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Modeling aboveground carbon in flooded forests using synthetic 
aperture radar data: a case study from a natural reserve in Turkish 
Thrace
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Flooded forests are rare and highly dynamic ecosystems, yet they can store a 
significant  amount  of  carbon  because  of  their  ability  to  produce  biomass 
rapidly. Estimation and mapping of the carbon that is stored in flooded forests 
are challenging tasks through the use of optical remote sensing because these 
ecosystems are often located in moist regions where clouds can interfere with 
data acquisition and image interpretation. This study models the aboveground 
carbon (AGC) stocks of a flooded forest in Turkish Thrace with synthetic aper-
ture radar (SAR) data, which are less affected by weather and illumination 
conditions compared to optical imagery. Forest management plan data, includ-
ing inventory records of 229 sample plots, a detailed forest cover map, and 
stand tables of the 2,119-ha Igneada Longoz Forest, were used to calculate 
AGC and to develop spatially explicit  models  based on ALOS/PALSAR-2 (Ad-
vanced  Land  Observing  Satellite/Phased  Array  L-band  Synthetic  Aperture 
Radar) and Landsat-8 images. The results indicated that the horizontally trans-
mitted and horizontally received (HH) and cross-polarization ratio (CPR) bands 
of ALOS/PALSAR were the most influential variables in the linear and nonlinear 
regression models. The models did not include any variables from either radar- 
or optical-based vegetation indices. While the estimation accuracies of the two 
models were similar (root mean square percentage error ≈ 26%), the linear 
model yielded negative estimations in several land cover classes (e.g., dune, 
forest opening, degraded forest). AGC stock was estimated and mapped using 
the nonlinear model in these cases. The density map revealed that Igneada 
Longoz Forest stored 279,258.9 t AGC, with a mean and standard deviation of 
124 ± 115.4 t C ha-1. AGC density varied significantly depending on stand types 
and management units across the forest, and carbon hotspots accumulated in 
the northern and southern sites of the study area, primarily composed of ash 
and alder seed stands. The models and maps that this study developed are ex-
pected to help in the rapid and cost-effective assessment of AGC stored in 
flooded forest ecosystems across the temperate climate zone.
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Introduction
Flooded forests  (e.g.,  floodplain  forests, 

alluvial  forests, freshwater swamp forests 
or  longoz  in  Turkish)  are  highly  dynamic 
ecosystems that  are generally  located on 
water-rich lowlands and river valleys near 
the sea (Hughes et al. 2003, Ozyavuz & Yaz-
gan 2010,  Camur-Elipek et al.  2015). These 
ecosystems have a strong relationship with 
flood events as they need newly deposited 
sediment sites for natural regeneration. Ev-
ery flood changes the landscape mosaic by 
destroying  a  part  of  existing  stands  and 
opening favorable sites for new ones; as a 
result, such lands are sometimes called mo-
bile mosaics (Hughes et al. 2003).

Globally,  flooded  forests  are  rare,  with 
European examples nearly eliminated due 
to human activity. The remaining ones are 
in critical condition and are listed as a prior-
ity forest habitat type in the European Hab-
itats  Directive  Annexes  (Directive  92/43/ 

EEC 1992 – EC 1992). These ecosystems are 
also important due to their rich biodiversity 
(Hughes et al. 2003). Junk (1989) state that 
more than 20% of tree species in the Ama-
zon Basin are located in flooded forests. In 
Turkey,  longoz forests are flooded during 
winter and spring seasons,  providing vital 
habitat for migrating birds (Baskent et al. 
2008) such as black woodpecker (Dryoco-
pus martius), white-tailed eagle (Haliaeetus 
albicilla), and fish eagle (Pandion haliaetus). 
As a result, Igneada Longoz Forests Nation-
al  Park  has  been identified as  one of  the 
Important Bird and Biodiversity Areas (IBA) 
in Turkey (GDF 2014).

Significantly, flooded forests serve as ap-
preciable aboveground carbon (AGC) sinks 
due to their rapid biomass production ca-
pacity (Borges Pinto et al. 2020). The high 
level of productivity is closely linked to the 
flood waters that convey large amounts of 
organic  matter  from  upper  watersheds 
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(Hawes et al. 2012). These organic materi-
als are deposited on floodplains and fertil-
ize soil resources with minerals. The plant 
community  becomes  naturally  fertilized 
(Hughes  et  al.  2003,  Camur-Elipek  et  al. 
2015).  In  flooded  forests,  seasonal  water 
levels often change significantly due to hy-
drological  processes  such as  rainfall,  infil-
tration,  and  evapotranspiration  (Li  et  al. 
2021). These processes may alter forest dy-
namics  and  distribution  patterns  which 
cause considerable variations in carbon se-
questration rates. Accurate estimation and 
periodic  monitoring  of  existing  carbon 
stocks, AGC in particular,  are essential for 
the sustainable management of these eco-
systems  under  the  climate  change  chal-
lenge (Wang & Yésou 2018, Li et al. 2021).

