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Taper equations are indispensable tools for characterizing the stem profile of 
trees, providing valuable insights for forest management, timber inventory, 
and optimal assortments allocation. The recent progress in Terrestrial Laser 
Scanning (TLS) has revolutionized forest inventory practices by enabling non-
destructive data collection. In this study, four taper models from three differ-
ent model categories were established based on point cloud data of 219 Pinus 
nigra trees. The taper equations fitted with TLS data were used to predict the 
diameter at specific stem heights and the total stem volume. The results show 
that among fitted models, the Max and Burkhart segmented model calibrated 
by the means of a mixed-effects approach provided the best estimate of the 
diameter at different heights and the total stem volume evaluated for differ-
ent diameter at breast height (DBH) classes. In numerical terms, this model es-
timated the diameter and the volume with a respective overall error of 0.781 
cm and 0.021 m3. The predicted profile also shows that above a relative height 
of 0.7, the diameter error tends to increase due to the low reliability of data 
collected beyond the base of the crown primarily caused by interference from 
branches  and  leaves.  Nevertheless,  this  study  shows  that  TLS  technology 
presents a compelling opportunity and a promising non-destructive alternative 
for generating taper profiles and estimating tree volume.

Keywords: Taper Equations, Volume Equations, Forest Mensuration, Forest As-
sessment, Environmental Management, Max and Burkhart, B-Splines, Random 
Forest, TLS

Introduction
Precision  forestry  is  becoming  increas-

ingly  important in  the face of  the urgent 
challenges  posed  by  climate  change  and 
the rising call  for  sustainable  forest  man-
agement (SFM) practices (Kovácsová & An-
talová 2010). This emerging trend depends 
on leveraging precise data obtained using 
advanced  technologies  to  guide  well-in-
formed  decision-making  (Fardusi  et  al. 
2017).  In the realm of SFM, a noteworthy 
potential exists for value creation through 
implementing improved practices. Besides 
the  ecological  advantages  related  to  en-

hanced  productivity,  which  contribute  to 
carbon  sequestration  and  alleviate  pres-
sure on forests, the adoption of this para-
digm shift is fundamentally linked with sub-
stantial  economic and social  value (Chou-
dhry & O’Kelly 2018).

One concrete and increasingly prevalent 
instance of the potential being realized is 
precision  harvesting  (PH),  which  aims  to 
maximize the efficiency of  the harvesting 
operations while minimizing the impact on 
the  environment  and  overcoming  several 
limitations  inherent  to  conventional  log-
ging practices (e.g., lack of precision and in-

efficient resource utilization due to lack of 
tree-level  data  – Olivera  Farias  &  Visser 
2016). Within the scope of PH, the optimal 
allocation of assortments is a crucial com-
ponent of the wood products supply chain 
and the carbon stock projections since dif-
ferent  wood products  hold different  eco-
nomical values and carbon storage poten-
tial  (Brunet-Navarro et al.  2017,  Marchi  et 
al. 2020). Stem taper equations, which pre-
dict the change in stem form from ground 
to  tip  can  accurately  disaggregate  trees 
into  specific  products  based  on  certain 
specifications like log length and diameter 
and can help reach a better optimization of 
wood products (Calders et  al.  2015,  2022, 
Puletti et al. 2019).

In the academic literature,  a  panoply of 
taper model formulations and methods of 
parameter  estimation  is  currently  in  use 
and the selection of a proper model form is 
more  important  than  the  actual  fitting 
method (Weiskittel  et  al.  2011).  Following 
the classification of  McTague & Weiskittel 
(2020),  taper  models  could  be  grouped 
into three main categories:  (i)  parametric 
models  (e.g.,  simple-taper,  variable-expo-
nent, and segmented equations) which in-
clude most taper equations, are calibrated 
by  the  means  of  parametric  approaches 
(e.g.,  nonlinear least squares  – NLS  – and 
nonlinear  mixed  effects  – NLME  – meth-
ods) and can ensure biologically consistent 
behavior  (Mäkelä  &  Valentine  2020).  The 
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Max and Burkhart model stands as an in-
stance of this class, particularly within the 
segmented  equations  category,  and  has 
been  demonstrated  to  exhibit  high  accu-
racy in predicting stem taper (Gordon 1983, 
Kozak & Smith 1993, Max & Burkhart 1976). 
(ii)  Semiparametric models (e.g.,  B-splines 
and P-splines) which offer greater flexibility 
in the fit without requiring an extensive ad-
dition of parameters, may provide a better 
representation  for  complex  form  species 
(Kuzelka & Marušák 2014). The B-spline re-
gression model  is  a  particular  instance of 
semi-parametric model that was, first intro-
duced by Kublin et al. (2013), and has been 
successfully used to predict stem taper (Er-
ber  et  al.  2022,  Hansen  et  al.  2023).  (iii) 
Nonparametric models (e.g.,  Random For-
est  – RF – and Artificial Neural Network  –
ANN) can offer a strong predictive perfor-
mance without requiring the testing of sta-
tistical  hypotheses  (Baker  et  al.  2018).  In 
particular, RF, an ensemble learning meth-
od in machine learning,  has been gaining 
popularity in modeling taper by providing 
precise  predictions  and  demonstrating 
generalizable performance (Nunes & Gör-
gens 2016, Salekin et al. 2021).

