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Optimizing line-plot size for personal laser scanning: modeling distance-
dependent tree detection probability along transects
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Personal laser scanning (PLS) systems are gaining popularity in forest inventory 
research and practice. They are primarily utilized on circular or compact rec-
tangular sample plots to mitigate potential instrument drift and enhance tree 
detection rates, and a closed-loop scan path is usually implemented to achieve 
these objectives, ensuring thorough coverage of the plot. This study intro-
duced a novel approach by applying the distance-sampling framework to PLS 
data collected during walks along line transects. Modeling the distance-depen-
dent probability of tree detection using PLS coupled with automatic routines 
for point cloud processing aimed to ascertain the optimal width of line-plots to 
maximize tree detection rates. The optimized plots exhibited tree detection 
rates  exceeding  99%,  which  facilitated  accurate  estimates  of  tree  density, 
basal area, and growing stock volumes. This proposed method demonstrated 
considerable potential for data collection while walking along line transects in 
forests. For instance, the otherwise unproductive working time of field crews 
moving between systematically arranged sample plots can be utilized for addi-
tional data collection without generating additional costs. This innovative ap-
proach not only enhances operational efficiency but also establishes a founda-
tion for further advancements to explore PLS applications in forest manage-
ment practices.

Keywords: Personal Laser Scanning, Lidar, Forest Inventory, Distance Sampling, 
Line Transect Sampling, Tree Detection

Introduction
Forest inventories provide means and to-

tals  for  measuring  forest  characteristics, 
such as the volume of growing stock, area 
of  a  certain  forest  type,  and  volume  of 
dead  wood  or  vegetation  (Kangas  et  al. 
2006), which are crucial  for decision-mak-
ing in forest management (Penman et al. 
2003).  The Swedish botanist  and forestry 
researcher Israel af Ström introduced sys-
tematic  strip  sampling  in  the  1830s  and 
conducted the first regional-scale forest in-
ventories,  which remained popular  for  al-
most  a  century  (Kangas  et  al.  2006).  Na-
tional  forest  inventories  (NFIs)  based  on 
modern  statistical  principles  were  imple-
mented in Norway, Finland, and Sweden in 
1919, 1920, and 1923 (Kershaw et al. 2016). 
In  these  NFIs,  systematic  strip  sampling 
was replaced by a line-plot system wherein 

relatively small plots can be sampled along 
systematically arranged lines (Kangas et al. 
2006, Tokola 2006, Tomppo 2006). Around 
1990, many countries redesigned their NFIs 
and  implemented  systematic  grid-based 
sample  designs,  consistent  plot  designs, 
and re-measurement intervals (Kershaw et 
al.  2016) that  are still  commonly used to-
day.

Surprisingly, the instruments used in NFIs 
have  changed  marginally  in  recent  de-
cades,  and mechanical  and optical  instru-
ments,  such as  calipers,  hypsometers,  re-
lascopes, and tape measures, are still com-
monly  used  today  (Kauffman  et  al.  2017, 
Kershaw  et  al.  2016,  Köhl  &  Magnussen 
2016), although their usage is often labor-
intensive  and  prone  to  measurement  er-
rors  (Liang  et  al.  2016,  2018,  Ritter  et  al. 
2017).

Terrestrial laser scanning (TLS) can collect 
high-resolution  3-dimensional  (3D)  data 
and represent stems and branches compre-
hensively;  therefore,  TLS-based  estimates 
of tree attributes have reached an accuracy 
level that surpasses conventional measures 
(Witzmann et al. 2022). Despite these obvi-
ous advantages, TLS has so far hardly been 
used in forest inventory practices because 
the scanners are too heavy and complex to 
use (Mokroš et al. 2021). In addition to the 
pure scanning time, a substantial  amount 
of working time is used to set up the scan-
ner at different positions within a sample 
plot  and  to  install  artificial  reference  tar-
gets for co-registration of the scans (Gol-
lob  et  al.  2019).  Personal  laser  scanning 
(PLS) systems overcome these limitations 
by  enabling  scanning  during  motion  and 
registering  point  clouds  using  simultane-
ous  localization  and  mapping  algorithms 
(Gollob et al. 2020). Consequently, the PLS 
point clouds are often noisier and less pre-
cise than the TLS point clouds (Bauwens et 
al.  2016,  Chen et al.  2019). However, they 
can derive accurate estimates of tree-level 
attributes from these datasets (Tockner et 
al. 2022).

A major challenge in laser scanning opera-
tions  is  occlusion,  which  leads  to  incom-
plete point clouds (Dassot et al. 2011) and 
consequently to the non-detection of sev-
eral  trees.  The  problem  is  especially  pro-
nounced  when  TLS  is  used  in  the  single-
scan mode (Ritter et al. 2020), but also oc-
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curs in the multi-scan mode (Gollob et al. 
2019, Liang et al. 2016, Ritter et al. 2020). In 
PLS  applications,  occlusion  strongly  de-
pends on the scanning path and scan den-
sity (Bauwens et al. 2016, Del Perugia et al. 
2019, Tupinambá-Simões et al. 2023). Bauw-
ens  et  al.  (2016) recommended  that  the 
PLS path should end at the starting point 
(thereby creating a “closed loop”) to mini-
mize instrumental  drift  and provide good 
coverage of the sample plot with minimum 
occlusion and range noise. Following these 
recommendations for the scan path layout, 
PLS was limited to relatively small and com-
pact  sample  plots  and  experimental 
stands.  Thus,  in  the forest  inventory con-
text, PLS has so far been used nearly exclu-
sively in this setting type.

However, PLS principally allows data col-
lection while walking along linear transects 
and can thus be used in a line-plot sampling 
system, which has rarely been used in re-
cent years. However, in typical modern sys-
tematic  grid-based  sample  systems,  field 
crews walk along linear paths, for instance, 
when moving from one sample plot to the 
other,  and  no  data  are  collected  while 
walking. Thus, PLS principally provides the 
opportunity to collect data between sam-
ple plots without increasing the workload, 
simply by switching on the PLS scanner and 
carrying  it  from  one  sample  point  to  an-
other along a path that  must be walked. 
However,  this  scanning layout violates all 
the  recommendations  on good PLS prac-
tices  outlined  above,  and  the  non-detec-
tion of  trees may become a serious chal-
lenge that must be carefully addressed.

Non-detection of sample objects is a com-
mon  problem  in  wildlife  ecology;  thus,  a 
distance sampling framework (Buckland et 
al. 2001,  2004) was developed for applica-
tions in this field (Thomas et al. 2012). The 
main objective of  distance sampling is  to 
use  the  observed  distances  between  the 
observer and detected objects of interest 
to  fit  a  detection function that  describes 
the decrease in detectability with increas-
ing  distance  (Thomas  et  al.  2012).  In  the 
forest  inventory  context,  distance  sam-

pling has been successfully  used for sam-
pling deadwood (Ritter & Saborowski 2012, 
2014),  habitat  trees (Bäuerle & Nothdurft 
2011, Didas 2009), and low-abundance tree 
species (Kissa & Sheil 2012), and to correct 
non-detection in angle-count sampling (Rit-
ter et al. 2013), single-scan TLS (Astrup et 
al. 2014,  Ducey & Astrup 2013), and multi-
scan TLS (Ritter et al. 2020,  2021).

In this study, the potential of PLS-based 
data  collection along lines  was  evaluated 
regarding the possibility of collecting addi-
tional  data  during  systematic  grid-based 
forest  inventories  using the  walking time 
for PLS scans and without spending any ad-
ditional working time on other plots in the 
field. To the best of our knowledge, this is 
the first study to adopt the distance-sam-
pling framework for PLS data. We used a 
GeoSLAM  ZEB  Horizon® (GeoSLAM  Ltd., 
Nottingham,  UK)  PLS  system  to  collect 
data along 23 transects with a total length 
of 4157.7 m in two stands that were fully 
mapped for reference. Three different de-
tection functions were evaluated, a correc-
tion for non-detection was developed, and 
recommendations for an optimal line-plot 
width were also made.

