the carbon balance and sequestration 
in different ecosystems (Sarti et al. 2020).

Remote sensing data and image pre-
processing

Forest  dynamics  can  only  be  accurately 
described using medium- to high-resolution 
imagery,  such  as  Landsat,  ASTER,  SPOT, 
and  Sentinel  (Desclée  et  al.  2006).  The 
Landsat Program is one of the most impor-
tant  sources  of  remote-sensed  data  for 
Change  Detection  analyses  (Song  et  al. 
2001),  with  appropriate  preprocessing  of 
images derived from different sensors (TM, 
ETM+, OLI), although they are very similar 
(Schroeder et al. 2006).

To identify areas of forest recolonization, 
we used images from NASA’s Landsat mis-
sion, which provided global and moderate-
resolution data since 1972. Landsat images 
are deemed suitable for change detection 
at regional and local scales (Lu et al. 2012). 
Additional imagery before 1972 has a broad 
revisiting time and a low resolution for lo-
cal-scale  applications,  while  missions  pro-
viding data at  medium to high resolution 
(e.g.,  Copernicus)  are  still  too recent  and 
do not span the whole study period (2003-
2019).

A careful analysis of the images available 
on the USGS (United States Geological Sur-
vey)  Earth  Explorer  data  portal  (https:// 
earthexplorer.usgs.gov/)  was  preliminarily 
conducted.  Following  the  recommenda-
tions by Häme et al. (1998) and  Coppin et 
al.  (2004), two summer images with very 
low cloud cover were selected, both falling 
in tile 188/32: (i) a Landsat 5 TM image from 
July 27, 2003; and (ii) a Landsat 8 OLI image 
from July 7,  2019.  The  acquisition date of 
two  images  differ  by  20  days,  but  they 
were the only ones from the summer pe-
riod that  belong to  the same month and 
show low cloud cover. Indeed, atmospher-
ic conditions, soil and vegetation moisture 
conditions,  and  plant  phenology  at  the 

time of acquisition are important factors to 
be considered to avoid artifacts in the ra-
diometric  response between different im-
ages (Weber 2001, Desclée et al. 2006). 

To  remove  possible  interferences  that 
may lead to the detection of unreal differ-
ences in land use over time, radiometric or 
atmospheric correction, normalization, and 
relative calibration of images should be ap-
plied (Yang & Lo 2000,  Song et al.  2001). 
For example, variations in solar illumination 
and atmospheric  conditions  during image 
acquisition, and differences due to sensor 
calibration,  must  be  normalized.  Calibra-
tion procedures involve the use of regres-
sion functions, and appear to yield better 
results  than  absolute  radiometric  correc-
tion (Collins & Woodcock 1996). Song et al. 
(2001) demonstrated  that  all  the  above-
mentioned procedures can be effective to 
enhance  the  detection  of  land  surface 
changes by comparing different radiomet-
ric and atmospheric correction algorithms. 
Image pre-processing initially involved the 
co-registration of images, which is particu-
larly  important  in  image  differentiation 
techniques (Xiaolong & Khorram 1998).

The Landsat 8 OLI product specifications 
indicate  that  the  geometric  accuracy  is 
within 12 meters of that of previous Land-
sat  sensors  (Irons  et  al.  2012).  Therefore, 
the two Landsat images underwent a pre-
processing that included (i) co-registration 
of  the images,  (ii)  removal  of  clouds  and 

shadows using the Fmask algorithm, (iii) at-
mospheric correction (Song et al. 2001) us-
ing the SV6 algorithm; (iv) radiometric nor-
malization of the images using the Pseudo-
Invariant Procedure (PIF); and (v) cropping 
of  the images  based on the Basilicata re-
gional  boundary.  Post-classification  com-
parison  minimizes  the  effects  of  atmo-
spheric  and  sensor  differences  between 
shooting  dates  (Fatemi  Nasrabadi  2019). 
Still, Image Differencing technique is easier 
to apply, though it may lead to unsatisfac-
tory results due to differences between the 
two images considered (Zhu 2017).

NDVI differencing method
Image Differencing (Chen et al. 2012) is a 

straightforward  and  interpretable  tech-
nique  that  categorizes  pixels  into  two 
groups:  those  that  have  changed  and 
those that have not. The process involves 
subtracting the pixel value of the most re-
cent image (taken at time t2) from that of 
the previous image (t1).