Researchers often prefer remote sensing 
data rather than relying solely on field mea-
surements  to  estimate  wall-to-wall  cover-
age of forest biomass (Ahmad et al. 2021) 
and carbon density (Xiao et al. 2019). A cor-
relative  relationship  between  the  field-
based inventories and remote sensing im-
ages can be established for regional-based 
aboveground biomass  (AGB) maps (Geor-
ge-Chacón et al.  2021).  Optical,  radar, and 
LiDAR remote sensing systems have been 
used to estimate biomass for differing for-
est types. In optical systems, spectral vege-
tation indices  have shown  their  potential 
over  the  Calabrian pine forests  of  Turkey 

(Ozdemir  &  Yilmaz  2020),  and  the wood-
land of the tropical West African Sahel Sa-
vanna  (Adamu et  al.  2021).  However,  the 
estimation accuracy of optical systems re-
mained  moderate  (coefficient  of  determi-
nation <0.50), due to numerous shortcom-
ings,  such as the lack of  vertical  informa-
tion on forest cover, which is critical for es-
timating AGB. Other shortcomings include 
the occlusion effects of clouds and smoke 
(George-Chacón et  al.  2021),  limited spec-
tral  information  provided  by  high  reso-
lution  (i.e.,  <  5  m)  images  (Ahmad  et  al. 
2021), shaded areas over canopy gaps (Lu 
2006), and the saturation issue particularly 
arising  in  densely-vegetated  areas  (Song 
2013). Still, some research findings suggest 
that  specific  vegetation  indices,  such  as 
normalized  difference  vegetation  index 
(NDVI), may improve AGB and AGC model-
ing  performance in  certain  circumstances 
when used as supplementary data (Li et al. 
2015, Adamu et al. 2021, Ahmad et al. 2021).

Airborne  LiDAR  has  also  been  used  to 
characterize the vertical  canopy structure 
of  canopies.  Essentially,  airborne  LiDAR 
technology  provides  more  accurate  data 
than optical and radar satellites (Zolkos et 
al.  2013);  however,  compared  to  satellite 
data, the coverage of area that is offered 
by  this  source  is  often  limited.  Perhaps 
more  importantly,  this  technology  is  still 
costly and is not widely available in many 

countries (Ma et al. 2017, George-Chacón et 
al.  2021).  The recent  availability  of  space-
borne LiDAR data, such as what is provided 
by NASA’s Global Ecosystem Dynamics In-
vestigation (GEDI) and Ice Cloud and Land 
Elevation  Satellite-2  (ICESat-2)  missions, 
offer new opportunities to forest biometri-
cians. While these missions are capable of 
characterizing the vertical forest structure 
with  certain  accuracy  rates,  their  sample-
based nature and insufficient data density 
do not allow their use alone for wall-to-wall 
estimates of forest attributes at stand and 
landscape levels (Dorado-Roda et al. 2021, 
Vatandaslar et al. 2023). Thus, researchers 
often  combine  spaceborne  LiDAR  data 
with other remote sensing sources.

Synthetic Aperture Radar (SAR) systems, 
on the other hand, are less susceptible to 
rainy  and  cloudy  weather  than  optical 
satellite images, and they are able to col-
lect data during night and day. Moreover, 
some SAR systems offer publicly available 
data  to  researchers  for  using in  scientific 
studies.  Long wavelength SAR, which can 
partially  penetrate  through  the  forest 
canopy,  is  a  good  predictor  for  forest 
biomass (Avtar et al. 2013,  Ningthoujam et 
al.  2018).  Currently,  L-band is  the  longest 
wavelength  that  is  provided  by  satellite 
systems,  and  mosaic  ALOS/PALSAR  (Ad-
vanced Land Observing Satellite/Phased Ar-
ray L-band Synthetic Aperture Radar) data 
is currently available free of charge. The 25-
m-resolution mosaic data were used to as-
sess the AGB of coniferous forests in Tur-
key (Vatandaslar & Abdikan 2022), tropical 
forests  in  Mexico  (George-Chacón  et  al. 
2021), deciduous forests of northern India 
(Ningthoujam et al. 2018), mixed forests in 
China (Ma et al. 2017), and Cameroon’s sa-
vannas  (Mermoz et  al.  2014).  Besides the 
polarimetric information of the data, differ-
ent arithmetic combinations (e.g., cross-po-
larization ratio  – CPR, radar vegetation in-
dex  – RVI)  from  SAR  images  may  also 
show higher sensitivity to vegetative cover 
(Ningthoujam et al. 2018, Alvarez-Mozos et 
al. 2021). While the European Space Agency 
(ESA) plans to make the first P-band BIO-
MASS  and  L-band  ROSE-L  SAR  satellite 
products  available,  the  Japanese  Aero-
space Exploration Agency’s  (JAXA)  ALOS/
PALSAR-2 mosaics are still  one of the few 
SAR products ready-to-use to date.