Developing taper equations requires mul-
tiple  observations  on  upper-stem  diame-
ters  and  other  covariates  collected  on 
standing or  felled trees  (Gómez-García  et 
al.  2013).  Precision forestry  in  general  of-
fers substantial opportunities that may be 
beneficial  for  the  forest  sector  including 
the development of decision tools such as 
taper equations. The advancements in Ter-
restrial  Laser  Scanning  (TLS)  technology 
present an unprecedented opportunity for 
acquiring essential data with high precision 
and non-destructive methods, thereby sig-
nificantly reducing the time required com-
pared to conventional approaches (Calders 
et al. 2015, Pitkänen et al. 2019). Data acqui-

sition for TLS-based forest missions can be 
performed  following  single  or  multi-scan 
approaches. The single-scan approach has 
the  simplest  data  acquisition  setting  and 
the fastest speed, however, a major prob-
lem  with  that  scan  method  is  that  only 
parts of the trees are covered due to occlu-
sion effects by other objects. On the other 
hand, the multi-scan approach appears the 
most accurate technique and has the po-
tential to fully cover trees within the sam-
pling area, since scans are performed from 
multiple directions to overcome the occlu-
sion issue (Liang et al. 2016). Many studies 
using the multi-scan mode reported a stem 
detection rate between 62.1% and 100% de-
pending  on  the  forest  structure  and  the 
scanning  setup  (Liang  &  Hyyppä  2013, 
Maas et al. 2008).

Pinus nigra Arn. is a fast-growing conifer 
with  a  wide  though  fragmented  distribu-
tion  across  Europe  and  Asia  Minor,  pre-
dominantly  in  mountainous areas.  Due to 
its  ecological  flexibility,  it  is  one  of  the 
most  widely  used  tree  species  for  refor-
estation worldwide, and it is considered a 
potential  substitute  for  native  coniferous 
species in Central Europe under future cli-
mate change (Thiel  et  al.  2012).  Economi-
cally, it is one of the most important coni-
fers  in  Southern  Europe,  as  its  wood  is 
highly suitable for general construction, in-
door flooring, furniture industry, fuelwood, 
and paper pulp (Enescu et al. 2016). In Italy, 
Pinus  nigra  Arn.  stands  cover  an  area  of 
444,785  hectares,  representing  4.25%  of 
the  total  national  forest  area,  with  age 
ranging from 50 to 95 years (Marchi et al. 
2020).  The  previously  developed  yield 
equations for  Pinus nigra Arn. were based 
on  data  collected  from  young  trees  and 
have  been  shown  to  underestimate  the 
volume of mature trees in the current con-
ditions  (Bernetti  et  al.  1969).  Therefore, 

the primary aim of this study was to com-
pare the performance of four taper models 
from tree class categories in predicting di-
ameter over bark (DOB) and total stem vol-
ume  of  Pinus  nigra Arn.  specifically  using 
data  collected  from  multi-scan  approach 
with TLS. The developed tool will  provide 
forest  managers with more accurate esti-
mates  of  volume  and  enable  better  opti-
mization of assortments for industrial pur-
poses.

Materials and methods

Study area and sampling protocol
The study was conducted in the Vallom-

brosa  forest  (43°  44′ N,  11°  34′ E),  a  bio-
genetic reserve located about 50 km east-
southeast  of  Florence,  Tuscany,  Italy.  The 
native  vegetation  of  this  forest  is  mainly 
represented by beech (Fagus  sylvatica)  at 
higher  elevations,  oak-hornbeam  stands 
(Quercus spp. mixed with  Carpinus betulus 
L. and Ostrya carpinifolia Scop.), and chest-
nut (Castanea sativa Mill.) at lower altitudes 
(Dálya et al. 2019). As part of the main re-
forestation  program  that  occurred  after 
the World War II, the European black pine 
(Pinus nigra Arn.) was introduced in the ex-
treme western side of this forest (Bottalico 
et al. 2012). Covering 11% of the total forest 
area,  Pinus nigra Arn. stands were specifi-
cally studied here.

The Pinus nigra Arn. area was stratified as 
part of the sampling scheme based on two 
criteria: stand density and total tree height. 
Each criterion was divided into three levels 
to ensure optimal representation of forest 
stand variability, resulting in a total of nine 
strata. An airborne lidar flight was utilized 
to  achieve  this  stratification,  providing 
high-resolution  data  on  forest  structure 
and height. The ALS survey was carried out 
under leaf-on condition using a Eurocopter 
AS350  B3  equipped  with  a  LiDAR  RIEGL 
LMS-Q680i  sensor.  The  flight  height  was 
1000 m above ground level. Full-waveform 
LiDAR data were registered and discretized 
to a point density of 10 points m-2. Standard 
procedures  for  pre-processing  ALS  data 
(e.g., outliers and noise removal, classifica-
tion of ground/non-ground, and computa-
tion of height on the ground) were carried 
out with the LAStools software (Isenburg 
2017)  to  obtain  ALS  normalized  point 
clouds. Subsequently, one scan center was 
randomly placed in each stratum; then,  a 
multi-scan TLS mission was performed on 
each scan center to collect detailed infor-
mation on forest characteristics (Fig. 1).

TLS data collection and processing
TLS data were acquired using a FARO Fo-

cus 3D × 130 (FARO Technologies Inc., Lake 
Mary,  FL,  USA).  The  instrument  uses  a 
phase-shift-based technology with a maxi-
mum  range  of  120  m  and  acquires  data 
with an azimuth scan angle of 360°. It col-
lects the x, y, and z coordinates, and the in-
tensity  of  the  laser  returns  with  a  scan-
ranging noise of ± 1 mm.
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Fig. 1 - Map of the geographical situation of the Vallombrosa forest and the location 
of Pinus nigra Arn. stands in this forest (Orange color). Stratification of those stands  
by density (D1-D3) and canopy height (H1-H3; down left sub-figure).
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Comparative analysis of taper models for Pinus nigra using TLS data

Using the TLS device, the data acquisition 
was set to a reasonable scan configuration 
providing a good trade-off between a suffi-
cient density  and the required time for  a 
single scan (resolution of 7.6 mm at 10 m 
and  1/5  4× overall  quality),  for  a  total  of 
about 28 million pulses per scan. With the 
aim of reducing occlusion due to other ob-
stacles  or  vegetation  and  ensuring  suffi-
cient coverage, scanning was performed in 
multiple positions, at least 8 scans per plot 
subjectively distributed based on the den-
sity and structure. Each of the trees in the 
stand  was  at  least  scanned  from  3  posi-
tions and up to 12 white polystyrene regis-
tration  spheres  (14  cm  diameter)  were 
placed in each plot to aid in the digital reg-
istration of individual scans.