NDVI  differencing  represents  the  NDVI 
difference image of the Landsat images un-
der consideration and is calculated as (eqn. 
1):

(1)

Selecting a suitable threshold for change 
detection  is  a  challenging  and  time-con-
suming process that requires considerable 
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Fig. 1 - Location of 
the study area. (A) 
Basilicata Region 
in southern Italy; 
(B) Landsat 5 TM 
of July 27, 2003 
(false colors); (C) 
Landsat 8 OLI of 
July 7, 2019 (false 
colors).
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skill.  Changes are detected using a proba-
bility density function of the difference im-
age values in the tails  of the distribution. 
Due to ease of implementation, this tech-
nique has been widely used for change de-
tection (Afify 2011), either using a single ra-
diometric  band  or  a  color  composite  of 
three bands. 

The Normalized Difference Vegetation In-
dex (NDVI) is more commonly used to de-
tect  changes  in  vegetation  (Lyon  et  al. 
1998). It is calculated using the normalized 
difference  between  the  red  and  near-in-
frared bands. NDVI has a strong correlation 
with  biomass,  making  it  a  valuable  index 
for monitoring forest expansion (Mancino 
et al. 2014, Atkins et al. 2018). The NDVI for 
the  two  selected  images  was  calculated, 
and then the ΔNDVI expressed it in terms 
of  standard  deviation  (σ)  to  identify  the 
threshold for change detection (Coppin et 
al.  2004,  Desclée  et  al.  2006,  Pu  et  al. 
2008). The use of standard deviation is one 
of  the  most  widely  used  approaches  for 
identifying  the  optimal  threshold  for 
change  detection  in  remotely  sensed  im-
agery (Coppin et al. 2004, Lu et al. 2004).

Considering that the study is focused on 
the  increase  in  NDVI  between  the  two 

dates, the right tail of the distribution was 
considered. The best threshold for ΔNDVI 
was calculated as  μ ± n·σ,  where  μ is  the 
mean value of the distribution,  σ the stan-
dard  deviation,  and  n represents  the  dis-
persion around the mean. In a normal dis-
tribution μ is equal to zero, and in the cen-
tral  region  of  the  distribution  (μ  -  n·σ < 
ΔNDVI <  μ + n·σ),  it can be assumed that 
there were no significant changes in LULC, 
while in the right tail (ΔNDVI > μ + n·σ) and 
left  tail  (ΔNDVI  <  μ -  n·σ)  actual  increase 
and  decrease  in  plant  biomass,  respec-
tively, are likely to be detected. 

To identify the best threshold, a trial-and-
test procedure was used to determine the 
optimal value of n·σ (Mas 1999, Petit et al. 
2001,  Ayanz  et  al.  2013).  The  ROC  curve 
(Mas et al. 2013) was calculated, which is a 
compromise  between  the  true  positive 
rate (TPR) and the false positive rate (FPR). 
Basically, we started with threshold values 
from ΔNDVI = μ + n·σ, where n increments 
by 0.01. A graph was constructed by plot-
ting 1-specificity on the  x-axis and sensitiv-
ity  on the  y-axis.  Specificity  refers  to  the 
frequency  of  true-negative  results,  while 
sensitivity refers to the frequency of true-
positive  results.  The  best  threshold  value 

was iteratively identified as the value that 
maximizes TPR while minimizing FPR,  i.e., 
the  point  along  the  curve  closest  to  the 
highest value on the y-axis.

Post-classification comparison (PCC) 
method

The post-classification comparison (PCC) 
procedure consists  of  extracting LULC in-
formation  from  the  remotely  sensed  im-
ages  independently  for  each  considered 
date.  More  specifically,  the method com-
pares pixel by pixel two images acquired at 
different  times  and  independently  classi-
fied using a  matrix  for  change evaluation 
(Jensen 2015). By operating independently 
on the two dates, the technique minimizes 
the  disturbances  caused  by  atmospheric 
and sensor differences (Lu et al. 2004) and 
reduces  possible  misregistration  between 
images taken at two different times (Singh 
1989).  PCC is  one of  the most  frequently 
used procedures in change detection (At-
kins  et  al.  2018,  Nurda  et  al.  2020).  Mas 
(1999) reports  that  PCC procedure  is  the 
most  accurate  one,  as  it  provides  indica-
tions of the nature of changes. However, 
PCC requires longer lead times, higher op-
erator experience and greater skill to prop-
erly realize LULC maps properly. The effec-
tiveness of this technique relies on the clas-
sification accuracy of the individual images 
(Yuan et al. 1999) and the final accuracy is 
very similar to that obtained by multiplying 
the accuracies of the two individual classifi-
cations (Coppin et al. 2004). In general, au-
tomatic,  unsupervised  classifiers  provide 
unsatisfactory  results,  while  semi-super-
vised  or  supervised  techniques  require 
ground-truth data for training the classifi-
cation  algorithm,  leading  to  significantly 
better results. 

