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Estimation of above-ground biomass using machine learning approaches 
with InSAR and LiDAR data in tropical peat swamp forest of Brunei 
Darussalam
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Forest above-ground biomass (AGB) is one of the critical measures of forest re-
sources. Therefore, it is crucial to identify a reliable method to estimate the 
AGB, especially in the tropics, where forest ecosystems are exposed to several 
depleting factors, including deforestation, climate change and replacing natu-
ral forests with palm oil tree plantations. We investigated the digital elevation 
data over the forest and uses an artificial intelligence-based approach to de-
velop a method for quick and cost-effective assessment of the AGB. The study 
was conducted in the tropical peatland rainforest of Brunei Darussalam. The 
Shuttle Radar Topography Mission (SRTM) elevation data product and Light De-
tection and Ranging (LiDAR) digital elevation data were used. A linear regres-
sion (LR) model and three different machine learning (ML) algorithms,  i.e., 
Random Forest (RF), Artificial Neural Network (ANN) and Support Vector Ma-
chines (SVM), were tested and compared. As model inputs, the SRTM elevation 
and distance from the peat dome’s center, a feature of a peatland swamp for-
est, were used. ML methods were trained on the samples taken from the LiDAR 
elevations. The validation results showed that the SVM was the best method to 
predict AGB in the study area with R2 = 0.70, RMSE = 83.65 Mg ha-1, and MAE = 
74.43 Mg ha-1, which in relative terms corresponds to approximately 6% of the 
AGB of the forest of interests. This study demonstrated the potential of ML al-
gorithms in AGB estimation based on canopy height derived from the InSAR-
based DEM in tropical forests.

Keywords: Above-ground Biomass, Machine Learning, Tropical Forest, InSAR, 
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Introduction
The  Food  and  Agriculture  Organization 

(FAO)  defines  Forest  above-ground  bio-
mass  (AGB)  as  “all  living  biomass  above 
the soil,  including stem, stump, branches, 
bark,  seeds,  and  foliage”.  Forest  AGB  is 
one of  the critical  measures  of  forest  re-
sources. Tropical forests cover 45% of the 
world’s total forest area and provide about 
one-fifth of the global carbon stock (Hun-
ter  et  al.  2013,  Marchesan et  al.  2020).  A 
more accurate  estimate  of  forest  AGB at 
various  scales  is  needed  to  quantify  the 
greenhouse gas emissions caused by defor-
estation  and  forest  degradation  (López-

Serrano et al. 2020). Generally, field-based 
measurements and remotely sensed tech-
niques  are  used  to  estimate  AGB.  Field-
based methods provide the most accurate 
AGB  values  but  have  limitations,  such  as 
being labor-intensive, costly and time-con-
suming  for  large-scale  projects  (Kappas 
2020). In addition, tropical forests contain 
obstacles to field-based tree height estima-
tion,  including  dense  understory  vegeta-
tion and closed-canopy conditions (Hunter 
et al. 2013). Due to these characteristics, re-
mote sensing methods have proven to be 
more accurate for monitoring and measur-
ing  forest  biomass.  Different  remotely 

sensed data types can be used for forest 
AGB  estimation,  including  active  sensors 
such as LiDAR and InSAR, which can pene-
trate  the  vegetation  canopy,  thus  repre-
senting  valuable  tools  for  AGB  assess-
ments. 

AGB can be estimated using parametric 
and  nonparametric  methods.  Allometric 
models are widely used to build AGB mod-
els,  though  they  cannot  completely  cap-
ture  the  complex  heterogeneous  land-
scapes  in  which  multiple  environmental 
variables impact the spatial distribution of 
AGB (Dai et al. 2021). Many different predic-
tion models other than allometric models 
are  available  to  measure  AGB,  including 
spatial statistical and ML models. LR model 
is widely reported in the literature as suited 
for AGB estimation (Jiang et al. 2020, Su et 
al. 2020). LR assumes a linear relationship 
between AGB and remote sensing predic-
tive variables. AGB may not be linearly re-
lated to remote sensing variables, so AGB 
estimation using LR has problems of under-
estimation/overestimation  for  larger  and 
smaller AGB values (Lu et al. 2016). To solve 
this problem much research has shifted to 
investigating the use of nonparametric al-
gorithms.  With  advances  in  the  modeling 
of non-linear systems and the development 
of computer science techniques, ML meth-
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ods  have  become  widespread.  ML  algo-
rithms  are  an  alternative  to  parametric 
methods in handling heterogeneous data, 
such as describing tropical forests (March-
esan et al. 2020). Due to the complex rela-
tionships for AGB prediction, nonparamet-
ric  ML  approaches  represent  potentially 
helpful methods to predict AGB (Mangla et 
al. 2016,  Ghosh & Behera 2018,  Marchesan 
et al.  2020,  Santi et al.  2020,  Zhang et al. 
2020,  Potapov  et  al.  2021).  LR  model  is 
straightforward and less experienced users 
may prefer this parametric method due to 
the complexity of using ML models (Rocha 
et al. 2019).

