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Performance assessment of two plotless sampling methods for density 
estimation applied to some Alpine forests of northeastern Italy
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In this study, we tested two plotless sampling methods, the ordered distance 
method and point-centred quarter method, to estimate the tree density and 
basal area in some managed Alpine forests in northeastern Italy. We selected 
nine independent forest stands, classified according to the spatial distribution 
patterns of trees (cluster, random, regular). A plotless sampling survey was 
simulated within the selected stands and the tree density and basal area were 
estimated by applying both the ordered distance method and point-centred 
quarter method. We compared the estimates, in terms of accuracy and preci-
sion, between the two methods and against estimates obtained from a simu-
lated survey based on a plot-based sampling method. The point-centred quar-
ter method outperformed the ordered distance method in terms of both accu-
racy and precision, showing higher robustness towards the bias related to non-
random spatial patterns. However, both the plotless methods we tested can 
provide unbiased accuracy of estimates which, in addition, do not differ from 
estimates of plot-based sampling. The satisfactory results are encouraging for 
further  tests  over  other  Italian  Alpine as  well  as  Apennine forests.  If  con-
firmed, the plotless  sampling method,  especially  the point-centred quarter 
method, could represent an effective alternative whenever plot-based sam-
pling is deemed redundant, or expensive.

Keywords: Distance-based Density Estimator, Ordered Distance Method, Point-
centred  Quarter  Method,  Accuracy,  Precision,  Conditional  Inference  Trees, 
Forest Monitoring

Introduction
Frequently  in  biological  surveys,  a  com-

mon task is the estimation of the attributes 
of  communities  composed  of  stationary 
objects like plants (Krebs 1999).  In forest 
stands, a total census of trees is generally 
too expensive, thus some form of sampling 
is often required (Sparks et al. 2002). With 
this aim, two general sampling approaches 
available  for  providing  estimates  of  tree 
attributes  (i.e.,  number  of  stems,  basal 
area, volume), include the well-known plot-
based and plotless methods (Jamali et al. 
2020). The plotless methods are based on 
distance  measured  through  two  general 
approaches:  (i)  selecting  a  random  tree 

and measuring the distance to its nearest 
neighbour (tree-to-tree or event-to-event); 
(ii)  selecting a random point and measur-
ing the distance to the nearest tree (point-
to-tree  or  point-to-event).  In  both  ap-
proaches,  the  measured  distance  is  con-
verted into  density  (λ)  by  computing the 
amount of area per tree, which in turn is 
equivalent to the reciprocal of the density, 
i.e., λ  1/(point-to-tree distance)∝ 2.

Due to the criterion used to obtain esti-
mates, the plotless methods are known as 
distance-based  sampling  methods.  These 
methods  have  been  applied  to  forests 
(Cottam  &  Curtis  1956,  Laycock  1965,  Ja-
mes & Shugart 1970, Pollard 1971, Ahmed & 

Ogden 1987, Buckland et al. 2001, Shiver & 
Borders 1996, Bryant et al. 2004, Ruch et al. 
2008, Kumarathunge et al. 2011, Hijbeek et 
al. 2013), as well as shrublands (Jamali et al. 
2020) and grasslands (Laycock 1965, Risser 
&  Zedler  1968).  Distance-based  sampling 
methods  have  higher  sampling  efficiency 
compared to plot-based sampling (Bryant 
et  al.  2004),  especially  when  large  areas 
must  be  sampled  (Kiani  et  al.  2013),  or 
when the identification of plot boundaries 
is difficult (e.g., in riparian habitats and wa-
terlogged soils).  Another considerable ad-
vantage  of  the  distance-based  sampling 
methods is the number of sampling points, 
which does not depend upon the density 
being measured (Pollard 1971). Conversely, 
when sampling is carried out with plots of 
fixed  area,  the  uncertainty  of  estimates 
varies as stand densities and tree sizes vary 
(Bryant et al.  2004,  Bonham 2013).  None-
theless, the advantages of distance-based 
sampling methods estimation can be out-
weighed by the practical difficulties (Jamali 
et al. 2020). Indeed, they can be time-con-
suming and labour intensive, particularly in 
dense stands where a second operator is 
almost always necessary to correctly iden-
tify neighbouring trees and accurately mea-
sure the distance.