The Maximum Likelihood Classifier (MLC) 
algorithm  was  the  parametric  and  super-
vised classifier  (Mancino et  al.  2023)  that 
was  employed  to  generate  the  land  use 
maps for years 2003 and 2019. In the para-
metric approach, the data are assumed to 
be  distributed  according  to  a  predefined 
probability  model,  and the parameters  of 
this distribution depend on the input data 
(training sites). In MLC, unknown pixels are 
assigned to a specific class using the proba-
bility of the contours surrounding the train-
ing area, following the maximum likelihood 
approach.  In  our  study,  the ground truth 
dataset comprises 1000 control points, di-
vided into  two subsamples  of  500 points 
each (Fig. 2). One of the point subsets was 
used  for  training  the  classifier  and  the 
other  for  validation.  For  the  2003  image 
classification,  the  forest/non-forest  attrib-
ute of the control points was inferred from 
the  Forest  Map of  Basilicata,  whose field 
surveys  are  nearly  coeval  with  the  2003 
Landsat image. For the 2019 classification, 
the control points that fell within a 500 m 
buffer from the limits of forest cover were 
visually  checked  on  screen,  overlaying 
these  points  on  the  2020  AGEA  (Agenzia 
per le Erogazioni in Agricoltura) orthophoto 
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Fig. 2 - Sample points used for Change Detection analysis.
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to  account  for  possible  forest  expansion 
during the period 2003-2019.

Statistical indicators for comparing the 
two change detection methods

To evaluate the accuracy of the two clas-
sifications, used in the PCC method, a con-
fusion matrix (Morisette & Khorram 2000) 
was  used  to  define  the  Overall  Accuracy 
(OA),  the  User’s  Accuracy  (UA)  and  the 
Producer’s  Accuracy  (PA),  the  Errors  of 
Omission (OE) and the Commission Errors 
(CE), with the possible aim of refining the 
classification (Lu et al. 2004).

The Kappa index of agreement (KIA) was 
calculated to assess the accuracy and relia-
bility  of  the  classification  (Cohen  1960 – 
eqn. 2):

(2)

where  p0  is  the  proportion  of  agreeing 
units (accuracy of satellite imagery) and pc 

is  the  proportion  of  units  for  expected 
chance  agreement  (accuracy  of  ground 
truth data).

The performance of the two change-de-
tection  methods  used  (NDVI  differencing 
and post-classification comparison) for de-
tecting forest expansion was assessed us-
ing a confusion matrix. To this end, we se-
lected 90 new, randomly extracted ground 
truths  from an area  totaling 86,285.2  ha, 
which corresponds to the combined areas 
of  forest  expansion  identified  by  both 
change  detection  methods.  The  ground 
truths  were  examined  by  overlaying  the 
points on the AGEA 2020 orthophoto avail-
able  on  the  Basilicata  Region  geo-portal. 
Additionally, we calculated the land use dy-
namic degree index (K1) proposed by Peng 
et  al.  (2008) as a measure of the change 
rate of the target land use type (eqn. 3):

(3)

where Ua and Ub are the areas of the target 
land use type at the beginning and end of 
the study period, respectively, and T is the 
study period (in years).

The percentage rate of change (Δ inl , %) of 
a given land use class was calculated using 
the following equation (eqn. 4):

(4)

where a1 and a2 are the land use areas con-
sidered  at  the  beginning  and  end  of  the 
survey  period,  respectively,  and  A equals 
a1+a2.  Finally,  the annual  rate  of  land use 
change  (ACR)  was  calculated  as  follows 
(Hansen et al. 2013 – eqn. 5):

(5)

where  ΔA is the change in land use (a2-a1), 
as in the previous eqn. 4, and N is the num-
ber of years of the study period.