The main objectives of this study were to 
(i) test the applicability of PLS along tran-
sects,  (ii)  determine the optimal width of 
line plots to maximize tree detection rates 
with  PLS  using  the  distance  sampling 
framework,  and  (iii)  optimize  line  plot 
length  to  facilitate  precise  estimates  of 
tree density, basal area, and growing stock 
volume.

Materials and methods

Experimental stands and reference data
The  survey  was  conducted  at  two  fully 

mapped experimental stands (Fig. 1). Posi-
tion,  diameter at  1.3  m height (dbh),  and 
height of all trees having a dbh ≥ 5 cm were 
manually  measured  for  reference.  Refer-
ence stem volume was calculated using an 
established  stem  form  function  (Pollan-
schütz 1965) with height and dbh as input 
variables.

The first experimental stand with an area 
of 4.88 ha located near the village of Kreis-
bach,  Lower  Austria  (48.10°  N,  15.63°  E), 
was referred to as “BuLae”. The stand was 
mature  and  characterized  by  an  uneven 
mixture of 90% beech (Fagus sylvatica) and 
6% larch (Larix decidua), with no understory 
and only sparse natural regeneration. The 
mixed  tree  species  included  2%  spruce 
(Picea  abies),  1%  oak  (Quercus spp.),  and 
less than 1% other species, mainly fir (Abies 
alba),  hornbeam  (Carpinus  betulus),  lime 
(Tilia spp.),  and  ash  (Fraxinus  excelsior). 
The total number of trees was 2867 corre-
sponding to a density  of  588.5 trees ha -1. 
The median tree height was 30.2 m (min = 
3.4 m, max = 43.5 m), and the median dbh 
was 29.3 cm (min = 5.0 cm, max = 68.0 cm). 
Stand basal  area was 216.1  m2 (=  44.3 m2 

ha-1) and total volume of the growing stock 
was 3203.3 m3 (= 656.4 m3 ha-1).

The second experimental  stand with  an 
area of 4.08 ha located in the BOKU Uni-
versity  training  forest  near  Hochwolkers-
dorf  Village  in  Lower  Austria  (47.68°  N, 
16.29°  E)  was  referred  to  as  “30k”.  This 
stand  included  1789  trees,  with  a  corre-
sponding  density  of  438.5  trees  ha -1.  The 
stand is characterized by high structural di-
versity, including a spatially irregularly dis-
tributed understory  and regeneration.  Di-
versity  of  tree species  was comparatively 
high for  the area,  with 38% spruce (Picea 
abies),  38% beech (Fagus sylvatica),  15% fir 
(Abies  alba),  5%  pine  (Pinus  sylvestris),  4% 
larch  (Larix  decidua),  and  <1%  of  other 
broadleaf species. Natural regeneration oc-
curred in irregularly arranged clusters com-
prising  approximately  90% beech and 10% 
fir. The median tree height was 29.7 m (min 
= 5.4 m, max = 40.9 m),  and the median 
dbh was 36.3 cm (min = 9.9 cm, max = 67.3 
cm). Stand basal area was 191.5 m2 (= 46.9 
m2 ha-1) and the total volume of the grow-
ing stock was 2686.7 m3 (= 658.8 m3 ha-1).

Scan data collection and analysis
Scan data collection was performed un-

der defoliated conditions in winter 2021/22 
using a GeoSLAM ZEB Horizon® (GeoSLAM 
Ltd.,  Nottingham,  UK)  PLS  system  that 
uses  the  simultaneous  localization  and 
mapping  technique.  The  scanner  has  a 
maximum  range  of  100  m  and  collects 
300,000 scan points s-1 with an accuracy of 
± 6 mm (GeoSLAM 2023b).

The  transects  were  aligned  parallel  to 
each  other,  with  a  spacing  of  approxi-
mately 20 m. The start and end points of 
each  transect  were  located  on  opposing 
stand borders (open loops). Nine transects 
were  scanned  in  BuLae,  having  a  mean 
length of 284.3 m (minimum length = 122.6 
m,  maximum  length  =  461.0  m),  and  14 
transects  were  scanned  in  30k,  having  a 
mean length of 115.5 m (minimum length = 
102.7 m, maximum length = 130.0 m). The 
transect lengths resembled the typical dis-
tances  between  forest  inventory  sample 
points.

The raw scan data were converted into 
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Fig. 1 - Location of the two experimental stands (BuLae and 30k) in Austria.
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point  clouds  in  the  .laz  format  using  the 
software GeoSlam HUB ver. 5.3 (GeoSLAM 
2023a) in a local coordinate reference sys-
tem for each transect separately (Fig. 2). In 
addition to the point cloud, the trajectory 
of the instrument (i.e., walking path of the 
observer) was exported in the .csv format 
with  the  same  coordinate  reference  sys-
tem as the corresponding point cloud. The 
point clouds were then processed in R lan-
guage and environment for statistical com-
puting (R Core Team 2022) using fully auto-
matic routines for tree detection, tree seg-
mentation, and tree variable estimation im-
plemented in the R-package “treeX” (Tock-
ner 2024). In a preparatory step, the point 
cloud  was  cropped,  normalized,  and  fil-
tered, leaving only vegetation hits. Tree po-
sitions  were  then  automatically  detected 
through multi-stage, density-based cluster-
ing, and the diameter at breast height was 
estimated  by  fitting  a  circle  to  the  trunk 
cross-section at a height of 1.3 m (Ritter et 
al. 2017, Gollob et al. 2020). The point cloud 
was then voxelated and the detected tree 
positions served as starting points for a 3D 
region-growing  algorithm  for  automatic 
tree segmentation (Tockner et al. 2022), al-
lowing the height of each individual tree to 
be  estimated  as  the  difference  between 
the highest and lowest z-values of voxels 
belonging to the tree. The tree volume was 
then estimated using the same stem form 
function (Pollanschütz 1965) as the refer-
ence data to ensure a fair comparison. Fi-
nally, trees with dbh < 5 cm were removed 
from  the  tree  list,  as  this  was  also  the 
caliper threshold in the reference data.

Orthogonal  distances  between  the  tree 
positions and the transect were calculated, 
and  distance  sampling  analysis  was  con-
ducted  using  the  R  package  “Distance” 
version 1.0.7. (Miller et al. 2019).

Distance sampling approach
We used the classic line transect sampling 

approach of the distance sampling frame-
work to estimate the number of trees per 
unit area. A brief description of the proce-
dure is given below, for more details we re-
fer to Buckland et al. (2001, 2004).