Selecting suitable variables from satellite 
and in situ data is essential for AGB model-
ing.  Several  studies used various parame-
ters, such as vegetation indices, texture in-
dices, multispectral bands, LiDAR metrics, 
topographic variables, or a combination, to 
estimate  AGB  by  ML  algorithms.  For  in-
stance,  Ghosh & Behera (2018), in a study 
conducted in a tropical forest in India, con-
sidered  SAR,  texture  and  vegetation  in-
dices to estimate AGB.  Chen et al.  (2018) 
used  ML  algorithms  to  estimate  biomass 
using texture characteristics, vegetation in-
dices, multispectral bands, and vegetation 
biophysical variables. They found that veg-
etation  biophysical  variables  and  texture 
characteristics were the most suitable pre-
dictors. Dang et al. (2019) applied a combi-
nation of 11 spectral and texture variables 
to estimate the AGB of Yok Don National 
Park in Vietnam. Kappas (2020) considered 
52  variables,  including  vegetation  indices, 
topography and textures,  to  predict  AGB 
using the RF algorithm. He found that com-
bining topography and vegetation indices 
presents  the  highest  prediction  score. 
Chen  et  al.  (2019) used  multispectral  re-
flectance,  vegetation  indices,  vegetation 
biophysical,  topographical  indicators  and 
texture variables as predictors for AGB esti-
mation. The results showed that multispec-
tral variables were the best predictors, and 
topographic  variables  were  more  impor-
tant than texture features. Further, LiDAR-
derived metrics  were used by  Marchesan 
et al. (2020) and  Rex et al. (2020) to esti-
mate AGB in tropical forest areas.

A  variety  of  ML  algorithms  have  been 
used to predict AGB, including random for-
est (RF  – Mangla et al. 2016,  Ghosh & Be-
hera  2018,  Kappas  2020),  artificial  neural 
network (ANN –Chen et al. 2018, Santi et al. 
2020),  maximum  entropy  (MaxEnt  – 
Saatchi  et  al.  2011,  Zhang  et  al.  2020), 
Gaussian process (GP  – Vafaei et al.  2018, 
Pham et al. 2020), multivariate adaptive re-
gression  splines  (MARS  – Baloloy  et  al. 
2018,  Zhang et al.  2020),  K-nearest neigh-
bour (KNN  – Rex et al. 2020,  Zhang et al. 
2022) and support vector machine (SVM  –
Gleason & Im 2012, Chen et al. 2018, Dai et 
al. 2021). The most popular nonparametric 
methods include ANN, RF, and SVM, which 
have  been  used  in  many  studies  to  esti-
mate canopy height and biomass by inte-
grating  remotely  sensed  and  in  situ data 
(Chen et al. 2019,  Dang et al. 2019,  López-
Serrano et al. 2020, Rex et al. 2020, Santi et 
al. 2020,  Su et al. 2020,  Malhi et al. 2022). 
However,  the  predicting  power  of  these 
methods have not yet been explored in the 
context  of  Brunei  Darussalam’s  tropical 
forests,  including  the  country’s  pristine 
Badas  peatland  forest.  This  study  is  the 
first  to  use  ML  methods  to  estimate  the 
AGB of the study area.  We evaluated the 
performance of an LR model and three ML 
algorithms, RF, ANN and SVM, for extrapo-
lating  AGB  by  exploring  the  information 
content of the InSAR and LiDAR data. The 
approach of this study brings new insights 
to evaluate the best method for estimating 
AGB at a large scale using free DEM data in 
the peat swamp tropical forests of Brunei.

Materials and methods

Area of interest
The Badas wet tropical peat swamp for-

est  was  selected  as  the  area  of  interest 
(AOI).  The geographic coordinates of  the 
AOI are 114° 15′ 06″ E, 04° 27′ 02″ N (SW cor-
ner) and 114° 25′ 52″E, 04° 38′ 18″ N (NE cor-
ner). Brunei Darussalam, a tiny Islamic Sul-
tanate,  is  situated  northwest  of  Borneo. 
The  Inter-Tropical  Convergence  Zone 
(ITCZ) fluctuation strongly affects Brunei’s 
climate,  producing  Northeast  and  South-
west  monsoons.  Annual  rainfall  is  2500-

4500 mm, with the driest period occurring 
in February-March (Becek et al. 2022). The 
AOI covers a large part of the Badas peat 
swamp forest located in the western sec-
tion of Brunei Darussalam (Fig. 1a). It bor-
ders to the South and West the Belait River 
and a highway to the North, serving Seria 
and Kuala Belait’s coastal oil towns. The in-
terior of Badas forest is not accessible by 
road  or  footpath.  The  Badas  peatland 
formed  following  the  Holocene  sea-level 
drop of approx. 5,000 years ago. It has a 
convex or domed shape. The peat in Badas 
swamps is described as a sapric type, com-
posed of slightly decomposed or partially 
decomposed forest debris,  and displaying 
very dark grey to dark reddish-brown hues 
(Becek et al. 2022). The forest’s dominant 
species is the “Alan” (Shorea albida, Dipte-
rocarpaceae). The surface area of the AOI 
is  approximately 10,000 ha.  The terrain is 
flat without any significant relief features. 
The approximate elevation of AOI is 5-10 m 
a.s.l.