Individual scans were merged on the plot 
level using the automatic registration algo-
rithm implemented in Trimble Real Works® 

(TRW)  software.  The  software  automati-
cally joins overlapping redundant points to 
create one seamless 3D point cloud suited 
for  the  analysis.  Details  of  the  operation 
(settings,  criteria,  and  thresholds)  per-
formed by the software are not declared 
nor accessible. The process attained a very 
low plot-level registration error, and TRW 
achieved a high precision scan placement 
(mean = 2.33 mm, sd = 3.18 mm, max = 8.21 
mm). Using the TRW tool,  each pine tree 
stem was manually separated from the rest 
(i.e.,  from  the  ground,  the  crown,  and 
other non-pine points). Diameter measure-
ments  were  acquired  at  approximately  1-
meter intervals through the fitting of cylin-
ders to point cloud data (Fig. 2). To deter-
mine the volume, Huber’s formula was em-

ployed,  which  entails  using  the  diameter 
measured at the midpoint of a log segment 
(eqn. 1):

(1)

where  V is  the  log  volume,  H is  the  log 
length, and s0.5 is the mid-section sectional 
area.

Detailed  descriptive  statistics  are  pro-
vided for the trees inventoried in this study 
(Tab. 1). Statistics are derived from stem at-
tributes  estimated  from  point  cloud  data 
collected by the TLS device. The diameters 
and  total  height  of  the  stems  were  esti-
mated using the method described earlier, 
while the stem volume was determined by 
applying the Huber formula to each of the 
1m-length cylinders. In total, 219 trees were 
extracted  from  the  inventoried  area  and 
were  systematically  allocated  to  5  folds. 
Four folds were exclusively designated for 
model  training,  while  the  remaining  fold 

was  reserved  for  rigorous  testing  during 
each iteration of the cross-validation proce-
dure.

Used models
The data acquired by TLS was used to fit 4 

taper models from 3 different model cate-
gories,  namely  parametric,  semi-paramet-
ric, and non-parametric. Thereafter, the fit-
ted  models  were  evaluated  in  terms  of 
their ability to predict diameters at differ-
ent heights and the total stem volume as 
well. In the following, the different used ta-
per models, as well as the evaluation met-
rics, are explicitly introduced.

Max and Burkhart (1976)
The segmented stem profile model devel-

oped by  Max & Burkhart (1976) was used 
to represent the parametric model’s cate-
gory.  Numerous studies  have shown that 
this model is accurate in estimating upper 
stem diameters of many species (Jiang & 
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Fig. 2 - Schematic 
illustration of the 
point cloud data 

exploration. (a): The 
resulting point cloud 

after the pre-process-
ing steps from a 

small region within 
one stratification 

unit; (b): identifica-
tion of a representa-

tive tree within the 
point cloud; (c): 

zoomed-in view of 
the stem of the iden-

tified tree; (d): 
removal of branches 

for stem cleaning; 
(e): fitting a cylinder 
to a specific section 

of the tree; (f): cross-
sectional view of the 

point cloud for the 
section depicted in 

panel (e).
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V=h⋅s0.5

Tab. 1 - Mean, standard deviation (SD), and range for tree characteristics from all the 
samples. (*): Disk refers to a given cross-section of the stem, at a given height level, 
for which the diameter is measured.

Parameter Mean SD min max

DBH (cm) 45.05 11.22 21.0 82.0

Total height (m) 30.7 4.0 20.5 40.5

Disk* dob (cm) 29.3 12.5 0 82.5

Disk height (m) 14.5 8.7 0.9 40.5

Crown base height (m) 21.0 4.0 11.7 31.3

Volume (m3) 2.27 1.32 0.38 8.04
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Liu 2011, Ozçelik & Brooks 2012, Pang et al. 
2016).  The  model  consists  of  three  qua-
dratic  functions  representing  the  stem’s 
lower, middle, and upper parts grafted to-
gether at two points (a1 and a2) with contin-
uous polynomials and continuous first de-
rivatives at each point. In the present study 
the taper equation was constrained to pass 
through  diameter  at  breast  height  (dbh) 
while it is by construction constrained for 
the total height (ht).

Max  &  Burkhart  (1976) taper  equation 
can be expressed as follows (eqn. 2):

(2)

where  yij =  (dij /  dbhi)2,  dbhi is  the  dbh of 
tree i, with i = [1, 2, …, N], N is the number 
of trees in the sample,  dij  is the i-th upper-
stem diameter over bark (dob) at height hij 

on tree i, with j = [1, 2, …, ni], ni  is the num-
ber of diameter measurements for tree i, zij 

= 1 - (hij/ht) is the complement of the rela-
tive height,  a1 and a2 are the join points to 
be estimated from the data,  Ik = 1 if z >  ai, 
and 0 otherwise with k = [1, 2],  bp’s are re-
gression coefficients with p = [1, 2, 3, 4] and 
εij is the residual error term associated to 
the prediction of yij.

To constrain the taper equation to pass 
through dbh at the breast height, only one 
regression  coefficient  is  needed  to  be 
changed. In this case, the b1 parameter was 
modified as suggested in  Cao (2009) and 
replaced by the modified b1* which can be 
expressed as follows (eqn. 3):

(3)

where zbh = 1 - (1.3/ht). To estimate the pa-
rameters  of  eqn.  2,  we  used  the  Leven-
berg-Marquardt algorithm, which is imple-
mented within the “nls” function in the R 
stats package (R Core Team 2022).

Mixed-effects model
The stem taper models may show a high 

degree  of  multicollinearity,  autocorrela-
tion,  and  heteroscedasticity,  all  of  which 
can be addressed with appropriate statisti-
cal  methods. Many studies reported a re-
duction in  the within-tree autocorrelation 
when including a tree-level random effect 
(Garber  &  Maguire  2003,  Cao  &  Wang 
2011).  Using  a  mixed  model  for  example, 
the autocorrelation within the stem can be 
accounted for at each height measurement 
level.