The present study modeled and mapped 
AGC that was stored in flooded forests by 
using  ALOS/PALSAR-2  products  and  NDVI 
data.  This  focus  was  realized  by  meeting 
the following objectives: (i) calculating AGC 
based on ground measurements of forest 
plots and the stand-type map; (ii) develop-
ing statistical models for estimating AGC by 
using ALOS/PALSAR-2 and NDVI datasets as 
independent variables; and (iii) generating 
AGC  stocking  maps  for  the  entire  forest 
area.  The final  models, maps,  and conclu-
sions from this study are expected to sup-
port the management of flooded forests as 
well as carbon accounting efforts.
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Fig. 1 - Location 
and land-use/

land-cover 
classes of the 

study area over 
ALOS imagery.
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Modeling aboveground carbon in flooded forests

Material and methods

Study area
The  study  area  is  the  Igneada  Longoz 

(flooded)  Forests  on the Black  Sea  coast 
near  the  Bulgaria-Turkey  border  (Fig.  1). 
The area was established in 2007 as a na-
tional park because of its rare and sensitive 
ecosystems.  The total  area of  the park is 
3156  ha  that  hold  unique  ecosystems,  in-
cluding  natural  longoz  forests  (2119  ha), 
coastal  dunes  (113  ha),  lagoon  lakes  (34 
ha),  swamps,  and  riparian  areas  (GDF 
2014).  The longoz forests  are surrounded 
by  moderate  slopes  that  are  covered  by 
mixed deciduous stands. Ash (Fraxinus an-
gustifolia subsp. oxycarpa), hornbeam (Car-
pinus  betulus,  C.  orientalis),  oak  (Quercus 
robur  subsp.  robur),  maple  (Acer  campe-
stre),  linden (Tilia argentea), beech (Fagus 
orientalis) and alder (Alnus glutinosa subsp. 
glutinosa)  species  dominate  the  forested 
lands and generally  form mixed stands in 
the poletimber (i.e., 8 < DBH < 19.9 cm) and 
thin-tree  (20  <  DBH  <  35.9  cm)  develop-
mental stages. In the forest management 
plan of Igneada (GDF 2014), the forestlands 
are wholly allocated for ecological and so-
cio-cultural functions, which indicates that 
the  management  objective  is  not  timber 
production. Nevertheless, a limited annual 
allowable  cut  (1260  m3 as  thinning)  has 
been  determined  for  the  oak-dominated 
management unit.

The  region’s  climate  is  generally  moist, 
rainy,  and cool.  According to the records 
from  the  nearest  meteorological  station, 
the  average  air  temperature  and  annual 
precipitation are 12.0  °C  and 818  mm,  re-
spectively. Alluvial and limeless brown for-
est soils are the most prevalent soil types 
in  the  study  area.  Four  endemic,  12  rare, 
and  55  medicinal  plant  species  survive  in 
Igneada.  These species include  Silene san-
garia,  Crepis  macropus,  Centaurea  kilaea,  
Aurinia  uechtritziana,  Pancratium  mariti-
mum,  and  Ruscus aculeatus (Baskent et al. 
2008, Ozyavuz & Yazgan 2010).

The  study  area  is  also  rich  in  terms  of 
herbs,  shrubs,  and  understory.  While  Hu-
mulus lupulus, Periploca greaca, Tamus com-
munis subsp.  cretica, Hedera helix,  Sambu-
cus nigra, and Sorbus aucaparia species are 
prevalent  in  forested  lands,  Leymus  race-
mosus subsp.  sabulosus,  Matthiola  fruti-
cose,  and  Cyperus  capitatus exist  in  the 
coastal  dunes.  The lagoons,  swamps,  and 
riparian areas, on the other hand, provide 
favorable sites for wetland species, includ-
ing  Phragmites australis, Cladium mariscus,  
Schoenoplectus  lacustris subsp.  tabernae-
montani,  Althea  officinalis,  and  Dipsacus 
laciniatus  (GDF 2014).  Some of these spe-
cies can make fieldwork challenging when 
they are prevalent on the forest floor.

Fieldwork, calculation of forest carbon, 
and aggregation process

In order to calculate the AGB and AGC of 
the study area, we use field data that was 
measured from 220 sample plots. The plots 

were located by using a recreational-grade 
handheld  GPS that  had a  positional  accu-
racy  around 5 m.  The shape of  the  plots 
was circular with differing sizes (i.e.,  400, 
600  or  800 m2)  according  to  the  canopy 
cover  of  the  sampled  plot.  Tree  species 
were  first  identified,  and  then  their  DBH 
was  measured  in  each  plot  to  calculate 
stem volume by using species-specific local 
volume tables  in  the  forest  management 
plan  (GDF  2014).  Based  on  the  stem  vol-
umes, the AGB of each tree was calculated 
by  using the national  biomass conversion 
and  expansion  factors  (BCEFs)  and  bio-
mass  expansion  factors  (BEFs  – Tolunay 
2013). BEFs and standard wood density val-
ues were used for the conversion if BCEFs 
were unavailable for a given tree species. 
The  species-specific  wood  densities  were 
compiled from several sources (Gürsu 1971, 
IPCC 2003, 2006, Tolunay 2011, 2013).

Next, the AGB of individual trees was ag-
gregated  to  the  plot  level  by  totaling  all 
AGB values in each plot. Here, we only con-
sidered trees that had a DBH of >7.9 cm as 
suggested  by  the  Turkish  planning  rule. 
Plot-level AGB values were then converted 
to a unit area (i.e., per hectare) based on 
the given plot size. Afterward, the default 
value for the carbon fraction of deciduous 
species (IPCC 2006) was used to calculate 
AGC per hectare using eqn. 1 (IPCC 2006):

(1)

where  C is  the total carbon in the above-
ground forest biomass (t C),  V is the stand 
volume (m3 ha-1), BCEFs is the biomass con-
version and expansion factor  for  expand-
ing the stand volume to AGB (t m3), and CF 
is  the carbon fraction of  dry  matter.  The 
descriptive statistics for field data and cal-
culated AGC values can be seen in Tab. 1.