Data

LiDAR data
The  LiDAR  survey  was  conducted  using 

the Riegel  Lidar Scanner LMS-Q680i at  15 
pts m-2 on 18 March 2018 from 550 m above 
the terrain. The height is referenced to the 
mean sea  level  datum.  The AOI  was  par-
tially covered by the LiDAR survey, as de-
picted in  Fig.  1b.  In  addition,  a  LiDAR-de-
rived digital terrain model (DTM) was avail-
able for the entire AOI at a spatial resolu-
tion of 20 m. The DTM was resampled to 
match  the  SRTM  (30  m)  resolution.  This 
DTM was generated from a LiDAR survey 
of the country conducted in 2009. The ap-
proximate vertical accuracy of the DTM is 
0.3 m.

SRTM data
The  Shuttle  Radar  Topography  Mission 

(SRTM) elevation data was generated us-
ing the InSAR method from the data cap-
tured using the C-band (wavelength = 5.6 
cm)  SAR  instrument  flown  onboard  the 
NASA Space Shuttle Endeavour in February 
2000. SRTM covers the Earth’s land surface 
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Fig. 1 - Location of the Area 
of Interest (AOI). Source: 
(a) Becek et al. (2022); (b) 
forest inventory map 
(Anderson & Marsden 
1984) of the AOI including 
reference plots (blue 
squares) and LiDAR cover-
age (blue grid).
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from latitude 56° S to latitude 60° N. Hence, 
SRTM covers 80% of the global land area. In 
2014, v3 SRTM data was released (Hu et al. 
2017,  Grohmann 2018).  The spatial  resolu-
tion of  the SRTM is  1-arcsecond (~30 m). 
The vertical accuracy of the SRTM data in 
flat terrain is  approx.  2 m (one sigma).  A 
peculiarity of the SRTM data (as any InSAR-
derived elevation data) is the elevation bias 
over forested areas.  As it  was found, the 
magnitude of  the  elevation bias  depends 
on the forest/biomass density, microwave 
band used, and forest canopy height. The 
SRTM elevation bias is explored here as it 
contains the biomass signal of interest.

Forest inventory data
To  date,  information  on  the  vegetation 

composition  and  condition  in  the  Badas 
peat  swamp  forest  was  collected  during 
the  National  Forest  Inventory  (NFI),  con-
ducted in 1980-1983, using aerial photogra-
phy at 1:25.000 scale and a limited number 
of  in  situ field  measurements.  This  study 
used a  set  of  15  field  plots  200  × 200 m 
each. At every plot, all trees with a diame-
ter at breast height (DBH, 1.3 m) of ≥ 40 cm 
were recorded. There is no NFI information 
on the timber volume of trees with a refer-
ence diameter  of  <  40 cm.  The NFI  does 
not  provide  data  on  biomass.  The  “AGB 
from  NFI”  column  in  Tab.  1 indicates  the 
AGB calculated from the NFI (Becek et al. 
2022).  For plots  of  interest,  the AGB was 
calculated by extracting relevant forest in-
ventory data such as the number of trees, 
timber density, total height and merchant-
able timber volume data. The essential de-
tails of the plots are shown in Tab. 1. In ad-
dition, Fig. 1b shows a copy of the forest in-
ventory map (Anderson & Marsden 1984) 
including the reference plot locations.

Method
A quick and cost-effective method using 

InSAR data together with a small sample of 
LiDAR data was developed to estimate and 
map AGB in Brunei Darussalam. To do that, 
a LR model and three ML models, including 
RF,  ANN and SVM, were adopted to esti-
mate the canopy height. ML models were 
trained on the training samples taken from 
the LiDAR data and validated using  in situ 
forest inventory plots. The workflow of the 
study is shown in Fig. 2.