Among  the  plotless  sampling  methods, 
there are the ordered (or ranked) distance 
method  (ODM  – Morisita  1957)  and  the 
point-centred  quarter  method  (PCQM) 
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(Pollard  1971).  The  former  involves  mea-
surement  of  the  distance  from  the  sam-
pling point to the kth nearest tree, while the 
latter  requires  measurement  of  the  dis-
tance from the sampling  point  to  the  kth 

nearest  tree  within  sectors  (usually  quar-
ters),  in which the area around the point 
has  been split  (Fig.  1).  The ODM was ini-
tially proposed by Moore (1954) for density 
estimation based on distance from a sam-
pling point to the nearest individual. After-
wards, it was extended by  Morisita (1957) 
to higher-order ranked distances (kth near-
est individual).  The PCQM, also known as 
the  angle  order  method  (Morisita  1957), 
was first employed in plant ecology by Cot-
tam (1953) and Cottam & Curtis (1956), and 
later  on  formalized  by  Pollard  (1971).  In 
practice  the  ODM  appears  more  efficient 
than  the  PCQM,  given  that  only  one  dis-
tance  must  be  taken  and  it  does  not  re-
quire locating sectors around the sampling 
point. Conversely, the PCQM is more time-
intensive,  requiring  the  measurement  of 
four  distances,  locating  more  than  four 
trees in the case of higher order distance (k 
> 1) and works well when it is easy to accu-
rately  partition the area around the sam-
pling point into quarters.

The  statistical  bases  of  distance-based 
density  estimators  (DDEs)  rely  on the as-
sumption that  the  target  objects  are  dis-

tributed according to a homogeneous Pois-
son point  process,  which  means  that  ob-
jects  are  randomly  distributed  and  inde-
pendent of each other (Cogbill et al. 2018). 
Unfortunately,  real  forests  seldom satisfy 
this assumption (Jamali et al. 2020) and the 
sensitivity of various DDEs to non-random-
ness  distribution  can  yield  biased  results 
(Engeman et al.  1994,  Cogbill  et al.  2018). 
However,  in non-random spatial  patterns, 
and  especially  in  clustered  patterns,  esti-
mates from plot-based sampling methods 
(PSM)  can  also  be  biased  (Bonham  2013, 
Adnan et al. 2017, Ochal et al. 2017, Silva et 
al. 2017).

Despite the numerous studies conducted, 
the influence of the characteristics of den-
sity estimators, the underlying spatial pat-
tern of the forest sampled, and the survey 
methodology, remain poorly understood in 
the performance of the DDEs (Cogbill et al. 
2018). In addition, as far as we know, there 
are no published studies in which distance-
based  sampling  methods  have  been  ap-
plied in Italian forests to estimate stand at-
tributes or have been tested as a potential 
alternative  to  the  classic  plot-based  sam-
pling.  These  considerations  motivated  us 
to assess the performance, in terms of ac-
curacy  and  precision,  of  the  ODM  and 
PCQM in  estimating the  tree  density  and 
basal  area,  using  data  from  real  forest 

stands located in the Alpine area in north-
eastern Italy,  by comparing the estimates 
with  those obtained through a  simulated 
plot-based sampling method.

Materials and methods

Study area
The forests  considered in  this study are 

located in the Alpine area of northeastern 
Italy  (Fig.  2)  where they are subjected to 
forest management practices. We selected 
9 forest stands located on steep slopes at 
an  elevation  between  1000  and  1900  m 
a.s.l.,  mainly composed of Norway spruce 
(Picea  abies Karst.),  silver  fir  (Abies  alba 
Mill.), beech (Fagus sylvatica L.), larch (La-
rix decidua Mill.) and Swiss stone pine (Pi-
nus  cembra L.).  The main features  of  the 
forests selected are reported in Tab. 1.

Stand selection process
We  collated  geo-referenced  data  from 

field surveys previously conducted by aca-
demic  and  research  institutions  in  the 
above-mentioned forests. As attributes of 
interest for this study, we considered the 
coordinates  of  trees  and  diameter  at 
breast height.

