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Do different indices of forest structural heterogeneity yield consistent 
results?

Karl Friedrich Reich (1), 
Matthias Kunz (1), 
Andreas W Bitter (2), 
Goddert Von Oheimb (1)

Forest management with a focus on high structural heterogeneity is a major
goal  in modern forestry to increase multifunctionality.  The assessment and
quantification of forest structures has, therefore, gained much attention in re-
cent years. However, there is no standardized approach to surveying forest
heterogeneity; instead, a variety of structural indices, which have been devel-
oped over past decades, are used. This makes it difficult to interpret the re-
sults of different studies and to base management decisions on such data. In
this  study, we compared six  structural  indices that differ in terms of their
complexity and the method of data acquisition. These included the Gini coeffi-
cient of the diameter at breast height and of tree height, the Shannon index of
tree species diversity, two complex indices of structural  heterogeneity, one
based on conventional inventory data and one on terrestrial  laser scanning
(TLS) data, and a simple-holistic TLS-based stand structural complexity index.
For the comparison of these six indices, we used data from 84 plots in 12 dif-
ferent forest stand types in two study areas in Germany. The stand types con-
sisted of different dominant tree species and included different age classes.
The degree of correlations among the different indices was highly variable. In
addition, we did not find a clear age-dependency of the indices. We conclude
that the choice of a specific index plays an important role in the evaluation
and interpretation of forest structural heterogeneity. Because TLS data offer
multiple benefits  in terms of precision, reproducibility and comprehensive-
ness, we recommend to use TLS-based indices of structural heterogeneity.

Keywords: Forest Structure, Shannon Index, Gini Coefficient, Stand Structural
Complexity Index, Structural Heterogeneity Index

Introduction
During the last centuries, timber produc-

tion  has  been  the  primary  aim  of  forest
management in  central  European forests.
In  recent  decades,  however,  multifunc-
tional forestry came into focus, with which
the conservation of biological diversity and
other ecosystem services such as ground-

water protection or recreation increasingly
gained in importance. In these forest man-
agement systems the structural complexity
of stands is enhanced by using natural re-
generation  approaches,  mixing  different
tree species and increasing the number of
structural elements such as deadwood ob-
jects  or  habitat  trees  (Gustafsson  et  al.
2012, Bauhus et al. 2013, Brang et al. 2014).
There is  strong evidence that  structurally
complex forests have a higher resilience to
disturbances, show a better adaptability to
environmental stressors and have a higher
biodiversity,  while  often being at least as
productive or even more productive than
more  homogeneously  structured  forests
(Felipe-Lucia et al. 2018, Schall et al. 2018a,
Schuldt  et  al.  2019).  Therefore,  “manage-
ment  for  complexity”  (Puettmann  et  al.
2009)  is  a  common  goal  in  modern  for-
estry. Furthermore, there are currently in-
tensive  discussions  about  payments  for
forest  ecosystem services (San-Miguel-Ay-
anz et al. 2016, Prokofieva 2016). For these
purposes  it  is  mandatory  to  establish  an
evaluation system  with  reliable  indicators
for the comparison of the outcomes of dif-
ferent  management  options  and  for  the
monitoring of their performance. An index
of  structural  heterogeneity  (McElhinny et
al. 2006, Sabatini et al. 2015) is such an indi-
cator.

However, various definitions of structural
complexity and heterogeneity exist in for-
est science today. The differences between
these definitions are vague and boundaries
are  often  not  precisely  definable.  Both
terms,  complexity  and  heterogeneity,  de-
scribe,  according to the current  literature
(August 1983, Beckschäfer et al. 2013, Reich
et  al.  2021),  the  entirety  of  all  horizontal
and vertical  non-uniformities in  the struc-
tural and distributional composition of the
stand structure  of  a  forest.  In  this  study,
these  two  terms  are  considered  as  syn-
onyms,  and  in  the  following  the  term
“structural heterogeneity” is preferred.

Reich  et  al.  (2021) classified  existing  in-
dices of structural heterogeneity based on
their degree of complexity and the method
of data acquisition (see  Tab. S1 in Supple-
mentary material). For the former aspect a
division was made into simple, basic indices
and complex,  comprehensive indices.  The
method of  data  acquisition was classified
either  as  conventional  inventories  or  as
modern  non-destructive  recordings  using
terrestrial  laser  scanning (TLS).  In  the re-
sulting four-field matrix the Gini coefficient
(Gini  1912)  and the Shannon index (Shan-
non  1948)  represent  simple  indices  by
which the input data are recorded by con-
ventional  inventories. The Gini  coefficient,
originally developed by economists, can be
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considered as a classic statistical measure-
ment  of  the  inequality  of  a  distribution.
The  Gini  coefficient  is  well  suited  for  the
use of classical forest inventory data (Lexe-
rod & Eid 2006), such as tree height or di-
ameter at breast height (DBH). The Shan-
non index has in particular received much
attention due to its popularity for quantify-
ing  species  diversity.  The  Shannon  index
combines the two components of diversity
(Levin 2013): the number of different condi-
tions and the extent of their equal distribu-
tion,  and  describes  the  diversity  of  ob-
served data, taking into account both the
number of different data categories (e.g.,
the  number  of  species)  and  their  abun-
dance (number of individuals per species –
Buongiorno et al. 1994,  Liang et al. 2007).
At the maximum value, all species are rep-
resented  with  equal  proportions  (Pielou
1966).