Creating and estimating canopy height 
model

A digital surface model (DSM) at a spatial 
resolution of 30 m was developed from the 
LiDAR data.  The LiDAR DSM was created 
from the highest point within each resolu-
tion cell. By subtracting DSM from DTM, a 
canopy height model (CHM) was obtained. 
Before  the  subtraction,  the  DTM  was  re-
sampled to match the resolution of the In-
SAR data. Since the first return, LiDAR data 
for the production of a DSM were available 
for a part of the AOI, only an extrapolation 
was used to estimate the LiDAR data for 
the  voids  of  the  LiDAR data  using an  LR 

model and three ML models, including RF, 
ANN  and  SVM.  To  do  that,  500  samples 
were  randomly  selected  in  the  area  cov-
ered by the LiDAR. LiDAR CHM values were 
extracted for the samples. Then, the mod-
els were adopted to estimate the canopy 
height for AOI. Seventy percent of the Li-
DAR CHM, along with InSAR height and rel-
ative terrain height extracted for the corre-
sponding LiDAR CHM, were used to train 
the models, and 30% of the LiDAR CHM was 
used to validate the models.

AGB Estimation
AGB  can  be  estimated  using  allometric 

equations involving tree height  and DBH. 
The allometric equations are of the power 
function type (eqn. 1):

(1)

where y (m) is the tree height, x (cm) is the 
DBH,  a = 1.67 and  b = 0.7259 are parame-
ters valid for  Shorea albida determined by 
in situ measurements.

Eqn.  1  can  be  reformulated  to  extract 
DBH  as  a  dependent  variable  and  tree 
height as the explanatory variable. Hence, 
the  relationship  between  ABG  and  tree 
height (Chave et al. 2014, Becek et al. 2022) 
can be described as follows (eqn. 2):

(2)

where  y is  AGB  (Mg)  and  x is  the  tree 
height (m).
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Tab. 1 - Selected reference plots data from (Anderson & Marsden 1984). Coordinates 
are in WGS84 and projected to UTM 50N. (*): 3.4, 3.3 and 3.2/3 indicate the forest 
types of Padang Alan relatives, Alan Bunga forest, and Transitional between Alan and 
Alan Bunga forests, respectively.

Plot ID
Forest
type*

E (m) N (m)
Basal area
(m2 ha-1)

No. trees
ha-1

AGB from NFI
(Mg ha-1)

10 3.4 209815 506522 32.00 86.0 727.3

13 3.4 207820 505500 28.00 86.0 560.0

14 3.2/3 200689 505753 23.20 43.0 552.1

15 3.4 209782 504544 24.70 86.0 483.0

16 3.3 203881 504611 33.30 71.4 803.2

18 3.2/3 210802 503372 22.47 43.0 581.7

19 3.4 204870 503689 20.00 86.0 482.3

23 3.2/3 208809 502549 20.80 43.0 447.3

27 3.2/3 207837 501577 24.00 43.0 491.8

33 3.4 206757 499397 32.00 86.0 895.3

34 3.3 201902 499465 30.00 71.4 715.5

37 3.3 208917 498391 30.00 71.4 728.7

39 3.3 201785 497553 36.00 71.4 848.4

40 3.3 206145 496633 27.00 71.4 523.9

45 3.3 202965 494269 17.00 71.4 380.8

Fig. 2 - Workflow of the study.
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Linear regression (LR)
LR is one of the most widely used para-

metric modeling approaches to establish a 
linear relationship between the dependent 
variable  and  predictive  variables.  Forest 
canopy height was used as the dependent 
variable,  and  InSAR  height  and  distance 
from the peat dome center were used as 
the  independent  variables.  In  this  study, 
stepwise  LR  was  used  to  develop  the 
canopy height estimation model. Stepwise 
regression can determine the inclusion or 
exclusion of variables based on test statis-
tics of estimated coefficients through a se-
ries of tests (t-tests or F-tests – Jiang et al. 
2020).

Machine learning algorithms
Machine  learning  is  an  artificial  intelli-

gence  application  trained  by  experience 
without any programming. ML approaches 
are  based  on  powerful  regression  tech-
niques  to  solve  complex  and  non-linear 
problems. Furthermore, ML algorithms are 
not dependent on data distribution. Thus, 
it can seamlessly integrate data from differ-
ent sources (Ghosh & Behera 2018). ML is 
generally  categorized into supervised and 
unsupervised learning. Supervised learning 
consists of historical training data to make 
predictions on the data. At the same time, 
unsupervised learning uses unlabeled data 
and requires  prior  human intervention to 
label  data  correctly.  This  study  employed 
three ML algorithms, namely RF, SVM, and 
ANN, to predict AGB. The algorithms were 
modeled in the software package STATIS-
TICA™ (StatSoft  GmbH,  Hamburg,  Ger-
many).