Results

NDVI Differencing method
The pixels in the two tails of the ΔNDVI 

distribution  represent  significant  changes 
in  vegetation  cover,  while  those  around 
the  mean  μ indicate  statistically  insignifi-
cant changes. In the present study, to ana-
lyze forest  expansion and the increase in 
terms of NDVI, we focused on the right tail 
of the distribution to find the value of  n·σ 
that represents the optimal threshold. This 
is the cut-off point which is the best trade-
off between the rate of true positives and 
false  positives.  The  NDVI  Differencing  im-
age  distribution  had  μ  =  0.0036  and  σ  = 
1.016. Using the trial and test procedure de-
scribed above and KIA as accuracy parame-
ter,  n value  was  estimated  to  be  1.4602 
(Fig.  3),  a  value  very  similar  to  that  ob-
tained in a previous study carried out in the 
same area for different years (Mancino et 
al. 2014).

The  total  area  of  forest  expansion  was 
calculated to be 54,110 ha in the 16-year pe-
riod  between  the  two  images  analyzed 
(2003-2019).

Post-classification comparison method
The method of identifying forest expan-

sion based on PCC involved the creation of 
two binary maps (coded as 1 = non-forests 
and  2  =  forests)  for  the  two comparison 

years (2003 and 2019). The Maximum Likeli-
hood  Classification  (MLC)  algorithm  was 
used to classify the images from the two 
years. MLC assumes that the statistics for 
each class in  each band are normally  dis-
tributed and calculates the probability that 
a given pixel belongs to a specific class. The 
default  parameters  of  the  classifier  were 
used,  without  applying  a  probability 
threshold to classify all pixels. The accuracy 
results (Tab. 1) derived from the confusion 
matrix showed good levels of accuracy, as 
evidenced by the high OA value (about 90% 
for  both  dates).  However,  based  on  OA 
and KIA better performance was found for 
the classification of the Landsat 5 TM im-
age of 2003, likely due to the perfect simul-
taneity of the surveys for the preparation 
of  the Basilicata  Forest  Map,  from which 
the training sites were extracted.

The  PCC classification for  the year  2003 
shows  a  forest  area  of  approximately 
368,000 ha, i.e., 3.5% more than the area in-
dicated in the Basilicata Forest  Map.  This 
can be attributed to the classification crite-
ria of the Basilicata Forest Map, which lim-
its the area mapped as forest to those ≥ 1 
ha  and ≥ 20 m wide. In contrast, the pixel 
resolution of the satellite is such that areas 
of 900 m2 are considered as forests, thus 
explaining  the  larger  area  obtained  from 
the  satellite  classification.  However,  the 
two classifications provide fairly similar es-
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Tab. 1 - Accuracy of the two MLC classifications. 1: non-forest, 2: forest; Ec: Commis-
sion Error; Eo: Omission Error; PA: Producers Accuracy; UA: Users Accuracy; OA: Over-
all Accuracy; KIA: Kappa Index of Agreement.

MLC 
2003

- 1 2 Total Ec (%) Eo (%) PA (%) UA (%) OA (%) KIA

1 243 37 280 13.21 2.8 97.2 86.79 - -

2 7 213 220 3.18 14.8 85.2 96.82 - -

Total 250 250 500 - - - - 91.2 0.824

MLC 
2019

- 1 2 Total Ec (%) Eo (%) PA (%) UA (%) OA (%) KIA

1 221 25 246 10.16 11.6 88.4 89.84 - -

2 29 225 254 11.42 10 90.0 88.58 - -

Total 250 250 500 - - - - 89.2 0.784
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Δinl=
a2−a1
A

⋅100

K 1=
U b−U a

U a

− 1
T
⋅100

ACR=Δ A
N

KIA=
p0−pc
1−pc

Fig. 3 - ROC 
curve for identi-
fying the best 
threshold in the 
NDVI Differenc-
ing method.
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timates  of  the  forest  expansion  area, 
which  amounts  to  approximately  54,000 
ha between 2003 and 2019.

Comparison of the two change 
detection methods

The comparison of the two methods ap-
plied for detecting forest expansion (NDVI 

Differencing and PCC) provided very similar 
values of  all  statistical  indicators (Tab.  2). 
The  areas  of  forest  expansion  between 
2003 and 2019 was estimated to be approx-
imately  54,000  ha  using  both  methods, 
with a difference about 100 ha over the to-
tal  area  investigated (i.e.,  more than one 
million  ha).  Consequently,  the  annual  in-

crease  in  forest  area  estimated  over  the 
period  2003-2019  using  the  two  methods 
applied  is  also  substantially  similar, 
amounting to  approximately  3200 ha  yr -1, 
with a  percentage rate of increase of ap-
proximately 7% and a higher rate for NDVI 
Differencing of about 0.25%. However,  for-
est  expansion  maps  derived  from  NDVI 
Differencing and PCC showed substantially 
different spatial distributions of forest ex-
pansion  areas.  Cross-tabulation  analysis 
(Tab. 3) revealed that the areas identified 
as  forest  expansion  in  both  methods  ac-
counted for approximately 25%, while more 
than 37% were exclusively identified by only 
one method or the other.