Using  the  classic  line-plot  sampling  ap-
proach, m number of plots with a constant 
width 2ω were sampled along a line. With li 

being the length of the  i-th plot, the total 
length of all plots was then L=∑nm

i=1 li. Thus, 
all  n trees  within  an  area  of  size  α=2ωL 
were sampled, and the density D,  i.e.,  the 
number  of  trees  per  area  unit,  was  esti-
mated using the following equation (eqn. 
1):

(1)

However, this implied perfect detectabil-
ity of trees, and any missed trees will lead 
to a non-detection bias.  Using laser scan-
ning  systems  and  automatic  routines  for 
tree detection, the probability of detecting 
a  tree decreases  with increasing distance 
between the scanner and the tree, owing 

to  decreasing  point  density  and  obstruc-
tion  (Astrup  et  al.  2014,  Ducey  &  Astrup 
2013,  Ritter et al. 2020,  2021). Thus, only a 
proportion Pa of the trees located within an 
area of size a was detected. If Pa can be es-
timated by  P̂a, D can be estimated as fol-
lows (eqn. 2):

(2)

But how can  Pa be estimated? According 
to Buckland et al. (2001), the basic concept 
of  line  transect  sampling  is  that  the  de-
tectability  of  objects  decreases  with  in-
creasing distance  x between the transect 
and the object of interest (a tree in our ap-
plication). By fitting a distance-dependent 
detection function  g(x) to the normalized 
density of observed objects at different dis-
tances (0 ≤ x ≤ ω), and assuming certain de-
tection of  objects  located directly  on the 
transect  [g(0)  =  1],  the  mean  detection 
probability within a strip of area a can then 
be estimated as (eqn. 3):

(3)

The density  estimator  (eqn.  2)  then be-
comes (eqn. 4):

(4)

The standard error of D̂‚ can be estimated 
using the delta method as described below 
(Seber 1982 - eqn. 5):

SE(D̂)=√ D̂2⋅(v̂ar (n)n2
+
v̂ar (a⋅P̂a)

(a⋅P̂a)
2 ) (5)

The  detection  function  g(x) is  typically 
represented by a parametric function and 
can  be  fitted  using  maximum-likelihood 
techniques (Buckland et al. 2001, 2004). Be-
cause parametric detection functions have 
proven to be robust and provide sufficient 
flexibility,  and  because  their  inference  is 
straightforward,  they  are  generally  pre-
ferred  over  nonparametric  alternatives 
(Quang 1993).

The best detection function was selected 
from  nine  candidate  functions  based  on 
the minimum Akaike Information Criterion 
(AIC), for both stands separately. The can-
didate functions comprised a key function 
and a first-order series expansion (Tab. 1).

The distance sampling approach allowed 
the  correction  of  the  number  of  missed 
trees and provided estimates for the num-
ber of trees per unit area. However, forest 
managers are normally more interested in 
stand basal area (BA) and volume of grow-
ing stock (V). As tree size can possibly af-
fect  detection  probability,  larger  trees 
might  be  overrepresented  in  the  sample 
(size bias); therefore, estimates of  BA and 
V  derived from the distance sample might 
also be biased. The size bias can be princi-
pally corrected using regression techniques 
(Buckland et al. 2001,  Ritter & Saborowski 
2012);  however,  this  introduces  a  new 
source  of  uncertainty.  Moreover,  this  ap-
proach only provides estimates for the to-
tals of BA and V but no single-tree informa-
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Fig. 2 - Exemplary section of the point cloud recorded along a transect for the two 
experimental stands.
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tion. Therefore, we did not follow this ap-
proach and instead used the shape of the 
detection function to determine the opti-
mal line-plot width, that is,  the maximum 
line-plot width where tree detection is cer-
tain and non-detection becomes irrelevant.

Determination of optimal line-plot size
Detection functions often show a notice-

able  shoulder,  i.e.,  a  range  of  distances 
from  the  line  for  which  the  slope g’=0. 
Thus,  the shoulder indicates the range of 
distances at which a tree can be detected 
with certainty (Prieto Gonzalez et al. 2017). 
We used this characteristic to estimate the 
optimal line-plot width, i.e., the maximum 
plot  width  for  which  the  detectability  of 
trees is certain, by determining the great-
est distance ωopt where g’<0.005. We used 
this constraint instead of g’=0 because the 
numerically calculated values of g’(x) might 
have been influenced by the rounding er-
rors of the parameter estimates. The corre-
sponding optimal line-plot width was then 
estimated as 2ωopt, because trees could be 
detected on the left and right side of the 
line. We then truncated the distance sam-
pling data at ωopt, such that every transect 
could be treated as a line-plot of area ai = 
2ωopt li.

As the sampling units are of unequal size 
(ai  ≠ const), the population mean of any re-

sponse variable Y (D, BA, V) cannot be esti-
mated as the sample mean over the m line-
plots because the observations yi are corre-
lated with ai. Thus, we estimated the popu-
lation mean of  any response variable per 
unit area Ȳ using the following ratio estima-
tor (eqn. 6):

(6)

where Ȳ̂R is model unbiased only in case of 
a linear relationship of the form yi  = βai  + εi 

between y and a, where the regression line 
is passing through the origin with positive 
slope β, and the random error εi is indepen-
dently  and  identically  normal  distributed. 
Otherwise,  Ȳ̂R is  approximately  unbiased 
for sufficiently large sample sizes (Cochran 
1977, De Vries 1986).

Using the finite population approach, the 
standard error (SE) for Ȳ̂R was estimated as 
(eqn. 7):

(7)

where  f is  the sampling fraction,  ā is  the 
mean line-plot area,  sy

2 is the sample vari-
ance of the target variable over line-plots, 
sa

2 is the sample variance of the line-plot ar-
eas, and  say is the covariance between the 
line-plot area and the target variable (Coch-

ran 1977). As the term m·ā =  const for any 
given value of  f, m has no direct influence 
on the estimated SE. However,  sy

2 and  say 

depend  on  the  distribution  of  line-plot 
sizes ai, and therefore, for a fixed sampling 
fraction f, also on m.

To assess the impact of different lengths 
and  numbers  of  line-plots  at  a  constant 
sampling fraction, we divided the individual 
transects into segments ranging from 1 to 
50  m  in  length.  Segments  at  the  stand 
edges may have been shorter because of 
the irregular shape of the stands. To cap-
ture the effect of different starting points 
on segmentation, the starting points were 
varied on a 1 × 1 m grid.

Accuracy of tree detection
Eqn.  6  and eqn.  7  yield  (approximately) 

unbiased  estimates  only  when  all  trees 
within the sample plots are detected and 
no false detection occurs. Although the dis-
tance-sampling  model  indicated  total  de-
tectability  within  the plot,  it  did  not  pro-
vide any false detection information. Thus, 
the  accuracy  of  the  tree  detection  was 
evaluated by comparing the automatically 
detected tree positions with the reference 
data. The automatically detected tree posi-
tions were assigned to the reference posi-
tions  using  a  point  assignment  algorithm 
(Hyyppä et al. 2021,  Witzmann 2022), with 
position deviations of up to 0.5 m permit-
ted. We then assessed the accuracy of tree 
detection in terms of the omission error, o 
(eqn. 8), commission error  c (eqn. 9), and 
overall  accuracy  acc (eqn. 10) to evaluate 
the accuracy of the model prediction and 
the assumption that  there were no false-
positive detections:

(8)

(9)

(10)

where  nmatch is  the  number  of  correctly 
found reference trees, nref is the total num-
ber of reference trees, nfalsepos is the number 
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Tab. 1 - Combinations of key functions and series expansions used as candidate mod-
els for estimating the detection function. is the scale parameter of the detection func-
tion,  b is the shape parameter of the detection function,  y is the coefficient of the 
series expansion, Hj is the jth Hermite polynomial, and aj is set to zero if term j is not 
used in the model.

Key function Series expansion

Uniform: ĝ(x) = 1/ω None 
Cosine: ∑m

j=1 aj · cos(jπy/ω) ∑
Simple polynomial: ∑m

j=1 aj (y/ω)2j

Half-normal: ĝ(x) = exp(-(x²/2σ²)) None 
Cosine: ∑m

j=2 aj · cos(jπy/ω) 
Hermite polynomial: ∑m

j=1 aj H2j (y/σ)

Hazard-rate: ĝ(x) = 1-exp(-(x/σ)-b) None 
Cosine: ∑m

j=2 aj · cos(jπy/ω) 
Hermite polynomial: ∑m

j=1 aj H2j (y/σ)
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Ŷ R=
∑i=1

m
yi

∑i=1

m
a i

SE(Ŷ R)=√1−fm⋅a
⋅(s y2+Ŷ R2 sa2−2 Ŷ R say)

o (%)=(1−nmatchnref )⋅100
c (%)=

n falsepos
nextr

⋅100

acc (%)=100%−(o (%)+c(%))

Tab. 2 - Akaike information criterion (AIC) and parameter estimates for the different candidate detection functions and experimen-
tal stands. Emphasized: The hazard rate detection function that was finally selected.