RF is an ensemble learning algorithm that 
can be utilized for both classification and 
regression problems. It combines decision 
trees  on  various  subsets  of  the  relevant 
dataset. Each tree depends on the values 
of a random vector sampled independently 
and  with  the  same  distribution.  At  each 
node of the tree, the split is determined by 
a  set  of  predictor  variables  that  are  ran-
domly selected. In the regression trees, the 
significance of each node is determined by 
employing  input  data  to  evaluate  which 
variable in that node ideally characterizes 
the remaining observations. If the error is 
reduced by splitting a single rule into multi-
ple  rules,  the  regression tree  grows with 
more rules. When the lowest error against 
input  data  is  obtained,  tree  growth  is 
stopped, and all the trees’ predictions are 
aggregated; new information is  predicted 
(Guo et al. 2017, Ghosh & Behera 2018). The 
number  of  tree  parameters  significantly 
affects  the  performance  of  the  RF  algo-
rithm,  so  it  should  be  chosen  carefully 
(Vafaei et al. 2018). The number of tree pa-
rameters was optimized by comparing the 
results  obtained from different tree num-
bers. We evaluated 100, 200, 300, 400, 500, 
1000 and 1500 number of trees. The inde-
pendent variables that predict CHM were 
the SRTM DEM and distance from the peat 
dome center. Relative terrain height (RTH) 

was used as a distance function from the 
peat dome’s center. RTH was obtained by 
subtracting the lowest height in DTM from 
any other values.

Neural networks, also known as artificial 
neural networks (ANN), comprise a layered 
structure, including an input layer, one or 
more hidden layers,  and an  output  layer. 
Numerous hidden layers can be applied to 
formulate a more complex model to fit a 
challenging  problem.  Mathematical  func-
tions called neurons operate in  all  layers. 
Neural networks rely on training data that 
learns  using  interconnected  neurons  and 
improves their accuracy over time. ANN al-
gorithm  uses  the  back-propagation  (BP) 
learning rule to minimize the mean square 
error (MSE) between the actual output and 
the  desired  value  (Chen  et  al.  2019).  The 
performance  of  the  ANN  model  depends 
on  connection  weights  between  layers. 
These weights are adjusted based on the 
BP learning rule during the training phase 
(Were et  al.  2015).  MultiLayer  Perceptron 
(MLP),  which  is  a  powerful  data-driven 
modeling tool in ANNs, is widely used for 
forest  monitoring,  environmental  model-
ing  and  biomass  prediction.  To  construct 
the  MLP  model  it  is  required  to  find  the 
number of hidden layers and hidden neu-
rons in each layer, and weights. In most lit-
erature,  MLP  with  one  hidden  layer  has 
been considered a universal approach with 
strong predictability for nonlinear function 
(Ncibi et al. 2017). Therefore, MLP with one 
hidden layer was adopted in this study. In 
addition, the optimum MLP model was de-
termined  by  varying  the  number  of  neu-
rons  in  the  hidden layer  (1-10)  versus the 
root means square error value. The activa-
tion  functions  of  identity,  logistic,  expo-
nential and tanh were used. The Broyden-
Fletcher-Goldfarb-Shanno  (BFGS)  algo-
rithm was used as the training algorithm to 
solve the nonlinear optimization during the 
ANN modeling process. As known, there is 
no  need  to  use  any  initial  parameter  in 
BFGS (Brandić et al. 2023).

Support  vector  machines (SVM) is  a  su-
pervised nonparametric ML algorithm that 
can be used for  regression and classifica-
tion. SVM is a kernel-based algorithm that 
transforms  low-dimensional  data  to  a 
higher dimension using a non-linear kernel 
function to minimize the complexity of the 
model  and  training  error  (Zhang  et  al. 
2020). As a result, SVM can reach high ac-
curacy,  even  when  training  data  is  small 
(Santi et al. 2020). The training process for 
forest AGB estimation aims to construct an 
SVM function as follows (eqn. 3):

(3)

where  α represents  the  Lagrange  multi-
plier, k (xi ; x) is the kernel function, xi is the 
training  vector,  and  b indicates  the  bias 
term in the regression.

Selecting a kernel function with suitable 
parameters is crucial to obtaining success-
ful  results  from  the  model  (Vafaei  et  al. 

2018). This study employed SVM with radial 
basis function (RBF) kernel function to pre-
dict CHM. The RBF kernel was selected as it 
has a few parameters that need to be de-
fined and is  effective in  estimating forest 
parameters (Gleason & Im 2012). A sensitiv-
ity analysis of model parameters was per-
formed  to  optimize  model  performance. 
Predictive variables for the model were se-
lected the same way they were considered 
for the RF and ANN models.

Model assessment
The LR model and ML techniques, includ-

ing  RF,  ANN and SVM models,  were  vali-
dated using 15 forest inventory plots. The 
coefficient of determination (R2), mean ab-
solute error (MAE), and root mean square 
error  (RMSE)  were  used  to  compare  the 
performance of the models in forest AGB 
estimation. In modeling, using these statis-
tical criteria is common to measure the dif-
ference between observed and predicted 
values. The higher R2 and lower RMSE and 
MAE  values  show  a  better  regression 
model.  R2,  RMSE and MAE are  estimated 
using  the  following  equations  (Lee  et  al. 
2018, Vafaei et al. 2018, López-Serrano et al. 
2020 – eqn. 4, eqn. 5, eqn. 6): 

(4)

(5)

(6)

where  yi and  ŷi indicate the observed and 
predicted  AGB  for  the  i-th plot,  respec-
tively,  y� represents  the  observed  mean 
value of  biomass and  n is  the number of 
validation plots.