The sample plots were distributed across 
212  sub-compartments  (patches),  encom-
passing 41 distinct stand types. To consoli-
date the plot-level AGC data, the AGC val-
ues within the same stands were averaged, 
allowing for aggregation at both the patch 
and  stand-type  levels.  This  aggregation 
process was facilitated using the General-
ization tool,  specifically  the dissolve func-
tion, within ArcGIS Pro® v.  3.0. For details 
on the aggregated data and plot-level AGC 
information,  please  refer  to  the  Supple-
mentary material (Tab. S1).

SAR data processing
The  Advanced  Land  Observing  Satellite 

(ALOS)  Phased  Array  L-band  Synthetic 

Aperture Radar (PALSAR-2) annual mosaic 
data for 2016 was used for the analysis. The 
data  was  provided  as  1×1  degrees  in  lati-
tude and longitude tiles with a 25 m spatial 
resolution. Two tiles that cover the study 
area  were  obtained  from  the  JAXA.  The 
data  had  both  HH  and  HV  polarizations 
with  gamma-naught  values.  The  pre-pro-
cessing  steps  were  applied  by  JAXA.  The 
ALOS World 3D (AW3D30) Digital Elevation 
Model was used for the geometric correc-
tion.  The digital  numbers were converted 
to  backscatter  coefficients  (γ°)  in  decibel 
(dB) units using eqn. 2:

(2)

where γ° is the backscatter coefficient,  DN 
is  the  digital  number  of  amplitude  SAR 
data, and CF is the calibration factor which 
is -83 dB (Shimada et al. 2009).

We  also  calculated  five  variables  that 
were  derived  from  arithmetic  combina-
tions  of  γHH and  γHV backscatter  coeffi-
cients. The calculated variables can be seen 
in  Tab. 2. Thus, statistical relationships be-
tween the variables and AGC values were 
modeled as shown below.

Statistical analysis and modeling
Fig. 2 includes the main steps of the sta-

tistical  analyses  and  modeling  process. 
Prior to constructing a predictive model for 
AGC,  we  performed  the  Least  Absolute 
Shrinkage and Selection Operator (LASSO) 
technique to  determine unnecessary  vari-
ables (Tibshirani 1996 – eqn. 3). The LASSO 
technique attempts to minimize prediction 
bias by selecting a small  number  of inde-
pendent  variables.  The  selection  of  inde-
pendent  variables  in  this  technique  is 
based on Lambda (λ) value. As λ increases, 
the  number  of  independent  variables  de-
creases, but this reduction may lead to an 
increase in prediction bias. Conversely, as λ 
decreases,  the  number  of  independent 
variables increases, which may induce poor 
performance. In this study, the optimum λ 
value that provided the best combination 
of  independent variables  was  determined 
using 10-fold cross-validation (eqn. 3):

(3)

where N is the number of observations, yi is 
the response variable, xi is the independent 
variable,  β is  the regression coefficient to 
be estimated,  T is  a pre-specified parame-
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Tab. 1 - Descriptive statistics for the field data collected from 220 sample plots.

Forest attributes (plot level)
Descriptive statistics

Min Mean Max Std. dev.

Tree density (# ha-1) 275 779 2050 428

Timber volume (m3 ha-1) 26.0 299.0 915.9 173.9

Aboveground carbon (t C ha-1) 9.5 107.2 326.1 61.1
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ter that determines the degree of regular-
ization, and λ is a regularization parameter.

In the subsequent step, we employed the 
stepwise variable selection method to es-
tablish  a  linear  regression  model  (LRM  – 
eqn. 4). This method was chosen as it facili-
tates  the  evaluation  of  various  combina-
tions of independent variables using model 
evaluation criteria,  such as mean squared 
error and the Akaike information criterion. 
Additionally, a nonlinear regression model 
(NLRM) was developed utilizing the inde-
pendent variables from the LRM (eqn. 5). 
The  model  parameters  were  estimated 
based on area-weighted AGC values (n=41):

(4)

(5)

where ε is assumed to be independent and 
identically distributed.

The  variables  that  had  a  p-value  lower 
than  0.05  were  determined  to  be  signifi-
cant. During the fitting of LRM and NLRM, 
outliers were assigned by using Cook’s Dis-
tance (CD) method (Neter et al. 1996), and 
they were excluded from the data set. Af-
ter  the  models  were  developed,  their  re-

sults were further evaluated based on sta-
tistical  assumptions,  including  collinearity 
and homogeneity (Zuur et al. 2010). While 
the Condition Index (CI) was used to exam-
ine  collinearity,  the  homogeneity  in  the 
residuals  was analyzed by using a plot  of 
residuals versus fitted values with a loess 
curve.  All  statistical  analyses  were  per-
formed with MATLAB software.

The performance of LRM and NLRM was 
compared using common fit indices, includ-
ing  the  mean  percentage  error  (Bias%  – 
eqn. 6),  root mean square percentage er-
ror (RMSPE  – eqn.  7),  Akaike information 
criterion (AIC – eqn. 8), and Bayesian infor-
mation criterion (BIC – eqn. 9). Their math-
ematical descriptions can be seen in eqn. 6-
9:

(6)

(7)

(8)

(9)

where  yOi and  yPi are  i-th observed and fit-
ted values, respectively; yMean is the average 
of observations,  N and  k  are the numbers 
of  observations  and  parameters,  respec-
tively;  and  L is  the log-likelihood value of 
the fitted model.