Detection function
BuLae 30k

AIC σ b SEcoef AIC σ b SEcoef

Uniform 7728.2 NA NA NA 4654.5 NA NA NA

Uniform + Cosine 6371.1 NA NA 0.998 4106.3 NA NA 0.979

Uniform + Polynomial 7127.7 NA NA -0.997 4439.1 NA NA -0.994

Half-normal 6230.7 3.664 NA NA 4085.6 4.241 NA NA

Half-normal + Cosine 6217.9 3.400 NA -0.219 4085.4 4.124 NA -0.096

Half-normal + Polynomial 6219.6 2.878 NA -0.270 4087.1 4.356 NA -0.359

Hazard rate 6198.7 4.558 4.363 NA 4084.8 5.360 4.276 NA

Hazard rate + Cosine 6200.7 4.558 4.363 0.000 4087.0 6.021 5.284 0.203

Hazard rate + Polynomial 6199.3 4.483 3.783 0.342 4086.6 5.665 3.628 0.228
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of  tree  positions  which  could  not  be  as-
signed to an existing tree in the reference 
data, and  nextr is the number of automati-
cally detected tree positions (nmatch +  nfalse-

pos). The omission error o (%) measures the 
percentage of  undetected trees,  commis-
sion error c (%) measures the percentage of 
falsely detected tree locations, and overall 
accuracy acc (%) is a combination of the lat-
ter  two  metrics  and  represents  a  global 
quality criterion. The detection rate, mea-
suring the percentage of  correctly  identi-
fied trees, is given by dr = 100% - o (%).

Results

Distance sampling approach
All candidate functions were fitted to the 

observed  distances  between  trees  and 
transects obtained from the PLS data and 
compared in terms of the minimum AIC.

The detection functions with the hazard 
rate key generally performed the best for 
both  stands;  however,  their  advantage 
over the other functions was much more 
pronounced for BuLae than for 30k. While 
the uniform detection functions performed 
clearly  inferiorly  to  the  hazard  rate  func-
tions in both stands, the half-normal detec-
tion functions almost reached the AIC level 
of the hazard rate functions in 30k, where-
as they were clearly inferior in BuLae (Tab.
2).

Adding  polynomial  or  cosine  series  ex-
pansions  did  not  result  in  better  perfor-
mance of  the hazard rate function.  Thus, 
the hazard rate detection function without 
series expansion and with parameter esti-
mates according to Tab. 2 was selected as 
the final model based on the minimum AIC 
for both experimental stands. The function 
showed a strong shoulder for both stands 
(Fig. 3) ranging from 0 m to approximately 
3 m, followed by a steep decline to approx-
imately  8  m.  For  greater  distances,  the 
function asymptotically approached the  x-
axis.

The estimated tree densities (eqn. 4) ± SE 
(eqn. 5) was 556.9 ± 18.8 trees ha -1 for Bu-
Lae, and 462.7 ± 52.0 trees ha-1 for 30k. The 
corresponding  reference  values  of  587.5 
and 438.5 trees ha-1 were within the respec-
tive confidence intervals of the estimates 

(Tab.  3).  The  relative  standard  error  was 
9.3% for BuLae and 4.1% for 30k.

Volume  and  basal  area  were  not  esti-
mated with this approach for the reasons 
explained  above  (section  “Distance  sam-
pling approach”).

Line-plot approach
The  width  of  the  detection  function 

shoulder  was  numerically  determined  as 
the greatest distance  ωopt where  g’(ωopt) = 
0.005. The closed-form derivative (eqn. 11) 
exited for  the  hazard  rate  function,  such 
that g’ was determined without further nu-
meric approximation:

(11)

The greatest distance  ωopt was 2.86 m for 
BuLae and 3.33  m for  30k.  Consequently, 
line-plots of width 2ωopt  (5.72 m for BuLae 
and 6.66 m for 30k) were observed along 
the transect lines.

With  the  given  sampling  fraction,  the 
mean standard error for the target variable 
V  was minimal for line-plot lengths of 9 m 
for BuLae and 12 m for 30k (Fig. 4).

Consequently, line-plots of size 9 × 5.72 m 
and 12 × 6.66 m were used to assess the 
precision of  the target  variable  estimates 
for BuLae and 30k respectively.

For BuLae, target variable estimates were 
571.9 trees ha-1 for density, 45.76 m2 ha-1 for 
basal  area,  and 642.7  m3 ha-1 for  volume, 
while  for  30k,  the  estimates  were  571.9 
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Tab. 3 - Tree density, reference values (Ref), estimates (Est), standard errors (SE), and 
95% confidence intervals (95%-CI) for both stands.

Stand Metric Ref Est SE 95%-CI

BuLae Total number of trees in the stand 2867.0 2717.5 253.9 [2198.2-3359.5]

Number of trees ha-1 587.5 556.9 52.0 [450.5-688.4]

30k Total number of trees in the stand 1789.0 1887.7 76.7 [1737.5-2050.9]

Number of trees ha-1 438.5 462.7 18.8 [425.9-502.7]

Fig. 3 - Hazard rate detection function (red 
line) fitted to the histogram of detected 
tree frequency in the different distance 

classes.

Fig. 4 - Relative standard error (relSE) for the estimated volume per ha V depending 
on the individual line-plot length. Total line-plot length was constant (2558.7 m for 
BuLae and 1617 m for 30k). The solid black line indicates the mean relSE for the corre-
sponding plot length, while the gray area indicates the variability of relSE estimates  
based on the starting point of the systematic grid.
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trees ha-1 for density, 45.76 m2 ha-1 for basal 
area, and 642.7 m3 ha-1 for volume. Refer-
ence  values  of  all  target  variables  were 
within  the  corresponding  95%  confidence 
interval  for  each experimental  stand(Tab.
4). The precision of the estimates was sub-
stantially  higher  for  BuLae  than  for  30k 
(Tab. 4).

Accuracy of tree detection
The accuracy of target variable point esti-

mates (Tab. 4) depended on the assump-
tion  that  trees  within  line-plots  of  width 
2ωopt were detected with certainty, as indi-
cated by the distance sampling model.

To evaluate the validity of the model re-
sults,  the  accuracy  of  tree  detection was 
assessed based on reference data (Tab. 5). 
The true detection rates exceeded 99% for 
both stands (omission errors <1%), and the 
number of false detections was negligible 
(commission errors <0.4%). The overall ac-
curacies were 98.88% for BuLae and 98.83% 
for 30k.

Discussion

Accuracy and precision of forest 
inventory target variable estimates

The  classic  line  transect  sampling  ap-
proach  is  primarily  designed  to  estimate 
detection probability and tree density. We 
used  this  approach  and  achieved  a  stan-
dard error of 52.0 trees ha-1 for BuLae and 
18.8  trees  ha-1  for  30k  (Tab.  3).  Contrast-
ingly,  the  optimized  line-plot  sampling 
technique demonstrated a notable reduc-
tion in standard errors, resulting in values 
of 11.3 and 13.7 trees ha-1  for BuLae and 30k, 
respectively  (Tab.  4).  This  improvement 
can be attributed to the ability of the meth-

od  to  precisely  estimate  the  strip  width 
where detection is certain, leveraging the 
precise measurement of the width of the 
shoulder  of  the  detection  function.  Con-
versely,  the conventional  approach strug-
gles to model the decrease in detectability 
with  increasing distance from a  line  with 
the same level of precision.