Results

Modeling and evaluation of AGB
The CHM was created for the LiDAR and 

the SRTM by subtracting the DTM from the 
corresponding  DSM.  Then,  using  the  RF, 
ANN, SVM and LR models, LiDAR CHM was 
estimated for the whole of AOI. For each 
algorithm,  70%  (350  samples)  of  random 
sampling data was used to train the model, 
and 30% (150 samples) was used to validate 
the model.  For all  models,  the input vari-
ables were the InSAR height and distance 
from the peat dome’s center, whereas the 
CHM  was  the  output  variable.  The  DTM 
was  used  as  a  function  of  distance  from 
the center of the peat dome. The relative 
terrain height was obtained for the AOI by 
subtracting the lowest height in DTM from 
any  other  values.  The  relative  elevation 
above  the  dome’s  edges  was  approxi-
mately 11 m. The maximum elevation was 
around 17 m. The number of tree parame-
ters  for  the  RF  model  was  optimized  by 
comparing the results obtained from differ-
ent tree numbers. As a result, the optimum 
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2

RMSE=√∑i=1
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model accuracy was found with 300 trees. 
The relative importance of predictive vari-
ables in the RF model was 1.0 and 0.25 for 
InSAR  height  and  RTH,  respectively.  The 
optimum model was found with three hid-
den  neurons  and  logistic  activation  func-
tion for the ANN model. The initial weights 
of the ANN are randomly assigned, and the 
interconnection  weights  are  adjusted  as 
the network is developed to minimize pre-
diction error. For the SVM model, the high-
est model accuracy was obtained with val-
ues of capacity = 15 and epsilon = 0.4, re-
sulting in an R2 value of 0.96 and an RMSE 
of 3.45 m. The optimum number of support 
vectors (164) was obtained from the opti-
mized parameterization of the SVM model.

Validation  results  of  the  forest  canopy 
height  estimation  using  the  models  are 
shown in Tab. 2. The coefficient of determi-
nation between the estimated and target 
CHM was found to be R2  = 0.94 for the RF 
model, R2  = 0.96 for the ANN model, R2  = 
0.96 for the SVM model and R2  = 0.87 for 
the LR model.  The lower RMSE and MAE 
values were found for the SVM model. The 
ANN model and the RF model followed it. 
In contrast, the LR model had the lowest 
performance  regarding  R2,  RMSE,  and 
MAE.

The results indicated that all models have 
satisfactory performances using the train-
ing data. Therefore, the canopy heights ob-
tained were used for biomass estimation. 
Forest  AGB  was  estimated  using  the  ob-
tained canopy height,  allometric equation 
and plot information. The results of the for-
est AGB estimation at the plot level using 
RF, ANN, SVM and LR models are shown in 
Tab. 3.

In  Fig.  3,  which  shows a  comparison of 
the calculated AGB from NFI and the pre-
dicted AGB values, the numbers from 1 to 
15 show plot IDs of 45, 23, 19, 15, 27, 40, 14, 
13, 18, 34, 10, 37, 16, 39, and 33 respectively.

Fig. 4 shows the correlation of the refer-
ence and modeled AGB by different tech-

niques in the study area. The coefficient of 
determination  varies  from  0.21-0.70.  The 
SVM  model  generally  shows  a  better  fit 
compared  to  the  1:1  line  than  the  other 
models.  The  AGB  estimates  from  LR  are 
usually lower than the reference biomass. 
SVM  tends  to  overestimate  the  AGB  for 
some plots. The average AGB calculated us-
ing SVM for the AOI plots was 518.23 Mg 
ha-1, 666.75 Mg ha-1 and 629.58 Mg ha-1, re-
spectively, for the 3.2/3, 3.3 and 3.4 forest 
types.

The  ML  algorithms’  performances  were 
tested  and  compared  based  on  the  R2, 
RMSE  and  MAE  (Tab.  4).  The  highest  R2 

value and the lowest RMSE and MAE val-
ues were found for the SVM model (R2 = 
0.71,  RMSE = 83.65 Mg ha-1,  MAE = 74.43 
Mg ha-1), followed by the ANN model (R2 = 
0.48, RMSE = 111.21 Mg ha-1,  MAE = 95.09 
Mg ha-1) and the RF model (R2 = 0.36, RMSE 
= 122.40 Mg ha-1, MAE = 102.43 Mg ha-1). In 
contrast  to  SVM,  the  LR  model  had  the 
lowest  performance;  R2,  RMSE,  and  MAE 
values were 0.21, 137.44 Mg ha -1 and 118.55 
Mg ha-1, respectively. Therefore, it was con-
cluded that  the SVM model  had the best 
performance in estimating the forest AGB 
in this study.