NDVI data and GIS analysis
NDVI is  a  popular vegetation index that 

represents  vegetation  health  and  density 
based on the difference between the near-
infrared and red bands of multispectral op-
tical images (Tucker 1979). In order to im-
prove AGC model accuracy, NDVI layers of 
the study area were generated by using 30-
m-resolution Landsat-8 images acquired on 
19 June and 6 August 2013. Three essential 
points  were  considered  in  determining 
these dates:  (i)  matching the time of  the 
forest  inventory  campaign  (during  the 
summer of 2013) and image acquisition; (ii) 
downloading cloudless image sets as far as 
possible; and (iii)  representing the leaf-on 
season of  hardwood species in  the study 
area.  NDVI  was  calculated  by  using  the 
Raster Functions tool of ArcGIS Pro® with 
eqn. 10 (Tucker 1979):

(10)

where  NDVI is  the  normalized  difference 
vegetation index (ranges from -1 to 1, unit-
less),  NIR is  the near-infrared band of the 
satellite images (Band 5, in our case), and 
RED is the red band of the satellite images 
(Band 4).

Regarding  spatial  modeling,  the  aggre-
gated  AGC  data  layer  (see  above)  was 
overlaid  onto  NDVI  and  composite  SAR 
datasets. Pixel values from nine bands (in-
cluding NDVI layers and those listed in Tab.
2) were extracted based on stand bound-
aries  using  ArcGIS  Pro’s  Zonal  Statistics 
tool, employing both mean and sum func-
tions.  Subsequently,  the  summary  tables 
were integrated into the attribute table of 
the  sub-compartment  layer.  This  process 
facilitated  the  correlation  of  calculated 
AGC values with NDVI and SAR data, form-
ing the basis for model development.

After model development, the spatial dis-
tribution of AGC was mapped only for for-
est  areas  based  on  the  stand-type  map. 
AGC density was colorized using the quan-
tile method found in ArcGIS Pro’s Symbol-
ogy tab.

Results

AGC modeling
The results of LASSO showed that 11 of 17 

independent variables were significant (see 
the upper part of Fig. S1 in Supplementary 
material).  Specifically,  Band1Mean,  Band1Sum, 
Band2Sum,  Band3Mean,  Band3Sum,  Band4Mean, 
Band6Mean,  Band6Sum,  Band7Sum,  NDVIJune, 
and  NDVIAug were  statistically  important 
variables,  though  Band2Mean,  Band4Sum, 
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Fig. 2 - The workflow for the statistical analysis and modeling methods.
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RMSPE=√ 1N∑
i=1

N

( yOi− y Pi)2

1
N∑i=1

N

yOi

⋅100

Tab. 2 - ALOS PALSAR-2 polarizations and their derived variables (Nasirzadehdizaji et 
al. 2019, Mandal et al. 2020, Alvarez-Mozos et al. 2021).

Polarizations and independent 
variables used for modeling

Abbreviation Assigned
bands

Equations

Horizontally transmitted and 
horizontally received

HH B1 n/a

Horizontally transmitted and 
vertically received

HV B2 n/a

Cross Polarization Ratio CPR B3 γHV / γHH

Radar Vegetation Index RVI B4 4 × γHV / ( γHH + γHV )

Horizontal Dual De-Polarized Index HDDP B5 ( γHH + γHV ) / γHH

Normalized Difference Polarization 
Index

NDPI B6 ( γHH - γHV ) / ( γHH + γHV )

Cross Polarization Difference CPD B7 γHH - γHV

Bias%=100
N ∑ ( yoi− y pi)

yoi

y=β 0⋅e
(β 1 x1+…+β p x p)+ε

AIC=−2⋅(L)+2⋅k

BIC=−2⋅log (L)+ log(N )

NDVI=NIR−RED
NIR+RED

y=β 0+β 1 x1+…+β p x p+ε
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Band5Mean,  Band5Sum,  and  Band7Mean were 
negligible.

The results of CD showed that 3 of 41 ob-
servations were extreme, so these values 
were discarded from the data set. The LRM 
and NLRM developed in this study are rep-
resented  by  eqn.  11  and  eqn.  12,  respec-
tively: 

(11)

(12)

While all estimated parameters were sig-
nificant at  the 0.05 significance level,  the 
values of CI showed no relationship among 
independent variables.

This  study also determined the main ef-
fect  of  each  selected  variable  on  predic-
tions  of  AGC.  As  seen in  Fig.  S2  (Supple-
mentary material), Band3Sum was the most 
influential variable, whereas Band1Mean and 
Band3Mean had similar  magnitudes  but  op-
posite effects.

The model fit indices suggested that both 
the LRM and NLRM had similar prediction 
success. Although RMSPE, AIC, and BIC val-
ues indicated that LRM performed slightly 
better  than  NLRM,  the  Bias%  values  sug-
gested the opposite outcome (Tab. 3). Ad-
ditionally, scatter plots depicting fitted ver-
sus observed AGC values for both models 
revealed  somewhat  different  distribution 
patterns (Fig. 3). While there was generally 
good  agreement  between  the  fitted  and 
observed  values,  LRM  unexpectedly  re-
sulted in a few negative predictions.