In  the  mixed  effect  formulation,  all  pa-
rameters of eqn. 2 are expressed as fixed 
effect (population level coefficients) while 
some  parameters  may  contain  additional 
random  effect  (for  each  tree  within  the 
population).  In  the  case  of  the  Max  & 
Burkhart  (1976) taper  equation,  different 
combinations of the parameters (b1,  b2,  b3, 
b4, a1, a2) could be a potential candidate for 
random parameters.

Here is an expression for the stem profile 

including  the  fixed  and  random  effects 
(eqn. 4):

(4)

where  a1i and  a2i are join points to be esti-
mated from the data for each tree i, Ik = 1 if 
z > aki, and 0 otherwise with k = [1, 2], and 
bpi’s  are  the  regression coefficients  to  be 
estimated for each tree  i, with  p = [1, 2, 3, 
4].

To define the statistical properties of the 
terms  in  eqn.  4,  its  vectorial  formulation 
presented in  the  following offers  a  more 
simplified notation and will be considered 
(eqn. 5):

(5)

where  Yi is a vector of predictions,  Xi is a 
matrix of predictors,  Ai is a matrix for the 
fixed effects,  Bi  is a matrix for random ef-
fects, B is a vector of fixed parameters, Ui is 
the  vector  for  random effects  and  εi is  a 
vector of random errors, with the assump-
tions that εi = N(0,R) and Ui = N(0,D) where 
R is  the diagonal  variance-covariance ma-
trix of εi and D is a diagonal variance-covari-
ance matrix of Ui.

Using the “saemix” package in R (Comets 
et  al.  2017),  the stochastic  approximation 
expectation  maximization  algorithm  was 
used to estimate the parameters of eqn. 4.

The volume equation derived from the in-
tegration of  the  Max and Burkhart  taper 
equation can be expressed as follows (eqn. 
6):

(6)

where zy = 1 - (hy/ht) and zx = 1 – (hx/ht),  hx 

and  hy  being respectively the lower height 
of interest (m) and the upper height of in-
terest,  K is  a  conversion  factor  (=  π/
40,000), Ik = 1 if zy > ai, and 0 otherwise, Jk = 
1 if zx > ai, and 0 otherwise, with k = [1, 2].

B-splines
Semiparametric models are a class of sta-

tistical models that provide a flexible com-
promise between the rigidity of fully para-
metric models and the complexity of fully 
non-parametric  models.  By  avoiding  rigid 
assumptions about functional  form, semi-
parametric  models  offer  the  potential  to 
capture  the  underlying  relationship  be-
tween  variables  more  accurately,  particu-
larly  for  unknown  or  complex  functional 
forms, while parametric approaches can be 
used for estimating model coefficients. Ba-
sis-splines  (B-splines)  are  a  type  of  semi-
parametric  model  that  possess  favorable 
numerical  properties.  To  construct  a  B-
spline  model,  a  fixed  number  of  splines, 
also called polynomials,  are  connected at 
specific points known as knots while ensur-

ing the condition of continuity of their sec-
ond derivatives across the knots.

To formalize,  here we consider that  the 
population mean diameter for a given rela-
tive height (hr) may be approximated by a 
B-spline function of  degree  p and can be 
expressed as follows (eqn. 7):

(7)

where  f(hr)  is  the response of the model 
which  renders  the  diameter  value  di at  a 
given  hr,  βl’s  are  the  parameters  of  the 
model,  d1  is  the number of parameters in 
the  B-spline  function  with  the  condition 
that  d1 ≤  k1 + 1 +  p;  k1 corresponds to the 
number of internal knots, Bl,p

(1) (hr) is the B-
spline  basis  function  computed  based  on 
the “de Boor recurrence relation”.

Due to the nonlinear nature of stem ta-
pering and the hierarchy of data acquired 
from sampled trees, semiparametric mod-
els can be calibrated more efficiently using 
mixed approaches, which can also consider 
the random deviation of an individual tree 
from the population average. Linear mixed 
effect models can be used for the calibra-
tion if knot values are fixed a priori, which 
has the advantage of being less computa-
tionally  expensive  and  more  numerically 
stable than nonlinear mixed models.

The B-spline based taper equation consid-
ering both fixed and random effects can be 
written as (eqn. 8):

(8)

where f(hrij) corresponds to the population 
mean response, g(hrij) represents the tree-
specific deviation from f(hrij), εij is the tree-
specific  residual  error,  dij corresponds  to 
the j-th diameter from the i-th sample tree, 
hrij corresponds to the  j-th relative height 
from the i-th sample tree, βl’s are the fixed 
regression  coefficient  of  the  model,  θi,l’s 
are the random effect parameters to be es-
timated for each tree,  d2 is the number of 
random parameters in the  g function with 
the condition that  d2  ≤  k2 + 1 +  p;  k2  corre-
sponds to the number of internal knots in 
the random effect part of the model,  Bl,p

(2)

(hrij)  is  the B-spline basis function for the 
random effect part of the model.

The vectorial formulation of eqn. 8 can be 
expressed as follows (eqn. 9):

(9)

where  Yi  is the vector of diameter predic-
tions at the level of the  i-th tree,  Xi is the 
matrix of B-spine basis values for the fixed 
effect part of the model, Zi is the matrix of 
B-spine basis values for the random effect 
part of the model, β is a vector of fixed pa-
rameters,  θi is the vector of random effect 
parameters,  εi is the vector of residual er-
ror  with the assumption that  εi =  N(0,  R) 
and  θi =  N(0,  G)  where  R  is  the  diagonal 
variance-covariance matrix of  εi and  G is a 
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Y i=(A iB+BiU i)X i+ε i
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positive  non-diagonal  matrix  of  θi.  For 
more details on this method, see Kublin et 
al. (2013).