From each forest,  we identified and ex-
tracted  12  independent  stands  1  ha  wide 
(100  × 100 m), and classified each one ac-
cording to its spatial pattern. In vegetation 
analysis, two main types of spatial patterns 
or dispersion,  i.e., the arrangement of sta-
tionary  objects  on a  plane (Hijbeek et  al. 
2013), other than randomness, are known: 
regular (or uniform) and clustered (or ag-
gregated). Clark & Evans (1954) developed 
an  index  of  aggregation  (R-index)  as  a 
coarse  measure  of  the  spatial  pattern, 
whose values range from 0 to 2.15. A value 
of R-index > 1 suggests regularity, an R-in-
dex < 1 suggests clustering, while an R-in-
dex  =  1  suggests  randomness.  Thus,  for 
each extracted stand, we calculated the R-
index and performed a z-test for the signifi-
cance against the null hypothesis of com-
plete  spatial  randomness  (i.e.,  uniform 
Poisson process).  The package “spatstat” 
(Baddeley & Turner 2005) in the R software 
environment (R Core Team 2020) was used 
for the spatial point patterns analysis.

After  computation  of  the  R-index  and 
classification of the stands, 9 stands were 
selected, encompassing the wider range of 
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Fig. 1 - Schematic represen-
tation of ODM and PCQM 
in field application.

Fig. 2 -  Study area in northeastern Italy (left) and location of the forest stands (in 
white)  in  Bolzano,  Belluno,  Vicenza  and  Trento  provinces  (right).  See  Table  1  for  
details.
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detected  R-indices  and  representing  the 
three main types of spatial patterns (Tab. 1, 
Fig. 3).

Plotless sampling survey
Within each stand, we simulated a plot-

less sampling survey by generating random 
sampling points under the condition of ly-
ing at least 6 m apart from the stand bor-
ders to avoid null quarters, especially when 
k > 1.

For the application of the PCQM, the dis-
tance from each sampling point to the 1st, 
2nd and 3rd nearest tree in each of the quar-
ters was calculated. For the application of 
the ODM, the minimum distance to the kth 

nearest tree within quarters was used.
For each method and distance to the  kth 

tree, we used 10, 20 and 30 sampling points 
and the sampling was replicated 30 times. 
An  initial  amount  of  900  random  points 
was employed for 30 replicates, each of 30 
sampling  points.  From  the  initial  amount 
we randomly extracted 600 points for 30 
replicates,  each  of  20  sampling  points. 
Lastly, from the latter 600 points, we ran-
domly  extracted  300  points  for  30  repli-
cates, each of 10 sampling points.

Tree density estimation
In the ODM, over the distance measured 

from each random sampling point to the th 
nearest tree, e.g. the 1st or the 2nd or the 3rd, 
we applied the following formula for tree 
density  estimation  (Morisita  1957,  Pollard 
1971 – eqn. 1):

(1)

where λ is the estimated tree density, k the 
th nearest  tree,  n is  the  number  of  sam-
pling points,  π is the pi constant, and R² is 
the  square  of  the  distance  from  the  i-th 
random point to the k-th tree.

In the PCQM, first, the area around each 
random  sampling  point  was  partitioned 
into four  equal-angular  sectors  (quarters) 
and  then  the  distance  to  the  th nearest 
tree,  e.g.,  the 1st or the 2nd or the 3rd,  was 

measured in each of the four quarters. Af-
ter that, we applied the following formula 
for  tree density  estimation (Cottam 1953, 
Pollard 1971 – eqn. 2):

(2)

where  λ is the estimated tree density,  k is 
the th nearest tree, n is the number of sam-
pling points,  π is the pi constant, and R² is 
the square of the distance from the ith ran-
dom sampling point at the jth quarter to the 
kth tree.

Basal area estimation
Basal area was calculated using the diam-

eter of trees for which the distance from 
the  sampling  point  was  measured.  How-
ever  basal  area  must  be  differently  aver-

aged,  depending  on  whether  ODM  or 
PCQM is applied, as the ODM provides one 
diameter per sampling point, whereas the 
PCQM provides four diameters.  The aver-
age  basal  area  is  then  multiplied  by  tree 
density obtained from eqn. 1 in the case of 
ODM (eqn. 3), and by tree density obtained 
from eqn. 2 in the case of PCQM (eqn. 4):

(3)