Based on the results from Tab. 3 and con-
sidering  its  simple  model  structure,  we 

generated  an  AGC  map  with  the  LRM. 
However, LRM yielded negative AGC values 
for  several  stands.  For  these  stands,  we 
used  NLRM  estimates  in  the  AGC  map, 
which is shown and discussed in the next 
sections. We also included a comparison of 
fitted versus observed AGC values for pure 
and  mixed  stands  (Fig.  S3  in  Supplemen-
tary  material).  The  box-and-whisker  plots 
revealed that the model tended to overes-
timate AGC in both pure and mixed stands; 
however,  the  overestimation  was  more 
pronounced in mixed stands.

The  presence  of  a  heteroscedastic  pat-
tern  was  examined  by  plotting  residuals 
versus fitted values (Fig. 4). As depicted in 
the figure, LRM and NLRM exhibited a het-
eroscedastic  tendency  for  the  residuals, 
which was attributable to the datasets hav-
ing a limited number of samples. Detailed 
plot  and  sub-compartment  level  predic-
tions of AGC can be found in Tab. S1 (Sup-
plementary material).

AGC mapping
Fig. 5 shows the AGC density and its spa-

tial  distribution across the landscape. The 
map  was  created  by  using  the  models 
based  on  SAR  data  at  the  sub-compart-
ment  level.  Accordingly,  Igneada  Longoz 
Forests  stored  279,258.9  t  AGC  with  a 
mean  and  standard  deviation  of  124.0  ± 
115.4 t C ha-1 (Tab. 4). The carbon storage in 
the  forest  significantly  varied  depending 
on  stand  type  and  management  unit, 
which resulted in a non-homogeneous pat-
tern on the map. The forests in the south-
ern and northern portions of Igneada gen-
erally stored more carbon than the central 
areas.  The  amount  of  AGC  in  these  hot-
spots was often higher than 250.0 t C ha-1. 
The  hotspots  were  partly  composed  of 
mixed  seed  stands  of  ash  and  alder  spe-
cies,  particularly  in  the  southern  portion. 
Other  hotspots  included  mixed  stands  of 
hornbeam, ash, and elm species.

According to the scale that is visible in the 
legend of the carbon density map (Fig. 5), 

iForest 17: 277-285 281

Tab.  3 -  Model  fit  statistics  for  linear 
regression model  (LRM) and nonlinear 
regression model (NLRM).

Criterion LRM NLRM

Bias (%) -25.88 24.46

RMSPE (%) 24.00 24.75

AIC 679.46 698.49

BIC 686.01 705.14

Fig. 3 - The plots of observed versus predicted values of LRM (a) and NLRM (b). The 
dotted red line represents the 1:1 line, while the black line indicates the regression 
line.

Fig. 4 - The plots of residu-
als versus fitted values with 

a loess curve for LRM (A) 
and NLRM (B).
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AGC=12204.3+749.8Band1Mean
−3247.1Band 3Mean+5.6 Band3Sum

AGC=1294.5e
( −9.9
Band 1Mean

+ 3.6
Band 3Mean

− 1726
Band3Sum)
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the central parts of the study site seem to 
store a moderate amount of AGC per unit 
area.  However,  these  parts  are  generally 
composed of pure stands of oak with large 
area coverage. Therefore, the relative con-
tribution of AGC in these areas to the total 
stock was critical.  We observed some de-
graded stands along the Bulanikdere creek 
(south part of the area), which stored little 
biomass  carbon  (7-30  t  C  ha-1)  in  their  a-
boveground components. There were also 
some forest stands storing almost no car-
bon because they were in the early succes-
sional  development  stages.  These  stands 
had  naturally  regenerated  in  newly  de-
posited sediment sites after flood events, 
so  they  had  no  considerable  biomass  in 
their thin stems (DBH < 8 cm – white irreg-
ular patches in Fig. 5). The non-forest areas 

with  some woody species  were excluded 
from the analysis. They were shown trans-
parently on the map because we had no re-
liable ground data for those areas.

Discussion
In the present study, the total AGC stock 

in Igneada Longoz Forests was estimated 
to  be  about  280  thousand  tons  with  a 
mean  of  124  t  C  ha-1.  To  the  best  of  our 
knowledge, there is no published work re-
porting AGC values for this region, except 
for  GDF  (2014).  Forest  planning  team  re-
ported the mean AGC stock of Igneada as 
95.6 t C ha-1 based on forest inventory in-
formation which they gathered during the 
management  plan  renewal  process  (GDF 
2014).  The  difference  between  the  mean 
values likely stems from distinct calculation 
methods and coefficients  used.  While  we 
employed species-specific biomass conver-
sion  and  expansion  factors,  the  manage-
ment  plan  utilized  standard  stem  density 
values and a broad categorization system. 
This  system  classifies  forests  as  either 
coniferous  or  broadleaved  based  on  the 
dominant tree species in each stand. How-
ever,  flooded  forests  often  exhibit  multi-
species  characteristics,  with  basal  area 
shares  that  are  similar  among  species.  In 
our case, most stands had more than two 
species, as evident in Tab. S1 (Supplemen-
tary  material).  This  finding  corroborates 

the work of  Schöngart et al. (2011), which 
emphasizes the importance of developing 
species-specific  allometric  models  for  bio-
mass estimations to reduce error biases.