According to the suggestions by Kublin et 
al.  (2013). The parameters of eqn. 8 were 
estimated considering knots [0.0, 0.1, 0.75, 
1.0]  corresponding  to  the  B-spline  basis 
function  B(1)(hr)  for  the  population  mean 
function and [0.0, 0.1, 1.0] for B(2)(hr) repre-
senting the deviation from the population 
average. Hence, the regression model de-
pends  only  on  relative  height.  Measure-
ments  of  dbh and further  diameter  mea-
surements  of  a  specific  tree  are  merely 
used to calibrate the tree specific deviation 
from the average taper curve by estimat-
ing the corresponding random effects.  To 
ensure diameter estimates of zero at tree 
top, the last spline in both  B(1)(hr) and  B(2)

(hr) are omitted (see Fig. S1 in Supplemen-
tary  material  for  a  graphical  visualization 
and Kublin et al. 2013).

The R package “TapeR” was used to cali-
brate  the  model  by  the  Restricted  Maxi-
mum Likelihood (REML) method (default in 
the internally used R package “nlme” – Pin-
heiro et al. 2023) providing the dbh values 
for each sampling tree of training data. To 
estimate stem volumes,  the implemented 
numerical  integration method included in 
the “TapeR” package was used (Kublin et 
al. 2023).

Random Forest
Nonparametric  methods  have  been  re-

cently used for taper predictions providing 
reasonable  performances  (Nunes  &  Gör-
gens  2016,  Yang  &  Burkhart  2020).  The 
present study used Random Forest to esti-
mate the diameter at different heights of 
the stem. This algorithm works by training 
many decision trees on random subsets of 
the features, then averaging out their pre-
dictions.  Regarding  the  structure  of  the 
model, the diameter was set as the depen-
dent  variable,  which  were  predicted  by 
four  independent  predictors  namely  dbh, 
h, ht and h/ht (abbreviations as above). For 
fine-tuning  the  model,  the  grid  search 
method was used to evaluate all  possible 
combinations of hyperparameters (viz., the 
number of  decision trees;  the number of 
features to consider when looking for the 
best split; the minimum number of samples 
required to split  an internal  node)  within 
the search space as well as the cross-valida-
tion  method  to  prevent  overfitting.  The 
Python  library  “scikit-learn”  (ver.  0.24.2) 
which  includes  an  implementation  of  the 
Random  Forest  algorithm  was  used  here 
(Pedregosa et al. 2011).

Since nonparametric methods are not al-
gebraically  integrable,  including  the  ran-
dom forest algorithm, the Monte Carlo in-
tegration, which is a numerical integration 
approach, was self-implemented and used 
to predict the stem volume for each sam-
ple tree (Fig. 3). This technique relies on a 
random choice of points at which the inte-
grand  is  evaluated.  Monte  Carlo  integra-
tion  could  be  expressed  as  follows  (eqn. 

10):

(10)

where  ha and  hb being  respectively  the 
lower  and  the  upper  heights  of  interest 
(m),  K is  the  conversion  factor  (=  π/
40,000),  hi  corresponds to the  i-th height 
on the tree generated randomly from a uni-
form distribution U(ha,  hb),  i = [1, 2, …, N], 
and N is the number of samples generated 
with the distribution U.

Evaluation of the methods
Taper models should yield unbiased esti-

mates with minimal variance in both diam-
eter outside bark (dob) and stem volume. 
A single overall measure of bias or residual 
error of estimation calculated for dob and 
stem volume does not provide an exclusive 
indicator  of  the  goodness  in  evaluating 
several taper equations for a set of trees of 
a given species. This holds true when calcu-
lating  bias  metrics  at  different  parts  of 
stems and for different trees can result in a 
zero  or  close-to-zero  average  given  that 
bias  can be positive or  negative.  Alterna-
tively, the standard error which can report 
the variability of the biases is considered of 
better  reliability.  Moreover,  when dealing 
with  small  sample  size,  the  residual  vari-
ance can be influenced by the degrees of 
freedom,  making  the  correlation  index, 
also known as  the fitness  index,  a  useful 
metric  to  address  this  concern.  All  those 
metrics were used to rank the fitted mod-
els.

The most reliable measure of mean bias 

(B), overall residual variance (SSE) and the 
fitness index (FI) can be expressed as fol-
lows (eqn. 11 – eqn. 13):

(11)

(12)

(13)

where Yi is the actual observation, Ŷi is the 
predicted value of the actual observation, 
̄Ȳi is the mean of the actual observations, n 
is the number of observation and  k corre-
sponds to the number of estimated param-
eters.

As part of our evaluation process, we em-
ployed a grouping methodology to assess 
the  performance  of  the  taper  models  in 
conjunction  with  the  overall  assessment 
presented earlier. For dob, biases and stan-
dard  errors  were  calculated  for  each  10% 
step of the height along the stem, while for 
the  total  stem  volume  (from  ground  to 
top), the biases and standard errors were 
calculated by DBH classes. This allowed us 
to gain a comprehensive understanding of 
the accuracy of the taper equations across 
various tree dimensions as well  as  across 
different parts within the trees.

Results

Taper prediction
The model by Max & Burkhart (1976) was 

fit using both fixed and mixed-effects ap-
proaches. Different mixed-effects combina-
tions of parameters were tested (Tab. S1 in 
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Fig. 3 - Schematic tree form representation for the three applied models. (a) the Max  
and Burkhart parametric model; (b) B-splines semi-parametric model; (c) Random For-
est non-parametric model.
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2

∑i=1

n

(Y i−Ȳ i)
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Supplementary  material),  and  the  combi-
nation  involving  a1,  a2,  b1,  b2 and  b4 pro-
duced the lowest values of Akaike’s infor-
mation criterion (AIC) and Bayesian infor-
mation criterion (BIC), resulting in the fol-
lowing parameter values (Tab. 2) and mod-
el form (eqn. 14):

(14)

The mixed B-splines model was fit using 
the  linear  mixed-effects  approach  imple-
mented in the TapeR package and reached 
convergence.  In  order  to  constrain  the 
model predictions to equal zero at the tree 

top, d1 which is the number of fixed param-
eters  was  set  to  5,  while  d2 which  corre-
sponds to the number of random parame-
ters  was  set  to  4,  omitting  the  topmost 
spline,  respectively (see Fig.  S1  in Supple-
mentary material). The results of B-splines 
model fitting are represented in Tab. 3.