(4)

where G is the basal area (m² ha-1),  n is the 
number of sampling points, π is the pi con-
stant, dbh is the tree diameter (in cm) from 
the i-th random sampling point, at the j-th 
quarter  for  PCQM,  λ1 and  λ2 are the  tree 
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Tab. 1 - Main features of the selected forest stands (with the provinces in brackets) with corresponding R-index and associated spa -
tial pattern. (a.s.l.): above sea level; (N): number of trees; (G): basal area; (Qmd): quadratic mean diameter); (*): The species compo -
sition is reported in decreasing values of abundance (Pa = Picea abies, Aa = Abies alba, Fs = Fagus sylvatica, Ld = Larix decidua, Pc = 
Pinus cembra, Ob = Other broad-leaved species, Oc = Other conifer species).

Forest Stand
Mean elevation

(m a.s.l.)
Tree species*

N
(N ha-1)

G
(m² ha-1)

Qmd
(cm)

R-
index

Spatial
pattern

Latemar (Bolzano) 1 1900 Pa, Pc, Ld 393 41.7 37 0.72 Clustered

Cansiglio (Belluno) 2 1400 Pa, Fs, Aa 790 45.2 27 0.80 Clustered

Altopiano di Asiago (Vicenza) 3 1000 Pa, Aa 1043 40.4 22 0.89 Clustered

Tesino (Trento) 4 1300 Aa, Pa, Fs 465 37.5 32 0.96 Random

Val di Sella (Trento) 5 1100 Fs, Pa, Aa, Ld, Ob 486 37 31 0.98 Random

Val di Sella (Trento) 6 1100 Fs, Pa, Aa, Ld, Ob 464 44.7 35 1.03 Random

Val di Cembra (Trento) 7 1200 Fs, Pa, Ld, Aa, Ob, Oc 549 47.1 33 1.08 Regular

Cansiglio (Belluno) 8 1400 Pa, Fs, Aa 951 54.9 27 1.15 Regular

Altopiano della Vigolana (Trento) 9 1100 Aa, Ld, Ob 522 39.1 31 1.19 Regular

Fig. 3 - Spatial arrangement of trees of selected stands according to distribution pat-
terns.
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density derived from eqn. 1 and eqn. 2, re-
spectively.

Accuracy and precision of estimates
We considered the accuracy, expressed in 

terms of relative error (RE), and the preci-
sion,  expressed in  terms of  coefficient  of 
variation (CV),  as  metrics  to evaluate the 
estimates (i.e., tree density and basal area). 
Accuracy refers to the closeness of the es-
timate to the true value,  whilst  precision 
refers  to  the  closeness  of  estimates  to 
each other.

The  accuracy  and  precision  were  com-
puted as in the following formulas (eqn. 5, 
eqn. 6):

(5)

(6)

where σ̂ is the standard deviation of the es-
timated attribute. As a rule of thumb, the 
closer to zero both the accuracy and preci-
sion are, the better the estimates.

In addition, to evaluate whether the two 
plotless sampling methods could represent 
an  alternative  to  PSM,  we calculated the 
accuracy and precision of the tree density 
and basal area estimates obtained from a 
simulated plot-based sampling  where  the 
plots had different sizes. Since the plotless 
and plot-based sampling methods are con-
ceptually  different,  it  is  impossible  to  es-
tablish  equal  conditions  (i.e.,  the  number 
of  sampling  points  and  area  of  a  single 
sampling  unit).  Thus,  we  simulated  plots 
with  increasing  area,  i.e.,  650,  1250,  and 
2500 m2, to compare the precision and ac-
curacy  of  estimates  with  those  obtained 

from  plotless  sampling  methods  with  10, 
20  and  30  sampling  points,  respectively. 
The simulated PSM was replicated 30 times 
for each of the three plot-sizes.