Much  of  the  published  research  on 
flooded forests has been centered in Brazil, 
underscoring  the  significant  role  of  the 
Amazon  in  carbon  cycling.  For  instance, 
Borges  Pinto  et  al.  (2020) investigated  a 
Cerrado forest, primarily situated in north-
ern  Brazil,  reporting  mean AGC values  of 
88 and 92 t C ha-1 for the years 2014 and 
2019,  respectively.  They  emphasized  the 
Cerrado biome’s potential  as a crucial  car-
bon  sink  due  to  its  aboveground  woody 
biomass.  Similarly,  Kauffman  et  al.  (2018) 
estimated a mean AGC of 72 t C ha-1 for the 
semiarid northeast part of the Amazon re-
gion. The relatively low amount of AGC can 
be attributed to sparse vegetation cover in 
their  study  area  as  this  region  is  often 
called  Amazonian  savannahs  (Carvalho  et 
al.  2019).  While  the  AGC  estimates  from 
Brazil’s flooded forests are comparable to 
those reported in the present study, we ac-
knowledge  significant  ecological  differ-
ences between temperate and tropical for-
est types. Therefore, careful considerations 
was  given  when  selecting  each  case  to 
highlight similarities with our forest area in 
terms  of  stand  structure.  For  example, 
Schöngart  et  al.  (2011) conducted a  com-
prehensive  study  focusing  on  a  forest 
stand with mean DBH and tree height val-
ues  of  38.3  cm  and  17  m,  respectively. 
These  values  closely  resemble  a  typical 
stand  in  Igneada  Longoz  Forests,  as  evi-
denced from stand tables (GDF 2014). The 
researchers  estimated  the  mean  AGC  of 
that stand as 97.2 t C ha-1. The higher esti-
mate reported in our study (124 t C ha-1) can 
be attributed to differences in forest man-
agement regimes,  as  Igneada has  been a 
national  park  under  strict  protection  for 
decades  (Baskent  et  al.  2008,  Ozyavuz  & 
Yazgan 2010, GDF 2014, Camur-Elipek et al. 
2015).

As in any landscape, past anthropogenic 
disturbances can profoundly influence the 
spatial  structure of flooded forests. Many 
researchers have reported a high variance 
in and a heterogeneous distribution of AGB 
and AGC amounts in their areas of investi-
gation (Van Pham et al. 2019,  George-Cha-
cón et al. 2021). Therefore, comparing only 
the mean amounts may be inadequate or 
misleading  for  assessments  at  the  land-
scape level. For example,  Van Pham et al. 
(2019) classified their  carbon density map 
into five classes  – from very low  (0-50 t C 
ha-1) to very high  (200+ t C ha-1) accumula-
tion – and attributed the very-low and the 
low-stocked areas with bareland after cut-
ting  down  and  newly  planted  forests  in 
Thuan Chau district, Vietnam. Their results 
indicated that carbon accumulation values 
could be as high as 19 times between cer-
tain forest types, such as evergreen broad-
leaf and mixed bamboo forests. In a more 
recent  study  from  Mexico,  land  manage-
ment practices appeared to have a consid-
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Tab. 4 - Estimated aboveground carbon 
(AGC)  content  for  forestlands  of  the 
Igneada Longoz Forests National Park.

Stats AGC amount

Min (t ha-1) 0.1

Mean (t ha-1) 124

Max (t ha-1) 598

Std. Dev. (t ha-1) 115.4

Total (t) 279,258.9

Fig. 5 - Above-
ground carbon 

density map of the 
Igneada Longoz 
Forests National 

Park, Turkish 
Thrace.
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erable impact on the spatial pattern of AGB 
and  carbon  stocks  across  the  landscape 
(George-Chacón  et  al.  2021).  While  the 
lower  stocked  areas  distributed  around 
agricultural  and  urban  regions,  the  high-
stocked areas were located in strictly pro-
tected  forestlands.  Interestingly,  the 
largest uncertainty was found in the inter-
mediate areas that have store AGB of 25-50 
t  ha-1.  Our  carbon  density  map  revealed 
similar  results  to  those  reported  by  the 
aforementioned studies. AGC stored in ma-
ture  broadleaf  stands  was  17-fold  greater 
than that stored in newly-regenerated oak 
stands.  The spatial  pattern was also non-
homogeneous in our case. When  Fig. 5 is 
examined,  one can  clearly  see the  neigh-
bouring  patches  with  regularly  shaped 
edges that exhibit considerable differences 
in AGC content. It seems that these differ-
ences are likely related to past harvesting 
activities realized until the area was desig-
nated  as  a  national  park  in  2007.  Before 
2007,  clearcutting was the common prac-
tice  in  the  study  area,  especially  for  oak 
stands managed under the coppice system 
(GDF 2014). Although our field and remote 
sensing  datasets  were  collected  several 
years later, the disturbance history of the 
Igneada  Longoz  Forests  was  partially  de-
tectable in the carbon density map.