The  point  estimates  obtained  using  the 
optimized line-plot sampling for the forest 
inventory target variables (Tab. 4) were ap-
proximately unbiased for two reasons:  (i) 
the  residuals  from  the  linear  models  be-
tween  yi and  ai and are not independently 
and identically distributed, rendering eqn. 
6 only approximately unbiased; (ii) the de-
tectability  of  trees  in  the  optimized  line-
plots was not perfect (Tab. 5) with <1% of 
the trees missed, thereby introducing a mi-
nor negative bias.

The precision of the point estimates for 
the  forest  inventory  target  variables  was 
greater for BuLae than for 30k stand plot. 
This finding was expected, considering that 
30k possesses a more intricate stand struc-
ture  than  BuLae,  and  that  the  sampling 
fraction was higher in BuLae than in 30k.

The open loop scan path did  not  cause 
any problems regarding instrumental drift 
on the observed transects of length vary-
ing between 102.7  and 461.0  m,  and tree 
detection was almost perfect on line-plots 
with optimized width.

The  sampling  fraction  was  very  high  in 
both stands. In 30k, the total length of the 
14 transects was 1617.0 m, and the line-plot 
width was 6.66 m, yielding a total sample 
plot area of 10.769 m2, or 26.4% of the total 
stand  area  (4.08  ha).  In  BuLae,  the  total 
length  of  the  9  transects  was  2558.7  m, 
and the line-plot width was 5.72 m, yielding 
a  total  sample plot  area of  14.636 m2,  or 
30.0% of the total stand area (4.88 ha). This 
high sampling fraction is infeasible in most 
practical  applications.  However,  providing 
an  efficient  methodology  for  obtaining 
standard-level  volume  estimates  was  not 
the  focus  of  this  study.  Instead,  we only 
used  the  two  experimental  stands  for  a 
comprehensive reference and focused on 
the potential of PLS-based data collection 
along lines with regard to the possibility of 
collecting  additional  data  during  system-
atic  grid-based  forest  inventories.  This 
topic has been further discussed below.

Algorithms for point cloud processing
The distance-sampling approach assumes 

the  total  detectability  of  trees  in  close 
proximity  to  the  line  transect.  However, 
depending  on  the  algorithms  applied  for 
point-cloud processing and tree detection, 
trees that are visible in the point cloud may 
remain undetected. For example, the lower 
part  of  the  stem could  be  obstructed by 
natural  regeneration  or  other  vegetation 
types  (omission  errors).  Conversely,  algo-
rithms  may  misinterpret  non-tree  objects 
as  trees,  such  as  when  the  branches  of 
fallen trees are oriented vertically (commis-
sion error).

This study did not focus on algorithm de-
velopment,  improvement,  or  comparison 
of  different  algorithms.  Instead,  the  em-
phasis  was  on applying PLS to  an  opera-
tional setting. Therefore, we utilized a sin-
gle set of existing algorithms for data anal-
ysis.  The  omission  and  commission  error 
rates  achieved  with  these  algorithms  on 
the line-plots provided very little room for 
improvement, given that detectability was 
nearly  perfect  (>99%) and commission er-
rors  were negligible (<0.5%).  However,  al-
ternative  algorithms  for  point  cloud  pro-
cessing can yield detection functions with a 
broader  shoulder,  allowing  for  the  sam-
pling of wider line-plots, which is desirable.

Selection of detection function
Parametric  detection  functions  are  typi-

cally  favored over  nonparametric  alterna-
tives owing to their  robustness,  sufficient 
flexibility,  and  straightforward  inferential 
procedures (Quang 1993). Hence, we exclu-
sively  employed  parametric  candidate 
functions, and our findings suggested that 
these functions are adequate for modeling 
the  distance-dependent  detectability  of 
trees with PLS.

The choice of hazard rate detection func-
tion without series adjustments was deter-
mined  using  the  minimum  AIC.  However, 
particularly  in  the  case  of  stand 30k,  the 
differences in AIC values (ΔAIC) were occa-
sionally  marginal.  For  instance,  ΔAIC  was 
0.6 for the hazard rate function without se-
ries adjustments compared to the half-nor-
mal  function  with  cosine  adjustments. 
Akaike’s rule of thumb is that two models 
are essentially indistinguishable if ΔAIC ≤ 2, 
that 2 < ΔAIC ≤ 4 indicates moderate evi-
dence of  a  difference in  the models,  and 
that ΔAIC > 4 indicates strong evidence of a 
difference in the models. When the model 
selection is uncertain, we recommend ad-
hering to a simpler model because it is eas-
ier to explain and less susceptible to issues 
with  shape  constraints  that  may  arise 
when employing series expansions. There-
fore,  though  the  AIC  for  the  half-normal 
function  with  cosine  adjustments  was 
slightly lower than that for the hazard rate 
function  without  series  adjustments,  we 
would still prefer the latter model.

Possible further model developments
Omission errors in proximity to the tran-
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Tab. 4 - Point estimates (Est), reference values (Ref), standard errors (SE), and 95% 
confidence intervals (95%-CI) for both stands, and for three target variables D (trees 
ha-1), BA (Basal area m2 ha-1), and V (Volume, m3  ha-1). (N): number of plots.

Stand
Plot

size (m)
N Response variable Ref Est SE 95%-CI

BuLae 9 × 5.72 294 D (trees ha-1) 587.5 571.9 11.3 [553.3-590.4]

BA (Basal area, m2 ha-1) 44.28 45.76 0.96 [44.18-47.34]

V (Volume, m3 ha-1) 656.4 642.7 12.9 [620.5-664.8]

30k 12 × 6.66 149 D (trees ha-1) 438.5 456.7 13.7 [434.1-479.3]

BA (Basal area, m2 ha-1) 46.94 45.77 1.28 [43.65-47.89]

V (Volume, m3 ha-1) 658.8 650.6 18.2 [620.5-680.7]

Tab. 5 - Accuracy of tree detection with-
in  sample  line-plots  of  optimal  width 
2ωopt.

Stand BuLae 30k

Plot width, 2ωopt (m) 5.72 6.66

Omission error, o (%) 0.91 0.78

Commission error, c (%) 0.21 0.39

Detection rate, dr (%) 99.07 99.23

Overall accuracy, acc (%) 98.88 98.83
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sect were minimal, justifying the use of the 
classic  line  transect  sampling  approach. 
The principal advantage of this method is 
its ability to self-adjust to different sighting 
conditions  using  flexible  detection  func-
tions. Thus, the method can be applied to 
other research areas without the need for 
intense reference data collection.

The virtual absence of omission errors in 
close proximity to the transect may appear 
unexpected,  because  significant  omission 
errors were observed near the scanner us-
ing  single-scan  TLS  and  the  same  point 
cloud  processing  algorithms  (Ritter  et  al. 
2020). However, PLS offers a significant ad-
vantage by scanning not only from a single 
point, but also along a line, thereby avoid-
ing considerable shadowing. If shadowing 
and non-detection occur near the transects 
during  further  investigation,  a  correction 
can be implemented for imperfect detect-
ability  that  was  originally  developed  for 
point-transect  sampling  in  conjunction 
with TLS (Ritter et al. 2020). However, this 
approach requires reference data for mod-
el fitting and may have limited practical ap-
plicability.