Performance evaluation
We evaluated the overall performance of 

the two plotless sampling methods (m) by 
balancing the trade-off between accuracy 
and precision of  the  estimated attributes 
(i.e.,  tree  density  and  basal  area),  within 
the several combinations of distance from 
the sampling point to the k-th nearest tree 
(k), the number of sampling points (nsp), 
as  well  as  the  spatial  patterns  (sp).  With 
this  aim,  we employed the decision trees 
approach (Breiman et al. 1984), a non-para-
metric partitioning technique which recur-
sively performs univariate splits of the re-
sponse variable (i.e., accuracy or precision) 
based on the values on a set of covariates 
(i.e.,  m,  k,  nsp,  sp).  Specifically,  we  used 
the conditional inference trees (CIT) which, 
differently from algorithms applying infor-
mation  measures  such  as  the  Gini  coeffi-
cient,  avoid  overfitting  and  the  selection 
bias towards covariates with many possible 
splits, by performing a significance test on 
the independence between covariates and 
response  (Hothorn  et  al.  2006).  In  a  CIT 
model,  the  hierarchical  level  of  an  inner 
node (i.e., the node having child nodes) is a 
qualitative measure of  the importance of 
the embedded covariate, namely the closer 
the inner node to the root, the larger the 
importance  of  the  embedded  covariate. 
CIT  models  were  implemented  using  the 
package  “partykit”  (Hothorn  &  Zeileis 
2015) in the R software environment.

Results and discussion
For the ODM the accuracy of estimates is 

primarily  affected  by  the  distance  to  the 
nearest  tree  and  secondly  by  the  spatial 
pattern  (Fig.  4).  The ODM provides  unbi-
ased and better accuracy of the estimates 
when  k  = 1, whatever the number of sam-
pling points (Tab. 2, Tab. 3). Moreover, only 
when  k  is equal to 1, the accuracy of esti-
mates  provided  by  ODM  does  not  differ 
from either the PCQM or PSM (Tab. 2, Tab.
3).  The  tree  density  estimate  of  ODM  is 
more accurate in regular spatial  patterns, 
whereas  the  basal  area  estimate  is  more 
accurate  in  clustered  and  random  spatial 
patterns (Fig. 4). For k > 1, the accuracy of 
estimates of ODM strongly decreases (Tab.
2, Fig. 4). Regarding the precision, the esti-
mate of tree density provided by the ODM 
is primarily affected by the distance to the 
nearest tree and, secondly, by the number 
of sampling points (Fig. 5). The precision of 
the tree density estimate provided by the 
ODM improves firstly at an increasing dis-
tance to the nearest tree and, secondly, at 
an  increasing  number  of  sampling  points 
(Tab. 3, Fig. 5). Differently, the precision of 
the basal area estimate is less affected by 
the number of sampling points, although it 
improves  with  increasing  the  number  of 
points.  Lastly,  the  precision  of  estimates 
provided  by  ODM  is  significantly  lower 
than  PCQM  whatever  the  attribute,  dis-
tance to the nearest tree, and number of 
sampling points (Tab. 3). However, for the 
tree density estimate when k > 1, the preci-
sion  of  ODM  does  not  differ  from  PSM 
(Tab. 2).

The accuracy of estimates of PCQM is pri-
marily affected by the spatial pattern and 
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Precision(CV )=
σ̂ estimate

estimate
⋅100

Tab. 2 - Average values of accuracy (error) and precision (coefficient of variation) of the estimate of tree density, by distance to the  
kth nearest tree and number of sampling points, for the ODM, PCQM and PSM. Confidence intervals (95%) around the mean in  
square brackets. Values marked with an asterisk indicate the unbiased accuracy of estimates. In round brackets, the plot-size area is  
assumed to be comparable to the respective number of sampling points.

k # points
Accuracy (Error %) Precision (Coefficient of variation %)

ODM PCQM PSM ODM PCQM PSM

1 10
(650 m²)

-9.10*
[-19.80, 1.61]

-7.60*
[-16.50, 1.29]

-7.37
[-12.20, -2.54]

32.48
[30.39, 34.57]

15.52
[14.24, 16.80]

16.26
[12.89, 19.64]

1 20
(1250 m²)

-7.76*
[-17.48, 1.96]

-7.76*
[-16.78, 1.25]

-5.48*
[-11.77, 0.81]

23.05
[20.28, 25.82]

10.71
[8.92, 12.50]

11.49
[9.58, 13.39]

1 30
(2500 m²)

-8.62*
[-18.08, 0.85]

-7.74*
[-16.57, 1.10]

-4.32
[-8.52, -0.12]

19.91
[18.65, 21.18]

9.66
[8.30, 11.02]

7.02
[5.15. 8.88]

2 10
(650 m²)