In  the  modeling  stage,  we had  17  inde-
pendent  variables  to  estimate  the  AGC 
stock in our study area. Among these vari-
ables, HH and CPR (HV/HH) were found to 
be  most  influential  and  were  used  in  re-
gression models. Although statistically sig-
nificant, NDVI and many other SAR indices’ 
influences  on  model  performance  were 
weak and thus, they were disregarded. Us-
ing HH and CPR data as independent vari-
ables, 92% of the total variation in AGC con-
tent was explained by NLRM.  Avtar et al. 
(2013) also  made  reasonable  forest  bio-
mass  estimates  by  using  cross-polarized 
SAR  data  in  Cambodia.  The  authors  sug-
gested the use of  ALOS/PALSAR data  for 
national-level  deforestation  analyses  over 
tropical  regions  in  the  context  of  REDD+ 
(Reducing  Emissions  from  Deforestation 
and forest Degradation) programs. Similar-
ly,  Ningthoujam et al.  (2018) used mosaic 
ALOS/PALSAR  data  to  estimate  the  bio-
mass of tropical deciduous mixed forests in 
northern India. Using the HH, HV, and SAR-
derived indices, they found that HH polar-
ization and HV provided the most accurate 
estimates.  Among the variables that  they 
used, the sum of polarizations yielded simi-
lar  estimation accuracy  to  the  use  of  HH 
solely.  In  another  study,  Ma  et  al.  (2017) 
used mosaic data of ALOS/PALSAR to esti-
mate forest AGB in China.  In their NLRM, 
HH had more influence on model accuracy 
than the sum of polarization (HH+VV) and 
HV data. With regard to mixed forests, the 
influence of the dual polarimetry (HH/HV) 
ratio  was  lower  than  in  other  data  sets. 
These  results  are  partly  in  line  with  the 
present case from Turkey. In our case, HV/
HH  ratio  played  the  most  critical  role  in 

both LRM and NLRM, perhaps due to the 
different foci  and species mixtures of the 
two  studies.  Ma  et  al.  (2017) focused  on 
AGB  while  our  focus  was  on  AGC.  Also, 
their  mixed  forests  were  composed  of 
hardwood  and  softwood  species.  These 
differences imply that the remotely sensed 
data  needed  to  estimate  forest  biomass 
and forest carbon may differ although AGC 
is usually derived from woody biomass. An-
other implication is that backscatter coeffi-
cients  of  coniferous  and  deciduous  trees 
can be dissimilar in each SAR band, so re-
searchers should test many band combina-
tions  in  their  modeling  efforts.  It  is  also 
noted that the use of additional variables 
from image texture may improve the esti-
mation  results  in  SAR-based  forest  moni-
toring and assessment studies (Zhang et al. 
2022).

Regarding  AGC  mapping,  we  basically 
used the LRM because the error metrics of 
the  two models  were  similar,  and use  of 
the NLRM in GIS would be challenging due 
to  the  complex  structure  of  nonlinear 
equations  compared  to  simple  LRM.  Al-
though LRMs have been extensively used 
in remote sensing of forest attributes (Par-
kitna et al. 2021, Narin et al. 2022), the mod-
els’  abilities to explain observed data pat-
terns  are  rarely  examined.  Among  a  few 
studies,  Fleming et al. (2015) have caution-
ed  researchers  about  the  potential  for 
LRMs to yield negative values in relation to 
the estimation of forest attributes through 
remote  sensing.  Archontoulis  &  Miguez 
(2015) suggest  the  use  of  NLRMs  to  ad-
dress the disadvantages of LRMs, such as 
high sensitivity to outliers. Similarly, Sun et 
al. (2018) stated that NLRMs are more ap-
propriate  if  unreasonable  estimates  (e.g., 
negative  carbon  stock)  occur  in  remote 
sensing projects. Because of these sugges-
tions  and  experiences  from  previous  re-
search, we used NLRM to estimate the AGC 
of forest stands with biologically unrealistic 
estimates. The AGC map in Fig. 5 was based 
on two models;  basically,  LRM was used, 
but  NLRM  estimates  were  inserted  into 
some land cover classes that had negative 
AGC values.  These  classes  included dune, 
agriculture,  marsh,  forest  opening,  and  a 
few forest stands. Thus, no negative values 
were observed on the AGC map. While this 
approach may be perceived as a limitation 
of  the  study,  it  can  also  be  viewed  as  a 
novel  aspect  contributing  to  the  produc-
tion of more realistic carbon maps.

Conclusions
This  study utilized forest  inventory  data 

and  SAR  images  to  model  the  AGC  of 
Igneada Longoz Forests, situated along the 
Black  Sea  coastline  in  northwestern  Tur-
key. The key findings revealed that the AGC 
stock  of  flooded  forests  could  be  esti-
mated and mapped with an RMSPE of ap-
proximately  26%  using  various  combina-
tions  of  bands from ALOS/PALSAR alone. 
Given  the  dynamic  nature  and  rarity  of 
flooded forests, monitoring the spatial and 

quantitative changes in their AGC stocks is 
of  value  and  SAR  data  can  aid  in  forest 
planning and land management efforts by 
offering a  rapid and relatively straightfor-
ward solution for carbon assessment. The 
importance  of  such  assessments  is  ex-
pected to increase further,  particularly  as 
voluntary carbon offset markets are set to 
be established in the Turkish forestry sec-
tor soon.
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