The visual analysis,  obtained by overlap-
ping the PCC and NDVI Differencing expan-
sion areas with the AGEA 2020 orthophoto 
of the Basilicata Region (Fig. 4), highlights 
how the PCC method detected forest  ex-
pansion more efficiently.

For a parametric verification of the accu-
racy of the two methods, 90 control points 
were randomly and proportionally selected 
from the area given by the sum of the ex-
pansion  areas  detected  using  the  two 
methods. Each of these ground truths was 
examined by  visual  analysis  on  the  AGEA 
2020 orthophotos  to verify the presence/
absence  of  forest  recolonization  (Fig.  5). 
The results of the confusion matrix (Tab. 4) 
highlight  the  significantly  better  perfor-
mance of the PCC method compared with 
NDVI Differencing.

Discussion
The analysis of the data using two differ-

ent  change  detection  methods  showed 
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Tab. 2 - Statistical indicators of land use change for the two CD methods.

Parameter Δ CLS (ha) K1 (%) Δ INL (%) ACR (ha)

NDVI Differencing 54,110.5 0.8956 7.0739 3,183.0

PCC 53,996.0 0.8623 6.8291 3,176.2

Tab. 3 - Absolute and percentage areas of land use change for the two CD methods.

Parameter n. pixel ha %

Forest in PCC 357,054 32,134.86 37.3

Forest in NDVI Differencing 358,326 32,249.34 37.4

Forest in both CD methods 242,902 21,861.18 25.3

Fig. 4 - Identifi-
cation of some 
forest expansion 
areas (from 1 to 
8) using the two 
CD methods.
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Tab. 4 - Confusion matrix for the two CD methods.

NDVI Differencing Post-Classification Comparison

- true false Total Ec - true false Total Ec

true 14 16 30 0.5333 true 24 6 30 0.2000

false 18 42 60 0.3000 false 7 53 60 0.1167

Total 32 58 90 - Total 31 59 90 -

Eo 0.5625 0.2759 - - Eo 0.2258 0.1167 - -

OA 0.6222 OA 0.8556

KIA 0.1639 KIA 0.6782
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that PCC had the best performance in de-
tecting the forest  natural  expansion over 
the  Basilicata  region.  The  two  methods 
produced fairly  similar  estimates, in abso-
lute terms, as reflected in the K1, ΔINL and 
ACR  indices.  However,  substantial  differ-
ences  were  found  when  examining  the 
spatial distribution of forest expansion ar-
eas in Basilicata in the period 2003-2019. In-
deed, the results obtained by the NDVI Dif-
ferencing method revealed an increase in 
the forest area of approximately 54,110 ha 
(annual growth rate of 7.07 %), while PCC 
estimates  a  total  forest  expansion  of 
53,996 ha (annual growth rate of 6.83 %).

Cross-classification of the results revealed 
that  the  sum  of  forest  expansion  areas 
identified by PCC (and not by NDVI Differ-
encing) and those identified by NDVI Differ-
encing (and not by PCC) is  approximately 
75%, while only 25% of the pixels identified 
as forest expansion is shared between the 
two methods. Overall, PCC resulted in sig-
nificantly more accuracy than the NDVI dif-
ference  method.  Indeed,  the  latter  is  an 
easy-to-apply method but does not always 
provide  satisfactory  results  especially 
when the temporal distance of the images 
is large and the sensors are different, as it 
is the case in this study. Despite the possi-

ble  image  corrections  that  can  be  used, 
identifying the best threshold is also com-
plex due to the non-normal distribution of 
NDVI difference images between the two 
dates (Mancino et al.  2014). On the other 
hand, the PCC method enables the extrac-
tion of LULC information independently for 
each of the two dates under consideration, 
i.e., it operates by comparing pixel by pixel 
two images acquired at different times and 
classified independently  of  each other.  In 
this way, PCC minimizes noise due to atmo-
spheric differences (Mas 1999) and sensor 
differences (Lu et al. 2004). 