Regarding  the  RF  model,  after  rigorous 
fine-tuning,  the model reached a state of 
convergence  as  the  number  of  decision 
trees stabilized at an optimal value of 267. 
In  addition,  the  hyperparameter  tuning 
process led to the following optimized con-
figuration: number of features to best split 
=  3;  minimum  samples  to  split  internal 
nodes = 4.

For each taper equation, overall statistics 
of fit (Bias, SEE and FI) for the entire stem 
were  calculated  and  are  represented  in 
Tab. 4 for dob by model. Among the four 
models  under  investigation,  discernible 
trends in bias emerged. The Max and Burk-
hart models exhibited a noteworthy posi-
tive bias, suggestive of their propensity to 
overestimate diameters. In contrast, the B-
spline  and  Random  Forest  models  dis-
played a discernible negative bias, indicat-
ing  a  tendency  to  underestimate  diame-
ters. Notably, the Max and Burkhart fixed 
effect  model  demonstrated  a  particularly 
pronounced  inclination  towards  overesti-
mation. The results suggest that mixed-ef-
fect models outperformed models consid-
ering  only  fixed effects.  In  particular,  the 
Max and Burkhart and B-splines mixed-ef-
fects models showed relatively comparable 
SEE values of 0.78 cm and 0.96 cm, respec-
tively.  In  contrast,  the  Max and Burkhart 
fixed-effect and random forest models had 
comparable SEE values of 1.90 cm and 2.26 
cm,  respectively.  This  comparison  holds 
true for FI as well, although to a lesser ex-
tent than for SEE.

To assess the performance of taper mod-
els  at  different  positions  throughout  the 
stem, the statistics of fit, derived from the 
5-fold  cross-validation  results,  were  ana-
lyzed by relative height classes. These sta-
tistics are documented in Tab. S2 (Supple-
mentary material) and graphically depicted 
in Fig. 1. To comprehensively assess the ta-
per  of  all  models,  the  average  bias,  SEE, 
and FI were calculated for each model by 
relative height class along the stem. The re-
sults show that models including mixed ef-
fects outperformed those considering only 
fixed  effect  roughly  along  all  the  section 
heights.  Noticeably,  a  significant  increase 
of  SEE  was  observed  for  all  the  models 
from a relative height class of (70-80%) and 
was  shown  to  coincide  with  the  crown 
base  height  (CBH)  for  most  of  the  trees 
(Fig. 4).

Bias measurements indicate that the Max 
and  Burkhart  fixed-effect  model  tends  to 
consistently  overestimate  upper  stem  di-
ameters  throughout  the  entire  stem.  On 
the other hand, the random forest model 
tends to underestimate upper stem diame-
ters.  B-spline-based  predictions  tend  to 
overestimate upper stem diameters in the 
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Tab.  2 -  Estimates  of  parameters  (±  standard  errors)  for  fixed-effects  and  mixed-
effects taper models, based on the validation data set.

Parameters Fixed-effect model Mixed-effects model

a1 0.6384 ± 0.0242 0.71 ± 0.007

a2 0.8756 ± 0.0043 0.89 ± 0.001

b1 0.9577 ± 0.0085 0.96 ± 0.014

b2 -0.2546 ± 0.0166 -0.25 ± 0.017

b3 1.1693 ± 0.2123 2.06 ± 0.083

b4 25.5313 ± 1.9310 38.67 ± 1.428

var(a1) - 0.006 ± 0.00074

var(a2) - 0.0001 ± 0.00002

var(b1) - 0.042 ± 0.0042

var(b2) - 0.063 ± 0.0065

var(b4) - 52.250 ± 20.10

Tab. 3 - Estimates of parameters (± stan-
dard errors) for B-splines model, based 
on the validation data set.

Parameters B-splines model

β1 59.10 ± 0.89

β2 41.58 ± 0.52

β3 31.76 ± 0.22

β4 29.27 ± 0.44

β5 13.88 ± 0.05

var(θ1) 172.95 ± 13.15

var(θ2) 114.94 ± 10.72

var(θ3) 38.71 ± 6.22

var(θ4) 136.16 ± 11.66

Tab. 4 - Total stem fit statistics for the four taper models from cross-validation results. 
The underlined values refer to the best statistics. M&B is used here as the acronym of  
Max and Burkhart.

Model
Bias ± SD

(cm)
SEE ± SD

(cm)
FI ± SD

M&B fixed effect 0.274 ± 0.292 1.90 ± 0.213 0.97 ± 0.030

M&B mixed effects 0.027 ± 0.073 0.78 ± 0.094 0.99 ± 0.021

B-splines -0.015 ± 0.082 0.96 ± 0.102 0.99 ± 0.006

Random forest -0.010 ± 0.357 2.26 ± 0.286 0.96 ± 0.046

Fig. 4 - Distribu-
tion of the rela-
tive crown base 

height (in gray 
color). The distri-

bution fit curve 
(in red color), 

The boxplot of 
the relative 
crown base 

height (in blue 
color).
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lower and upper portions while underesti-
mating in the middle portion. In contrast, 
predictions  from  the  Max  and  Burkhart 
mixed-effects models exhibit an opposing 
bias pattern in the lower and middle sec-
tions but demonstrate similar  behavior  in 
the upper portion of the stem.

Volume prediction
The predictions of volume (over bark) by 

four  taper  models  were  compared  with 
each  other.  Overall  statistics  of  fit  (Bias, 
SEE, and FI) for the total stem volume are 
represented  in  Tab.  5.  The  results  show 
that  mixed-effects  models  outperformed 
models considering only fixed effect. Spe-
cifically,  Max  and  Burkhart  and  B-splines 
models had a comparable SEE values of re-
spectively  0.021  and  0.034  m3,  while  the 
Max and Burkhart fixed effect and the Ran-
dom  Forest  models  had  comparable  SEE 
values of respectively 0.221 and 0.273 m3. In 
addition,  the overall  results  show that all 
the four models tend to generally overesti-
mate  the  volume  as  the  bias  resulted  in 
positive values for all  the candidate mod-
els. Notably, the Max and Burkhart models 
(both  fixed  and  mixed  effects)  exhibited 
the smallest overprediction, with an abso-
lute bias value of less than 0.01 m3.