-46.59
[-49.54, -43.63]

-7.92
[-12.27, -3.57]

-7.37
[-12.20, -2.54]

20.68
[16.88, 24.47]

11.18
[9.70, 12.66]

16.26
[12.89, 19.64]

2 20
(1250 m²)

-44.38
[-47.53, -41.22]

-7.71
[-12.36, -3.05]

-5.48*
[-11.77, 0.81]

14.83
[13.23, 16.44]

8.11
[7.18, 9.05]

11.49
[9.58, 13.39]

2 30
(2500 m²)

-44.28
[-46.80, -41.75]

-7.93
[-12.54, -3.31]

-4.32
[-8.52, -0.12]

11.46
[10.03, 12.88]

6.95
[5.80, 8.10]

7.02
[5.15. 8.88]

3 10
(650 m²)

-55.95
[-58.21, -53.69]

-7.13
[-10.32, -3.95]

-7.37
[-12.20, -2.54]

16.32
[13.45, 19.20]

9.74
[8.07, 11.42]

16.26
[12.89, 19.64]

3 20
(1250 m²)

-53.90
[-56.65, -51.15]

-7.07
[-10.86, -3.29]

-5.48*
[-11.77, 0.81]

11.36
[9.83, 12.89]

7.15
[6.11, 8.20]

11.49
[9.58, 13.39]

3 30
(2500 m²)

-53.76
[-56.09, -51.43]

-7.41
[-10.99, -3.84]

-4.32
[-8.52, -0.12]

8.19
[6.78, 9.60]

5.33
[4.49, 6.17]

7.02
[5.15. 8.88]

Accuracy (RE )= estimate−true
true

⋅100
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Fig. 4 -  Accuracy (relative error) of estimates of tree density 
(above) and basal area (below).

Fig. 5 - Precision (coefficient of variation) of estimates of tree 
density (above) and basal area (below).
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Tab. 3 - Average values of accuracy (error) and precision (coefficient of variation) of the estimate of basal area, by distance to the kth 

nearest tree and number of sampling points, for the ODM, PCQM and PSM. Confidence intervals (95%) around the mean in square  
brackets.  Values marked with an asterisk indicate the unbiased accuracy of estimates.  In round brackets,  the plot-size area is  
assumed to be comparable to the respective number of sampling points.

k # points
Accuracy (Error %) Precision (Coefficient of variation %)

ODM PCQM PSM ODM PCQM PSM

1 10
(650 m²)

5.02*
[-12.10, 22.14]

7.01*
[-6.51, 20.53]

-0.11*
[-5.87, 5.65]

45.70
[38.32, 53.08]

21.65
[17.73, 25.58]

20.32
[13.98, 26.65]

1 20
(1250 m²)

2.64*
[-12.13, 17.41]

4.88*
[-6.96, 16.71]

-1.13*
[-4.69, 2.43]

30.67
[25.85, 35.89]

14.72
[11.55, 17.88]

13.43
[9.32, 17.54]

1 30
(2500 m²)

2.97*
[-11.10, 17.03]

5.62*
[-6.37, 17.61]

0.27*
[-3.51, 4.05]

27.78
[24.86, 30.69]

12.68
[10.22, 15.14]

7.89
[5.90, 9.88]

2 10
(650 m²)

-43.03
[-47.01, -39.06]

1.64*
[-6.01, 9.28]

-0.11*
[-5.87, 5.65]

37.20
[30.10, 44.30]

19.64
[15.75, 23.53]

20.32
[13.98, 26.65]

2 20
(1250 m²)

-39.97
[-42.51, -37.43]

3.00*
[-3.44, 9.45]

-1.13*
[-4.69, 2.43]

28.61
[22.82, 34.40]

14.02
[11.51, 16.53]

13.43
[9.32, 17.54]

2 30
(2500 m²)

-40.18
[-43.35, -37.01]

2.25*
[-4.85, 9.34]

0.27*
[-3.51, 4.05]

20.72
[17.33, 24.11]

11.38
[9.02, 13.73]

7.89
[5.90, 9.88]

3 10
(650 m²)

-52.13
[-56.23, -48.03]

4.17*
[-3.87, 12.20]

-0.11*
[-5.87, 5.65]

35.83
[30.57, 41.08]