We  employed  the  classic  line  transect 
sampling approach exclusively to estimate 
the detection probability and, consequent-
ly, tree density. However, it is theoretically 
possible to regard each tree as a cluster of 
volume units with a cluster size, enabling 
the  estimation  of  the  total  volume  per 
hectare by multiplying the estimated clus-
ter  density  by  an  estimate  of  the  mean 
cluster size (Ritter & Saborowski 2012). Be-
cause  the  detection  probability  of  large 
clusters  may  differ  from  that  of  smaller 
clusters, modeling the expected size of the 
detected clusters as a function of the dis-
tance-dependent detection probability can 
correct for the potential size bias. This cor-
rection  addresses  the  issue  that  would 
arise if the mean cluster size was simply es-
timated as the sample mean of all observ-
ed  clusters  (Buckland  et  al.  2001).  While 
this approach has proven successful in the 
context  of  deadwood  sampling  (Ritter  & 
Saborowski  2012)  and  TLS  in  single-scan 
mode (Astrup et al.  2014),  it  has a funda-
mental  limitation:  the  correction for  non-
detection is applicable only to tree density 
and total  volume. Additional  details,  such 
as  diameter  distribution,  spatial  arrange-
ment  of  trees,  and resulting  interactions, 
cannot  be  obtained  using  this  analytical 
method. Consequently,  our emphasis was 
on determining the optimal line-plot width 
because line-plots provide an opportunity 
to  evaluate  the  aforementioned  supple-
mentary information.

Possible areas of application
Many NFIs utilize systematically arranged 

clusters  of  multiple  measurement  units. 
These clusters are typically spaced several 
kilometers apart and require field crews to 
commute between them by car. However, 
the  gaps  between  the  measuring  units 
within  a  cluster  are  considerably  smaller, 

necessitating field crews to walk these dis-
tances.  For  instance,  the  distances  be-
tween  measuring  units  within  a  cluster 
were 120 ft (36.58 m) in the US NFI (Mc-
Roberts et al. 2005), 150 m in the German 
NFI (Kändler 2009), 200 m in the Austrian 
NFI (Schadauer et al. 2007), and 250-450 m 
(depending on the  ecoregion)  in  the  Fin-
nish  NFI  (Tomppo  2009).  This  study  de-
monstrates the applicability of PLS to line-
plots of comparable length (102.7-461.0 m). 
The  field  operator  was  required  to  carry 
the PLS system while walking along a line 
through the forest and pressing the instru-
ment’s start/stop button at the beginning 
and end of the transect. Consequently, we 
believe that it is feasible to integrate PLS-
based line-plot sampling into existing large-
scale  forest  inventories  without  requiring 
additional time in the field.

This study was constrained by the limited 
representation  of  the  observed  forest 
types,  as  it  focused  only  on  two  stands. 
Consequently,  further  research should be 
conducted  to  investigate  how  various 
stand types and vegetation conditions (fo-
liated  versus defoliated) influence the de-
tection function. The effectiveness of em-
ploying a  global  model  adjusted for  local 
visual  conditions through the inclusion of 
covariates,  compared  with  utilizing  inde-
pendent models tailored to specific areas, 
remains uncertain. Despite these ambigui-
ties and considering the long-standing suc-
cess of distance sampling, we contend that 
overcoming  these  challenges  is  feasible. 
Extending  the  method  to  diverse  condi-
tions is plausible for determining the opti-
mal plot width for accurate assessment.

Conclusion
The distance sampling framework proved 

to  be  suitable  for  determining  the  opti-
mum  width  for  line-plots  to  be  sampled 
with  PLS,  such  that  non-detection  errors 
on these plots could be virtually eliminated 
(<1%). A posteriori segmentation of the line-
plots into smaller units evidently reduced 
the standard error. This enabled the appli-
cation of PLS to line-plots and ensured the 
accurate  and  precise  estimation  of  tree 
density, basal area, and volume. Further in-
vestigations are required to validate these 
findings in  various forest  types.  Nonethe-
less, we are confident that the methodol-
ogy introduced in this study allows the in-
tegration  of  PLS-based  line-plot  sampling 
into existing forest  inventories relying on 
systematically aligned sample plots. In the 
field,  crews can seamlessly  carry  the  PLS 
device  while  moving  between  sampling 
points,  facilitating  additional  data  collec-
tion without extending working hours.

References
Astrup  R,  Ducey  MJ,  Granhus  A,  Ritter  T,  Von 

Lüpke  N  (2014).  Approaches  for  estimating 
stand-level volume using terrestrial laser scan-
ning in a single-scan mode. Canadian Journal of 
Forest Research 44 (6): 666-676. - doi:  10.1139/ 
cjfr-2013-0535

Bäuerle H, Nothdurft A (2011). Spatial modeling 
of habitat trees based on line transect sampling 
and  point  pattern  reconstruction.  Canadian 
Journal  of  Forest  Research  41:  715-727.  -  doi: 
10.1139/x11-004

Bauwens S, Bartholomeus H, Calders K, Lejeune 
P  (2016).  Forest  inventory  with  terrestrial  Li-
DAR: a comparison of static and hand-held mo-
bile  laser  scanning.  Forests  7  (6):  127.  -  doi: 
10.3390/f7060127

Buckland ST, Anderson DR, Burnham KP, Laake 
JL, Borchers DL, Thomas L (2001). Introduction 
to distance sampling: estimating abundance of 
biological populations. Oxford Univ. Press, Ox-
ford, UK, pp. 432. - doi: 10.1093/oso/978019850 
6492.001.0001

Buckland ST, Anderson DR, Burnham KP, Laake 
JL,  Borchers  DL,  Thomas L  (2004).  Advanced 
distance sampling: estimating abundance of bi-
ological  populations.  Oxford  Univ.  Press,  Ox-
ford,  UK,  pp.  416.  [online]  URL:  http://books. 
google.com/books?id=hBRREAAAQBAJ

Chen S, Liu H, Feng Z, Shen C, Chen P (2019). Ap-
plicability of personal laser scanning in forestry 
inventory. PLoS One 14: e0211392. - doi: 10.1371/ 
journal.pone.0211392

Cochran WG (1977). Sampling techniques. John 
Wiley and Sons, New York, USA, pp. 428.

Dassot M, Constant T, Fournier M (2011). The use 
of  terrestrial  LiDAR  technology  in  forest  sci-
ence:  application  fields,  benefits  and  chal-
lenges. Annals of Forest Science 68: 959-974. - 
doi: 10.1007/s13595-011-0102-2

De Vries PG (1986).  Sampling theory for forest 
inventory:  a  teach-yourself  course.  Springer, 
Berlin and Heidelberg, Germany, pp. 399.

Del Perugia B, Giannetti F, Chirici G, Travaglini D 
(2019). Influence of scan density on the estima-
tion of single-tree attributes by hand-held mo-
bile laser scanning. Forests 10: 277. - doi: 10.339 
0/f10030277

Didas CM (2009). Sampling and classification of 
tree holes within a Northeast temperate forest 
system.  Master’s  Thesis,  University  of  New 
Hampshire, Durham, USA, pp. 78. [online] URL: 
http://scholars.unh.edu/thesis/444/

Ducey MJ, Astrup R (2013). Adjusting for nonde-
tection in forest inventories derived from ter-
restrial laser scanning. Canadian Journal of Re-
mote Sensing 39:  410-425.  -  doi:  10.5589/m13-
048

GeoSLAM (2023a). GeoSLAM Hub. Web site. [on-
line] URL: http://geoslam.com/hub/

GeoSLAM (2023b). GeoSLAM ZEB-HORIZON 3D. 
Web site. [online] URL:  http://geoslam.com/so 
lutions/zeb-horizon/

Gollob C, Ritter T, Nothdurft A (2020). Forest in-
ventory  with  long  range  and  high-speed  Per-
sonal  Laser  Scanning (PLS)  and Simultaneous 
Localization and Mapping (SLAM) technology. 
Remote Sensing 12 (9): 1509. - doi: 10.3390/rs12 
091509

Gollob C, Ritter T, Wassermann C, Nothdurft A 
(2019). Influence of scanner position and plot 
size on the accuracy of tree detection and di-
ameter estimation using terrestrial  laser scan-
ning on forest inventory plots. Remote Sensing 
11 (13): 1602. - doi: 10.3390/rs11131602