To assess  the performance of  stem vol-
ume  prediction  for  different  tree  dimen-
sions, the statistics of fit (SEE, bias, and FI) 
were  analyzed  by  DBH  class  categories. 
These statistics are documented in Tab. S3 
(Supplementary  material)  and  graphically 
depicted in Fig. 6. In general, results show 
that prediction errors are larger in large di-
ameter  trees  for  both  Max  and  Burkhart 
fixed  effect  and  Random  Forest  models, 
while the prediction error tend to be con-
stant over all the DBH classes for Max and 
Burkhart mixed effects and B-splines mod-
els. The results also demonstrate a strong 
correlation  between  volume  predictions 
and volume observations (FI > ~ 0.5) for all 
four models across all DBH classes, except 
for the DBH class category (55-65 cm) and 
(> 65 cm), where both the M&B fixed ef-
fect  and  Random  Forest  models  exhibit 
limitations (FI ~ 0.42 and 0.21, SEE ~ 0.39 m3 

and 0.71 m3, respectively).

Model ranking
A taper-estimating system should provide 

an unbiased estimation with minimum vari-
ance of both diameter outside bark (dob) 
and total stem volume outside bark. Using 
the results from Tab. 4 and Tab. 5, it is pos-
sible to rank the four estimating systems. 
The rank sums were created by ranking the 
performance  by  dob  and  stem  volume 
which were equally weighted here in this 
study.  The  rank  sums  reported  in  Tab.  6 
were generated in such a way that each es-
timating system was assigned a rank sepa-
rately for every relative height for dob and 
for every DBH class for the volume. These 
ranks were also summed for standard er-
rors  and  biases.  As  a  result,  Max  and 
Burkhart mixed-effects system ranked first 
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Tab. 5 - Total stem volume fit statistics for the four taper models from cross-validation 
results. The underlined values refer to the best statistics. M&B is used here as the  
acronym of Max and Burkhart.

Model Bias ± SD (m3) SEE ± SD (m3) FI ± SD

M&B fixed effect 0.0085 ± 0.065 0.221 ± 0.044 0.97 ± 0.207

M&B mixed effects 0.0080 ± 0.001 0.021 ± 0.002 0.99 ± 0.001

B-splines 0.0240 ± 0.006 0.034 ± 0.005 0.99 ± 0.005

Random forest 0.0560 ± 0.066 0.273 ± 0.066 0.91 ± 0.169

Tab. 6 - Rank sum analysis for the four estimating systems.

Model Parameters
Max and Burkhart

B-splines
Random 
forestFixed 

effect
Mixed 
effects

Overall SEE for diameter and volume 6 (3) 2 (1) 4 (2) 8 (4)

Overall bias for diameter and volume 6 (3) 4 (1) 5 (2) 5 (2)

SEE for diameter by relative height 31 (3) 17 (1) 16 (2) 36 (4)

Bias for diameter by relative height 29 (3) 21 (2) 30 (4) 20 (1)

SEE for volume by DBH classes 15 (3) 6 (1) 8 (2) 18 (4)

Bias for volume by DBH classes 16 (4) 9 (1) 13 (3) 12 (2)

Total 103 (4) 59 (1) 76 (2) 99 (3)

Fig. 6 - Bias, SEE and FI of the estimate of the stem volume by DBH class for the four  
models.

Fig. 5 - Bias, SEE and FI of the estimate of diameter over bark (dob) by relative class 
for the four models.

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Boukhris I et al. - iForest 17: 203-212

in  most  of  all  the  ranking  categories.  B-
splines based system ranked second in esti-
mating diameter and volume by standard 
error of estimates while random forest sys-
tem  ranked  third  and  Max  and  Burkhart 
fixed effect ranked fourth with regards to 
the same previously discussed estimates.

Discussion
Taper equations are an indispensable tool 

in the field of forest management and in-
dustry.  However,  the  development  of  an 
accurate  taper  model  present  inherent 
challenges,  mainly  due  to  the  need  for 
comprehensive  customization  to  account 
for  the  characteristics  exhibited  by  each 
species  and  site-specific  environmental 
conditions, and the availability of high-qual-
ity  data  required  for  the  model  develop-
ment.  In  the  present  study,  four  taper 
models  from  three  different  class  cate-
gories were compared in terms of their ca-
pacity to predict diameter over bark (dob) 
and total stem volume of  Pinus nigra Arn. 
Across models, the Max and Burkhart and 
B-splines  mixed-effects  models  demon-
strated superior accuracy and reliability in 
predicting  both  dob  and  total  stem  vol-
ume, with a small advance for the Max and 
Burkhart model.

The  Terrestrial  Laser  Scanner  (TLS)  has 
previously been employed as an effective 
tool for measuring trees in forest environ-
ments  and  generating  taper  equations 
(Saarinen et al. 2019,  Sun et al. 2016). The 
case  study  conducted  on  black  pine  for-
ests,  which  is  presented  here,  demon-
strated the feasibility of using TLS for sur-
veys and highlighted the high quality of the 
acquired data. In the Italian context, where 
tree  measurements  for  quantitative  pur-
poses  have  significantly  decreased  in  re-
cent decades, technological tools like TLS 
represent a pivotal advancement for reju-
venating our understanding of  the Italian 
forest sector.