The AGB map for the AOI with the model 
of the best fit, SVM, is shown in Fig. 5. The 
area with the highest biomass concentra-

iForest 17: 172-179 176

Tab. 2 -  Validation results for the CHM 
model.

Model R2 RMSE
(m)

MAE
(m)

RF 0.94 4.47 2.95

ANN 0.96 3.81 2.94

SVM 0.96 3.45 2.65

LR 0.87 6.64 4.92

Tab. 3 - Predicted AGB values from the models for selected reference plots.

Plot
ID

AGB from NFI
(Mg ha-1)

Mean canopy
height (m)

Predicted AGB (Mg ha-1)

RF ANN SVM LR

10 727.3 54.35 688.29 684.42 663.46 653.30

13 560.0 53.69 625.79 615.71 599.78 548.12

14 552.1 49.12 392.31 421.32 473.24 384.10

15 483.0 58.61 402.52 415.06 446.42 357.61

16 803.2 53.11 689.20 706.34 740.19 726.03

18 581.7 44.94 376.38 389.71 413.86 368.10

19 482.3 49.08 537.72 520.71 524.23 453.47

23 447.3 55.67 273.63 280.22 332.04 255.06

27 491.8 61.00 301.76 304.46 344.93 294.80

33 895.3 45.73 776.64 755.44 798.80 689.25

34 715.5 44.70 596.08 677.64 665.85 553.86

37 728.7 56.94 713.95 752.70 738.98 667.79

39 848.4 57.19 853.45 878.28 828.41 817.35

40 523.9 45.59 362.64 381.40 426.13 354.91

45 380.8 51.92 469.15 454.03 414.65 442.34

Tab.  4 -  Validation  results  of  the  AGB 
model.

Model R2 RMSE 
(Mg ha-1)

MAE
(Mg ha-1)

RF 0.36 122.40 102.43

ANN 0.48 111.21 95.09

SVM 0.70 83.65 74.43

LR 0.21 137.44 118.55Fig. 3 - Comparison of the calculated AGB from NFI and the predicted AGB values.
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tion (reaching values of 80 to 145 Mg ha-1) 
was  found  in  the  Alan  Bunga  (3.3)  and 
Padang Alan (3.4)  forest.  This  area corre-
sponds  to  the  areas  with  higher  canopy 
height.  Lower biomass is  observed in the 
Transitional area.

Discussion
Selection  of  the  appropriate  modeling 

method is one of the most critical steps in 
studies  to  predict  AGB.  In  this  study,  we 
evaluated the performances of  four algo-
rithms, including LR, RF, ANN and SVM, for 
predicting  canopy  height  and  AGB  in  a 

tropical forest using remotely sensed data. 
The SVM model provided the highest pre-
diction  accuracy  regarding  the  lowest 
RMSE and MAE and the highest R2  among 
the models used. The ANN model and the 
RF model followed it, showing a slight un-
der-  or  over-estimation  of  AGB.  The  LR 
model  displayed the lowest  accuracy,  un-
derestimating  the  AGB  values.  Further-
more,  all  models  displayed significant  un-
derestimation  of  the  AGB  values  for  the 
3.2/3 forest type (i.e., transitional between 
Alan and Alan Bunga forests) plots, includ-
ing 14, 18, 23, and 27, and significant over-

estimation of  AGB values for  some plots. 
This may be due to forest degradation, de-
forestation and forest growth over time in 
this area.

Although  differences  in  data  used  and 
study areas make comparison difficult, this 
result  agrees  with  the  findings  of  some 
studies. For instance, the analyses by Glea-
son & Im 2012,  Jachowski et al. 2013,  Li et 
al.  2014,  García-Gutiérrez et al.  2015,  Chen 
et  al.  2018 and  Vafaei  et  al.  2018 showed 
that SVM was the best among the different 
machine learning techniques used, includ-
ing RF and ANN for AGB estimation.  Fur-
thermore, the SVM model has shown high 
accuracy  even  when  datasets  are  small 
(Mangla et al. 2016,  Santi et al. 2020). This 
is  because  the  SVM  works  on  distance-
based learning with  sample  points  rather 
than  a  mix  of  categorical  and  numerical 
features. Many researchers also report that 
SVM is often best at dealing with complex 
regression  and  classification  problems 
(Gleason & Im 2012,  Ghosh & Behera 2018, 
Malhi et al. 2022). Using RF and SVM mod-
els, Fagua et al. (2019) used LiDAR and SAR 
data  to  predict  canopy  height  in  tropical 
forests in South America. They achieved an 
RMSE value of 5.5 m and 6.5 m for the RF 
and SVM models.  Pourshamsi et al. (2018) 
used the SVM model  to estimate tropical 
forest canopy height with PolInSAR and Li-
DAR  data  fusion.  The  estimated  height 
showed an RMSE of 7.1 m and an R2 of 0.81. 
Lee  &  Lee  (2018),  using  linear  regression 
and an SBAS algorithm to estimate canopy 
height based on the L-band SAR, SRTM, Li-
DAR and optical data, obtained results of 
an R2 and RMSE 0.56 and 2.68 m, respec-
tively. In another study, combining PolSAR 
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Fig. 4 - Predicted AGB 
against AGB from NFI (Mg 
ha-1) of the RF (a), ANN (b), 
SVM (c), and LR (d) mod-
els. The dotted line repre-
sents the 1:1 line. The red 
line is the regression line.