Hyyppä E, Muhojoki J, Yu X, Kukko A, Kaartinen 
H, Hyyppä J (2021). Efficient coarse registration 
method  using  translation-  and  rotation-invari-

iForest 17: 269-276 275

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.3390/rs11131602
https://doi.org/10.3390/rs12091509
https://doi.org/10.3390/rs12091509
http://geoslam.com/solutions/zeb-horizon/
http://geoslam.com/solutions/zeb-horizon/
http://geoslam.com/hub/
https://doi.org/10.5589/m13-048
https://doi.org/10.5589/m13-048
http://scholars.unh.edu/thesis/444/
https://doi.org/10.3390/f10030277
https://doi.org/10.3390/f10030277
https://doi.org/10.1007/s13595-011-0102-2
https://doi.org/10.1371/journal.pone.0211392
https://doi.org/10.1371/journal.pone.0211392
http://books.google.com/books?id=hBRREAAAQBAJ
http://books.google.com/books?id=hBRREAAAQBAJ
https://doi.org/10.1093/oso/9780198506492.001.0001
https://doi.org/10.1093/oso/9780198506492.001.0001
https://doi.org/10.3390/f7060127
https://doi.org/10.1139/x11-004
https://doi.org/10.1139/cjfr-2013-0535
https://doi.org/10.1139/cjfr-2013-0535


Ritter T et al. - iForest 17: 269-276

ant local descriptors towards fully automated 
forest  inventory.  ISPRS Open Journal  of  Pho-
togrammetry  and  Remote  Sensing  2  (Part  3/
W52):  100007.  -  doi:  10.1016/j.ophoto.2021.100 
007

Kändler G (2009). The design of the second Ger-
man National forest inventory. In: Proceedings 
of the “8th Annual Forest Inventory and Analy-
sis  Symposium”  (McRoberts  RE,  Reams  GA, 
Van PC D, McWilliams WH eds). Monterey (CA, 
USA)  16-19  Oct  2006.  USDA  Forest  Service, 
Washington,  DC,  USA,  pp.  408.  [online]  URL: 
http://www.researchgate.net/publication/2289
48917

Kangas A,  Gove JH,  Scott  CT (2006).  Introduc-
tion. In: “Forest Inventory - Methodology and 
Applications”  (Kangas  A,  Maltamo  M  eds). 
Springer,  Dordrecht,  Netherlands,  pp.  362.  - 
doi: 10.1007/1-4020-4381-3_1

Kauffman JB, Arifanti VB, Basuki I, Kurnianto S, 
Novita  N,  Murdiyarso  D,  Donato  DC,  Warren 
MW  (2017).  Protocols  for  the  measurement, 
monitoring,  and  reporting  of  structure,  bio-
mass, carbon stocks and greenhouse gas emis-
sions in tropical peat swamp forests. Center for 
International Forestry Research - CIFOR, Bogor, 
Indonesia, pp. 44. - doi: 10.17528/cifor/006429

Kershaw  JA,  Ducey  MJ,  Beers  TW,  Husch  B 
(2016). Forest mensuration (5th edn). John Wi-
ley  and Sons,  New York,  USA,  pp.  613.  -  doi: 
10.1002/9781118902028

Kissa DO, Sheil D (2012). Visual detection based 
distance sampling offers efficient density esti-
mation for  distinctive low abundance tropical 
forest  tree species in complex terrain.  Forest 
Ecology  and  Management  263:  114-121.  -  doi: 
10.1016/j.foreco.2011.09.020

Köhl M, Magnussen S (2016). Sampling in forest 
inventories.  In:  “Tropical  Forestry  Handbook 
(2nd edn)”  (K  Pancel,  M  Köhl  eds).  Springer, 
Berlin and Heidelberg, Germany, pp. 3633. - doi: 
10.1007/978-3-642-54601-3_72

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, 
Haggrén H, Yu X, Kaartinen H, Jaakkola A, Guan 
F, Holopainen M, Vastaranta M (2016). Terres-
trial laser scanning in forest inventories. ISPRS 
Journal of Photogrammetry and Remote Sens-
ing  115:  63-77.  -  doi:  10.1016/j.isprsjprs.2016.01. 
006

Liang X,  Hyyppä J,  Kaartinen H,  Lehtomäki  M, 
Pyörälä  J,  Pfeifer  N,  Holopainen  M,  Brolly  G, 
Francesco P,  Hackenberg J,  Huang H, Jo HW, 
Katoh M, Liu L, Mokroš M, Morel J, Olofsson K, 
Poveda-Lopez J, Trochta J, Wang D, Wang J, Xi 
Z, Yang B, Zheng G, Kankare V, Luoma V, Yu X, 
Chen  L,  Vastaranta  M,  Saarinen  N,  Wang  Y 
(2018).  International  benchmarking  of  terres-
trial laser scanning approaches for forest inven-
tories.  ISPRS Journal  of Photogrammetry and 
Remote  Sensing  144:  137-179.  -  doi:  10.1016/j. 
isprsjprs.2018.06.021

McRoberts  RE,  Bechtold  WA,  Patterson  PL, 
Scott CT, Reams GA (2005). The enhanced for-
est  inventory  and  analysis  program  of  the 
USDA Forest Service: historical perspective and 
announcement  of  statistical  documentation. 
Journal  of  Forestry  103  (6):  304-308.  -  doi: 
10.1093/jof/103.6.304

Miller  DL,  Rexstad  E,  Thomas  L,  Marshall  L, 
Laake JL (2019). Distance sampling in R. Journal 
of  Statistical  Software  89  (1):  1-28.  -  doi: 
10.18637/jss.v089.i01

Mokroš M, Mikita T, Singh A, Tomaštík J, Chudá 
J,  Wezyk P,  Kuelka K,  Surovy P,  Klimánek M, 
Zieba-Kulawik K, Bobrowski R, Liang X (2021). 
Novel  low-cost  mobile  mapping  systems  for 
forest inventories as terrestrial  laser scanning 
alternatives.  International  Journal  of  Applied 
Earth  Observation  and  Geoinformation  104: 
102512. - doi: 10.1016/J.JAG.2021.102512

Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger 
D (2003). Good practice guidance for land use, 
land-use  change  and  forestry.  Institute  for 
Global  Environmental  Strategies  -  IGES,  Haya-
ma, Japan, pp. 590. [online] URL:  http://www. 
ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf
_files/GPG_LULUCF_FULL.pdf

Pollanschütz  J  (1965).  Eine  neue  Methode  der 
Formzahl-  und  Massenbestimmung  stehender 
Stämme - Neue Form- bzw. Kubierungsfunkio-
nen und ihre Anwendung [A new method for 
determining  the  shape,  number  and  mass  of 
standing trunks - New shape or cubic functions 
and  their  application].  Technical  Report  68, 
Forstliche Bundesversuchsanstalt, Mariabrunn, 
Germany, pp. 186. [in German]

Prieto Gonzalez R, Thomas L, Marques TA (2017). 
Estimation bias under model selection for dis-
tance  sampling  detection  functions.  Environ-
mental  and Ecological  Statistics  24:  399-414.  - 
doi: 10.1007/s10651-017-0376-0

Quang PX (1993). Nonparametric estimators for 
variable  circular  plot  surveys.  Biometrics  49: 
837-852. - doi: 10.2307/2532203

R Core Team (2022). R: a language and environ-
ment for statistical computing, v. 4.2.2. The R 
Foundation  for  Statistical  Computing,  Vienna, 
Austria. [online] URL: http://www.r-project.org/