The use of more complex CD techniques, 
such as PCC, is recommended whenever vi-
able, in particular in the case of long-time 
operator’s skills and in-depth knowledge of 
the area under investigation. Indeed, much 
simpler techniques, such as NDVI Differenc-
ing, are significantly more sensitive to dif-
ferences in atmospheric conditions related 
to two different acquisition times and be-
tween sensors.

The  overall  accuracy  obtained using the 
PCC  method  (OA  =  0.85)  is  substantially 
close to the product of the OAs of the two 
classifications (OA = 0.91 in 2003 and OA = 
0.89 in 2019), confirming previous findings 
reported  in  the  literature  (Coppin  et  al. 

2004).  Data from the Italian National For-
est  Inventories,  especially  IFNC  (National 
Forest  and  Carbon  Inventory)  2005  and 
IFNC of 2015, were considered to verify the 
accuracy  of  the  PCC procedure.  It  should 
be  noted  that  the  INFC data,  due to  the 
structure  of  the  sampling  method  (Gas-
parini & Tabacchi 2022), represent the most 
reliable dataset of forest resources on the 
Italian  territory.  For  the  Basilicata  region, 
the  IFNC  data  identified  a  forest  area  of 
395,017 ha in 2015, with an increase of ap-
proximately 41,200 ha compared to 2005. 
In this study, the annual change rate (ACR) 
results in 3745 ha and about 3176 ha using 
NDVI  Differencing  and  PCC,  respectively. 
The inventory data for the total forest area 
considered in the comparison refers to the 
year 2015.  If  the same rate of increase in 
annual forest area for the period 2005-2015 
is applied, the total forest area in the Basili-
cata region in the year 2019 should amount 
to 409,997 ha. In this study, using the PCC 
method we estimated a total forest area of 
422,336 ha, which differs by about 3% from 
the inventory data. These slight differences 
may be likely attributable to the minimum 
mappable  units,  as  the  classification  con-
ducted by  Landsat  image analysis  consid-
ers its pixel size a unit area (900 m2), thus 
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Fig. 5 - Ground truth used for comparison 
between PCC and NDVI Differencing methods.
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classifying as forested areas even areas be-
low  the  minimum  threshold  of  5000  m2 

provided in the INFC.
Change-detection  methods  based  on 

satellite imagery, when properly selected, 
carefully  analyzed,  and  correctly  applied, 
can produce satisfactory results with high 
repeatability at a low cost.

Conclusions
This study aimed  to assess the dynamics 

of forest  expansion in the Mediterranean 
Basin  area  over  the  past  16  years  using 
change detection techniques derived from 
remote sensing satellite data. The analysis 
focused on the period from 2003 to 2019, 
utilizing  images  from  Landsat  missions, 
specifically Landsat 5 TM (2003) and Land-
sat 8 OLI (2019).  The PCC method,  based 
on the comparison of classifications elabo-
rated  for  the  two years  under  considera-
tion,  provided  better  performance  than 
the NDVI Differencing technique. While the 
estimates  of  the  forest  expansion  areas 
and annual rates of increase in forest area 
between  the  two  methods  appear  to  be 
similar, the forest expansion areas differed 
substantially  in  spatial  terms.  Despite the 
small  differences  detected  in  absolute 
terms, only 1/4 of the forest expansion ar-
eas  were  identified  by  both  methods. 
Based  on  the  comparison  with  appropri-
ately  selected ground truth samples,  PCC 
method showed significantly smaller errors 
than  NDVI  Differencing  (OA  of  0.85  and 
0.62,  respectively).  This  is  likely  because 
NDVI  Differencing  is  more  sensitive  than 
PCC to differences between satellite image 
acquisitions.  In  fact,  despite  possible  cor-
rections,  images taken over such a broad 
time interval can generally have differences 
that  affect the accuracy of the results,  in 
particular  when  data  from  different  sen-
sors  are  used.  However,  when  properly 
conducted,  change  detection  obtained 
through satellite  image processing shows 
good  results  when  compared  with  tradi-
tional methods. Although they are still less 
reliable than traditional inventory methods 
based  on  field  surveys,  change detection 
techniques based on satellite data are sig-
nificantly less expensive in terms of human 
and  financial  resources,  and  are  suitable 
for any situation that requires a high level 
of repeatability and/or extensive coverage 
of the study area.
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