Fig. 5 - Predicted 
AGB in the AOI 

generated from 
the best fit SVM 

model.
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variables with LiDAR data was used to esti-
mate forest canopy height using four ML 
algorithms, including RF and SVM models. 
The results showed high accuracy, with an 
average  RMSE  of  10  m  between  training 
samples and the models (Pourshamsi et al. 
2021). Validation results of the forest can-
opy height estimation using the models are 
shown in  Tab.  2.  RMSE values of  4.47 m, 
3.81 m, 3.45 m and 6.64 m were found for 
RF, ANN, SVM and LR models. Considering 
the mentioned studies, the results of this 
study showed that the canopy heights esti-
mated from the models were satisfactory. 
Therefore,  the  obtained  canopy  heights 
were used to calculate AGB.

The  results  indicated  that  the  nonpara-
metric ML models could provide a higher 
canopy  height  and  AGB  estimation  accu-
racy  compared to  parametric  models  like 
LR. Montaño et al. (2017) emphasized that 
ML techniques can replace allometric mod-
els and represent a safe and feasible alter-
native  to  regression  analyses.  In  this  re-
gard,  they  have  several  advantages  that 
make ML algorithms an alternative to para-
metric models. For example, ML is able to 
handle  complex  and  non-linear  relation-
ships between multiple environmental vari-
ables and AGB (Dai et al. 2021). Moreover, 
it uses cross-validation during model devel-
opment and produces robust models. Also, 
ML algorithms are preferred when creating 
the  model  by  several  independent  vari-
ables (Marchesan et al. 2020).

The limitation of this study was the use of 
the  forest  inventory  data  obtained  from 
the  NFI.  The  inventory  data  used  to  vali-
date the predicted AGB was compiled from 
an old  data  collection due to  the  limited 
field  data  availability  for  the  AOI.  This  is 
probably the reason of the high errors in 
the AGB estimation for some of the plots. 
The reliability of the results is expected to 
increase when the acquisition date of the 
dataset used in AGB verification is close to 
other datasets, and the method used can 
be better evaluated. Consequently, future 
work  will  be  planned  based  on  this  as-
sumption.

Regarding the variables used in the mod-
els, InSAR height was the most crucial for 
estimating  AGB.  Selecting  suitable  vari-
ables from satellite and physical data is es-
sential to map the AGB. Some studies have 
used various variables such as vegetation 
indices,  texture  indices,  multispectral 
bands,  LiDAR  metrics,  topographic  vari-
ables,  or  a  combination  of  these  to  esti-
mate AGB by ML algorithms. Climatic, hy-
drography and soil variables can also affect 
AGB, but they are either limited in accuracy 
or unavailable. Vegetation indices, texture 
and multispectral variables are not univer-
sal  predictors  of  biomass  because  they 
tend to saturate at relatively low biomass 
levels (Karakoc & Karabulut 2019). Besides, 
these  indices  tend  to  change  during  the 
year following tree phenology. LiDAR is an 
expensive technology, and LiDAR data are 
not  always  available.  Therefore,  by  elimi-

nating  the  mentioned  variables  in  this 
study, InSAR height and distance from peat 
dome center variables were used as predic-
tors.

Conclusion
This study used four algorithms to model 

and  map  forest  AGB  based  on  canopy 
height using LiDAR and InSAR data. An LR 
model  and  three  ML  algorithms  were  in-
vestigated  and  compared,  including  RF, 
ANN, and SVM. The results showed higher 
accuracy in canopy height and AGB estima-
tion  of  the  ML  models  compared  to  the 
parametric  LR model.  Among the models 
used, SVM was the best method to predict 
AGB in the study area with R2 = 0.70, RMSE 
= 83.65 Mg ha-1 and MAE = 74.43 Mg ha-1. 
The predictive variable with greater impor-
tance for the modeling was InSAR height. 
This  study demonstrated the potential  of 
ML algorithms in AGB estimation based on 
canopy  height  in  tropical  forests  derived 
from the InSAR-based DEM. This study can 
provide a  reference for  selecting suitable 
predictors and algorithms for AGB model-
ing in tropical forests.
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