17.88
[13.51, 22.25]

20.32
[13.98, 26.65]

3 20
(1250 m²)

-50.00
[-53.02, -46.97]

3.64*
[-1.84, 9.12]

-1.13*
[-4.69, 2.43]

24.50
[19.03, 29.97]

12.95
[9.89, 16.00]

13.43
[9.32, 17.54]

3 30
(2500 m²)

-50.21
[-53.23, -47.18]

3.18*
[-3.09, 9.45]

0.27*
[-3.51, 4.05]

19.80
[15.47, 24.13]

10.39
[7.16, 13.62]

7.89
[5.90, 9.88]



Notarangelo M et al. - iForest 16: 385-391

secondly  by  the  distance  to  the  nearest 
tree (Fig. 4). Averagely, the accuracy of the 
tree density estimate provided by PCQM is 
robust to both distance to the nearest tree 
and  number  of  sampling  points  (Tab.  2). 
When k = 1 and in a regular spatial pattern, 
the PCQM provides an unbiased estimate 
of  tree  density  (Tab.  2,  Fig.  4).  For  basal 
area, the accuracy of the estimate provid-
ed by the PCQM is  unbiased in  clustered 
and random spatial patterns, regardless of 
distance to the nearest tree (Tab. 3, Fig. 4). 
In regular spatial patterns, PCQM provides 
a positively biased estimate of basal area, 
although  the  bias  decreases  when  k >  1. 
The accuracy of estimates of PCQM does 
not differ from PSM and, in addition, it pro-
vides significantly  better  accuracy of  esti-
mates than the ODM when  k >  1  (Tab.  2, 
Tab. 3).

The  precision  of  estimates  provided  by 
the PCQM is primarily affected by the num-
ber  of  sampling  points  and,  secondly,  by 
the distance to the nearest tree, when the 
target attribute is  tree density,  or  by the 
spatial pattern, when the target attribute is 
basal  area  (Fig.  5).  The  precision  of  esti-
mates of PCQM is significantly better than 
the ODM and, at the same time, is compa-
rable with PSM (Tab. 2, Tab. 3).

In our study, ODM provided satisfactory 
accuracy of estimates when k = 1 and an ac-
ceptable precision only for the tree density 
estimate when k > 1. To obtain the best re-
sults from ODM, Nielson et al. (2004), after 
an  extensive  simulation  study,  suggested 
higher-order  distance  (i.e.,  k >  3)  rather 
than a higher number of sampling points, 
when time and costs, along with field con-
ditions, permit. Conversely, in our findings 
the accuracy of estimates of ODM strongly 
decreases when k > 1. This could be due to 
simulated  populations  which  may  exhibit 
lower local complexity in tree distribution 
patterns than the field-measured ones (En-
geman et al. 1994). In addition, we did not 
make trials for k > 3, as in field applications 
the larger the value of k the lower the ad-
vantage  of  plotless  sampling  methods 
against plot-based ones.

Differently  from  ODM,  the  PCQM  pro-
vided  overall  satisfactory  estimates,  in 
terms of both accuracy and precision. How-
ever, according to Bryant et al. (2004) and 
Cogbill  et  al.  (2018),  but  in  disagreement 
with  Jamali et al. (2020), our results show 
biased  estimates  of  the  number  of  trees 
when  k > 1. In opposition to other results 
(Morisita 1957,  Engeman et al.  1994,  Niel-
son et  al.  2004,  Khan et  al.  2016),  in  our 
study both plotless methods provided un-
biased estimates of the number of trees in 
stands with regular spatial patterns and un-
biased  estimates  of  the  basal  area,  in 
stands with clustered and random spatial 
patterns. It should be noted that the spa-
tial pattern, elicited from the R-index calcu-
lated at stand scale (1 ha), can exhibit local 
departures  within  replicates,  as  in  real 
forests stem distribution patterns may be 
non-stationary (Pielou 1959).