Ritter T, Saborowski J (2012). Point transect sam-
pling of deadwood: a comparison with well-es-
tablished sampling techniques for the estima-
tion of volume and carbon storage in managed 
forests.  European Journal  of  Forest  Research 
131  (6):  1845-1856.  -  doi:  10.1007/s10342-012-
0637-2

Ritter T, Nothdurft A, Saborowski J (2013). Cor-
recting  the  nondetection  bias  of  angle  count 
sampling. Canadian Journal of Forest Research 
43 (4): 344-354. - doi: 10.1139/cjfr-2012-0408

Ritter  T,  Saborowski  J  (2014).  Efficient  integra-
tion of a deadwood inventory into an existing 
forest inventory carried out as two-phase sam-
pling for stratification. Forestry 87 (4): 571-581. - 
doi: 10.1093/forestry/cpu016

Ritter T, Schwarz M, Tockner A, Leisch F, Noth-
durft  A  (2017).  Automatic  mapping  of  forest 
stands  based  on  three-dimensional  point 
clouds derived from terrestrial  laser-scanning. 
Forests 8 (8): 265. - doi: 10.3390/f8080265

Ritter T, Gollob C, Nothdurft A (2020). Towards 
an optimization of sample plot size and scan-
ner position layout for terrestrial laser scanning 
in  multi-scan  mode.  Forests  11:  1-23.  -  doi: 
10.3390/f11101099

Ritter T, Gollob C, Nothdurft A (2021). Modelling 
the detection rate of terrestrial laser scanning 

in multi scan mode. In: Proceedings of the “Sil-
viLaser Conference 2021”. Vienna (Austria) 28-
30 Sep 2021, pp. 53-55. - doi: 10.34726/WIM.1913

Schadauer  K,  Gschwantner  T,  Gabler  K  (2007). 
Austrian  national  forest  inventory:  caught  in 
the  past  and  heading  toward  the  future.  In: 
Proceedings  of  the  “7th Annual  Forest  Inven-
tory and Analysis  Symposium” (McRoberts  R, 
Reams G, Van P D, McWilliams W eds). Portland 
(OR, USA) 3-6 Oct 2005. USDA Forest Service, 
Washington, DC, USA, pp. 319.

Seber  GAF  (1982).  The  estimation  of  animal 
abundance  and  related  parameters  (2nd edn). 
Macmillian, New York, USA, pp. 654.

Thomas L, Buckland ST, Burnham KP, Anderson 
DR, Laake JL, Borchers DL, Strindberg S (2012). 
Distance  sampling.  In:  “Encyclopedia  of  Envi-
ronmetrics”  (El-Shaarawi  AH,  Piegorsch  WW 
eds).  John Wiley and Sons,  New York,  USA.  - 
doi: 10.1002/9780470057339.vad033.pub2

Tockner A, Gollob C, Kranitzer R, Ritter T, Noth-
durft A (2022). Automatic tree crown segmen-
tation  using  dense  forest  point  clouds  from 
Personal  Laser  Scanning  (PLS).  International 
Journal of Applied Earth Observations and Geo-
information 114: 103025. - doi: 10.1016/j.jag.2022. 
103025

Tockner A (2024). treeX - Package for individual 
tree detection and tree segmentation from ter-
restrial  LiDAR  data.  Web  site.  [online]  URL: 
http://github.com/anditockner/treeX

Tokola T (2006). Europe. In: “Forest Inventory - 
Methodology  and  Applications”  (Kangas  A, 
Maltamo M eds). Springer, Dordrecht, Nether-
lands, pp. 362. - doi: 10.1007/1-4020-4381-3_18

Tomppo E (2006). The Finnish national forest in-
ventory.  In:  “Forest  Inventory  -  Methodology 
and Applications” (A Kangas, M Maltamo eds). 
Springer, Dordrecht, Netherlands, pp. 362. [on-
line] URL:  http://link.springer.com/content/pdf/ 
10.1007/1-4020-4381-3.pdf#page=189

Tomppo E (2009). The Finnish National Forest In-
ventory. In: Proceedings of the “8th Annual For-
est  Inventory  and  Analysis  Symposium”  (Mc-
Roberts RE, Reams GA, Van PC D, McWilliams 
WH eds). Monterey (CA, USA) 16-19 Oct 2006. 
USDA Forest Service, Washington, DC, USA, pp. 
408.

Tupinambá-Simões F, Pascual A, Guerra-Hernán-
dez J, Ordóñez C, De Conto T, Bravo F (2023). 
Assessing the performance of a handheld laser 
scanning system for individual tree mapping a 
mixed forests showcase in Spain. Remote Sens-
ing 15 (5): 1169. - doi: 10.3390/rs15051169

Witzmann S (2022). Development and evaluation 
of  algorithms  for  the  automatic  marker-free 
registration  of  forest  point  clouds  obtained 
from Personal Laser Scanning. Master / Diplo-
ma Thesis, University of Natural Resources and 
Life  Sciences,  Vienna,  pp.  29.  [online]  URL: 
http://permalink.obvsg.at/bok/AC16762598

Witzmann S, Matitz L, Gollob C, Ritter T, Kran-
itzer  R,  Tockner  A,  Stampfer  K,  Nothdurft  A 
(2022).  Accuracy and precision of  stem cross-
section modeling in 3D point clouds from TLS 
and caliper measurements for basal area esti-
mation.  Remote  Sensing  14  (8):  1923.  -  doi: 
10.3390/RS14081923

276 iForest 17: 269-276

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://doi.org/10.3390/RS14081923
http://permalink.obvsg.at/bok/AC16762598
https://doi.org/10.3390/rs15051169
http://link.springer.com/content/pdf/10.1007/1-4020-4381-3.pdf#page3D189
http://link.springer.com/content/pdf/10.1007/1-4020-4381-3.pdf#page3D189
http://github.com/anditockner/treeX
https://doi.org/10.1016/j.jag.2022.103025
https://doi.org/10.1016/j.jag.2022.103025
https://doi.org/10.1002/9780470057339.vad033.pub2
https://doi.org/10.34726/WIM.1913
https://doi.org/10.3390/f11101099
https://doi.org/10.3390/f8080265
https://doi.org/10.1093/forestry/cpu016
https://doi.org/10.1139/cjfr-2012-0408
https://doi.org/10.1007/s10342-012-0637-2
https://doi.org/10.1007/s10342-012-0637-2
http://www.r-project.org/
https://doi.org/10.2307/2532203
https://doi.org/10.1007/s10651-017-0376-0
http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf
http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf
http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf
https://doi.org/10.1016/J.JAG.2021.102512
https://doi.org/10.18637/jss.v089.i01
https://doi.org/10.1093/jof/103.6.304
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2018.06.021
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1016/j.isprsjprs.2016.01.006
https://doi.org/10.1007/978-3-642-54601-3_72
https://doi.org/10.1016/j.foreco.2011.09.020
https://doi.org/10.1002/9781118902028
https://doi.org/10.17528/cifor/006429
https://doi.org/10.1007/1-4020-4381-3_1
http://www.researchgate.net/publication/228948917
http://www.researchgate.net/publication/228948917
https://doi.org/10.1016/j.ophoto.2021.100007
https://doi.org/10.1016/j.ophoto.2021.100007
https://doi.org/10.1007/1-4020-4381-3_18

	Optimizing line-plot size for personal laser scanning: modeling distance-dependent tree detection probability along transects
	Introduction
	Materials and methods
	Experimental stands and reference data
	Scan data collection and analysis
	Distance sampling approach
	Determination of optimal line-plot size
	Accuracy of tree detection

	Results
	Distance sampling approach
	Line-plot approach
	Accuracy of tree detection

	Discussion
	Accuracy and precision of forest inventory target variable estimates
	Algorithms for point cloud processing
	Selection of detection function
	Possible further model developments
	Possible areas of application

	Conclusion
	References