In the present study, biases and standard 
errors  of  estimate were evaluated for  di-
ameter outside bark (dob) and total stem 
volume. These biases and standard errors 
were  also  evaluated  for  different  heights 
within the trees and across different tree 
sizes. The overall goodness-of-fit statistics 
(Bias, SEE, and FI) were calculated and re-
ported in Tab. 4, Tab. 5 and Fig. 5, Fig. 6 for 
the  four  tested  models.  The  results  indi-
cate  that  the  Max  and  Burkhart  and  B-
splines  mixed-effects  models  explained 
more than 99% of the total variation in pre-
dicting the upper-stem diameter and total 
stem volume. The Max and Burkhart fixed-
effect model explained more than 99% of 
this total variation, while the Random For-
est model explained more than 96% for the 
diameter  variation  and  96%  for  the  total 
volume variation.

The  superiority  of  models  that  include 
random effects over those that  only con-
sider fixed effects has been demonstrated 
in  various  previous  studies,  and  our  find-
ings are in agreement with this. For exam-

ple, a study conducted by  Leites & Robin-
son  (2004) showed  that  the  inclusion  of 
random effects considerably improved the 
fit of the Max and Burkhart taper equation 
for Pinus taeda. In a different study by Bro-
nisz  &  Zasada  (2020),  the  Kozak’s  taper 
equation  fitted  using  a  mixed-effects  ap-
proach provided better results for the up-
per diameter and total stem volume for Pi-
nus sylvestris. In our study, the Max & Burk-
hart  (1976) model  was  fitted  using  both 
fixed  and  mixed  effects  approaches.  No-
tably, the error was reduced by 52% for the 
upper-stem diameter and by 89% for the to-
tal  stem  volume  when  random  effects 
were additionally considered.

It is also noteworthy that the evaluation 
of the proposed models exhibited a higher 
Standard Error of Estimation (SEE) in pre-
dicting the upper-stem diameter at a rela-
tive height of [0.7, 0.8] (Tab. S2  – Supple-
mentary material). The analysis of the dis-
tribution of the tree’s relative crown base 
height reveals that 50% of the observations 
are located between a value of 0.7 and 0.8, 
and  the  maximum  relative  crown  base 
height  was  found  to  be  approximately 
equal to 0.8 (Fig. 4). This implies that all ob-
servations  above  a  relative  height  of  0.8 
were  necessarily  measured  inside  the 
crown. This  last  result  may partly  explain 
the notable increase in error in predicting 
the  upper-stem  diameter  at  a  relative 
height of 0.7. In fact, many studies have re-
ported  the  inability  of  Terrestrial  Laser 
Scanners  to  collect  reliable  data  beyond 
the base of the crown due to interference 
from  branches  and  leaves  as  well  as  the 
mutual occlusion between canopies. Practi-
cally,  when  approaching  higher  parts  of 
the  stem,  occlusion  starts  to  deteriorate 
the  quality  of  cylinder  fitting  (Liu  et  al. 
2018,  Pitkänen et al. 2019). Additionally, as 
the  distance  from  the  scanner  increases, 
spatial  resolution  decreases,  which  is  a 
well-known effect in scanning that particu-
larly impact the upper parts of trees (Liang 
et  al.  2016).  The  interference  from  the 
crown,  compounded  with  the  increased 
distance, may explain the models’ inability 
to  detect  a  well-defined  taper  pattern 
above the crown base.

In this study, Monte Carlo numerical inte-
gration was  employed for  estimating the 
volume of tree stems using the non-differ-
entiable and complex Random Forest mod-
el. This decision was justified by the mod-
el’s inherent characteristics mentioned ear-
lier,  which  render  traditional  integration 
methods  less  suitable.  It  is  imperative  to 
underscore  the  significance of  comparing 
our  chosen  method  with  alternative  nu-
merical  integration techniques  to  gain  in-
sights into result robustness and accuracy, 
potentially  informing future research.  No-
tably, the RF model, unlike the parametric 
and  semi-parametric  models  used  in  this 
study,  typically  demands  a  substantial 
amount  of  training  data.  In  our  analysis, 
the RF model obtained the lowest score in 
terms of SEE (dob and volume). This high-

lights the potential impact of our relatively 
small  dataset  (219  trees)  on  RF  perfor-
mance. In addition, the use of various inte-
gration methods (Huber, Monte Carlo, and 
analytical integration) in our study may in-
troduce minor biases affecting our results. 
Further  research is  needed to assess  and 
potentially  mitigate  these  biases,  as  their 
combined impact on the findings remains 
uncertain.

Considering the results of this study, the 
Max & Burkhart  (1976) taper  model,  cali-
brated  by  means  of  a  mixed-effects  ap-
proach, and its compatible volume integra-
tion  could  be  considered  for  operational 
use in estimating diameter outside bark at 
different heights, as well as total stem vol-
ume, respectively, with an overall precision 
of 0.781 cm and 0.021 m³ in Pinus nigra Arn.

Conclusion
This  study  explored  the  application  of 

precise  and  non-destructive  techniques, 
such as Terrestrial Laser Scanning, for col-
lecting  data  to  develop  taper  equations 
specific to Pinus nigra Arn., in line with the 
principles  of  precision  forestry.  The  col-
lected  data  were  used  to  fit  four  taper 
models  from  three  different  class  cate-
gories, evaluated for their ability to predict 
diameter at various heights and total stem 
volume. The  Max & Burkhart (1976) taper 
model, calibrated with a mixed-effects ap-
proach,  proved  superior  in  estimating  di-
ameter  and  volume  compared  to  other 
models.  However,  a  common  limitation 
among all models was their inability to ac-
curately predict diameter beyond a relative 
height  of  0.7  due  to  crown  interference. 
The  selected  model,  within  the  scope  of 
this study, can be operationally utilized by 
forest managers to enhance predictions of 
diameter and stem volume, aiding in opti-
mizing  wood  allocation  to  different  har-
vested products. Future research perspec-
tives may focus on refining algorithms and 
methods for extracting diameter at the up-
per parts of the stem.

Data, code availability and setup
The  whole  dataset  is  made  available  at 

https://doi.org/10.5281/zenodo.8414408. 
The study was performed on a laptop with 
Win10 22H2 operating system, an Intel Core 
i5  7200U  CPU  with  maximal  capacity  of 
2.70 GHz, and 8 Gb of RAM.
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