As  pointed  out  by  several  authors  (Pol-
lard 1971 Clayton & Cox 1986), the poorer 
performance of ODM, when compared to 
PCQM, is expected because density estima-
tors based on a single distance (i.e., eqn. 1, 
eqn. 3) have generally larger variance than 
density estimators which average four dis-
tances  (i.e.,  eqn.  2,  eqn.  4),  as  for  the 
PCQM.  Furthermore,  in  our  results,  the 
plot-based  estimates  do  not  differ  from 
those of PCQM, in terms of both accuracy 
and precision. Despite the higher field ef-
forts required, due to the identification of 
the four equal-angular sectors,  the PCQM 
proved  to  be  the  most  effective  method 
for  a  variety of  forests  (Ahmed & Ogden 
1987, Kumarathunge et al. 2011, Khan et al. 
2016, Basiri et al. 2018, Jamali et al. 2020).

It  is  known  that  the  basic  weakness  of 
distance  sampling  methods  relies  on  the 
assumption that the population to be sam-
pled should be randomly scattered but, at 
the same time,  complete spatial  random-
ness is infrequently detectable in real for-
ests  (Pollard  1971,  Bonham  2013).  There-
fore, the effectiveness of a plotless density 
estimator  must  be  evaluated  considering 
its  performance  in  non-random  patterns 
and especially in clustered patterns, which 
are more frequent in real forests (Engeman 
et al. 1994). Many studies confirmed the ro-
bustness of PCQM towards the bias related 
to  non-random  patterns  (Engeman  et  al. 
1994,  White et  al.  2008,  Kiani  et  al.  2013, 
Khan et al. 2016, Basiri et al. 2018, Jamali et 
al.  2020).  Additionally,  in our findings the 
PCQM  provided  estimates  comparable  to 
PSM. As a general rule, there is no unique 
plotless estimator for the accurate estima-
tion of density for any spatial distribution 
pattern (Jamali et al. 2020).

Conclusions
Distance-based  sampling  methods  have 

long  been  proposed  for  forest  surveys, 
however,  to  the  best  of  our  knowledge, 
they have never been applied to Italian for-
ests,  even for testing purposes.  Although 
the small scale of this study cannot provide 
settled  knowledge nor  the  generalization 
of  findings,  our  results  indicate  that  the 
plotless density estimators applied provide 
fairly accurate estimates of both tree den-
sity  and basal  area.  Summing up,  for  the 
application of the ODM (i.e., the easier and 
faster  option),  achieving an accuracy and 
precision at most comparable to PSM, we 
recommend  k=1  with  at  least  20  points 
(preferably 30); otherwise for the applica-
tion of the PCQM (i.e., the time-consuming 
and laborious  option),  achieving an  accu-
racy  and  precision  better  than  PSM,  we 
recommend k=2 even with 10 points (bet-
ter with 20). Having to decide between the 
ODM  and  PCQM,  all  other  things  being 
equal, the latter is preferable.

We deem the evaluation of the distance-
based  density  estimators  through  simu-
lated plotless sampling surveys on real for-
est  inventory  datasets,  encompassing dif-
ferent stand distribution patterns and den-

sities, could offer an effective opportunity 
for revealing the main strength and weak-
nesses  of  plotless  methods.  The  satisfac-
tory  results  obtained,  especially  from 
PCQM,  are  encouraging  for  further  trials 
over other Alpine as well as Apennine for-
ests,  and  particularly  on  coppice  stands 
which occupy almost the same area of the 
Italian high forests (Gasparini et al. 2022). If 
our results are confirmed, the plotless sam-
pling  methods  (e.g.,  PCQM)  could  repre-
sent a valuable alternative whenever plot-
based  sampling  is  deemed  redundant,  or 
expensive in terms of cost and labour (e.g., 
assessment of the incidence of damages of 
storms,  pests,  animals,  or  spread of  inva-
sive alien species etc.), or when large-scale 
periodic  monitoring  must  be  conducted 
(e.g., EU Habitat Directive reporting). Last-
ly,  the  integration  of  a  plotless  sampling 
approach into an inventory framework at a 
regional, or sub-regional, scale could be an 
alternative to acquire more accurate esti-
mates  of  key  attributes  concerning  local-
ized,  and/or  rare  forest  types  which,  by 
their nature, are not effectively detected at 
country  scale  by  a  national  forest  inven-
tory.

Abbreviations
ODM: Ordered distance method;  PCQM: 

Point-centred quarter  method;  PSM: plot-
based  sampling  method;  DDE:  distance-
based  density  estimator;  CIT:  conditional 
inference tree.
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