The Gini coefficient and the Shannon in-
dex  have  been  used  in  many  studies  on
structural  heterogeneity  of  forests.  How-
ever,  recent  studies  conclude  that  the
structural  heterogeneity  is  inadequately
determined  by  using  single  structural  at-
tributes  (Segura  et  al.  2014,  Schall  et  al.
2018b).  On the basis  of  the methodology
presented by McElhinny et al. (2006), Saba-
tini et al. (2015) developed a structural het-
erogeneity  index  (SHI).  In  the  following,
this index will be referred to as the conven-
tional  structural  heterogeneity  index
(SHICONV). Here we classify the SHICONV as a
complex index that is based on the conven-
tional  inventory  data  (Tab.  S1  in  Supple-
mentary material).

Typically, the data sets of conventional in-
ventories only contain one- or two-dimen-
sional  attributes  (e.g.,  DBH,  volume,  tree
position).  However,  these  tree  attributes
do not adequately represent the three-di-
mensional (3D) structure of forests. Accu-
rate  3D  recordings  are  difficult  to  make
with  traditional  measuring  instruments
(e.g., measuring tape, calliper, tree height
gauges  or  crown  mirror)  and  usually  in-
volve  a  great  effort  including  destructive
methods.  New  technical  approaches  and

methods surpass these problems and pro-
vide  new  opportunities  to  analyse  the
structural heterogeneity of forests in great
detail. This applies in particular to modern
surveying  technology  such  as  terrestrial
laser scanning (TLS – Liang et al. 2016, Cal-
ders et al. 2020). The point clouds obtained
from  TLS  allow  the  analysis  of  standard
tree and stand dendrometrics as well as 3D
tree structure properties (Raumonen et al.
2013,  Bienert et al.  2014,  Kunz et al.  2017,
Georgi  et  al.  2021).  TLS  approaches  are
complex,  non-destructive,  and  highly  re-
producible  due to  their  data storage  and
modeling. Based on TLS data,  Reich et al.
(2021) presented  a  new  complex  though
easy-to-use structural heterogeneity index
(SHITLS). This index uses 3D point clouds of
individual  trees  that  were  derived  from
multiple TLS scans. The main focus of the
SHITLS calculations was laid on tree crown
attributes, because this is of special signifi-
cance for the 3D structure of forests (Lang
et al. 2010, Pretzsch 2014). In the four-field
matrix of existing structural heterogeneity
indices (Tab. S1) the SHITLS is  classified ac-
cordingly as complex and TLS-derived.

Furthermore, a fourth class of structural
indices  exists,  being  simple-holistic  and
TLS-based. An example for this is the stand
structural  complexity  index (SSCI)  by  Eh-
brecht et al. (2017). The SSCI makes use of
single scans and is  composed of  two ele-
ments,  the mean fractal  dimension index
(MeanFrac)  and  the  effective  number  of
layers  (ENL).  It  has  been  found  that  the
SSCI increases with stand height and stand
age (Perles-Garcia et al. 2021).

The focus of this study was to analyse the
relationships  between  different  indices
which  are  supposed  to  characterise  the
structural  heterogeneity at  the plot level,
but  differ  with  regard  to  their  degree  of
complexity  and  the  technology  used  for
data  acquisition.  In  this  study  we investi-
gate six indices from the above-mentioned
four  classes:  Gini  coefficient  of  DBH,  Gini
coefficient  of  tree  height,  Shannon  index
of tree species diversity, SHICONV, SHITLS and
SSCI.  Specifically,  four  hypotheses  were

tested: (1) the indices consisting of a single
attribute and the SHICONV correlate closely
with  each other;  (2)  the two complex in-
dices,  SHICONV and  SHITLS,  correlate  closely
with  each  other;  (3)  the  SSCI  correlates
closely  with  the  Gini  coefficient  of  tree
height; (4)  all indices except for the SHITLS

are age-dependent. The hypotheses are se-
lected  and  formulated  based  on  prelimi-
nary considerations and research. Hypoth-
eses (1) and (2) are based on the data col-
lection and data basis  used in  this  study.
Since SSCI is strongly based on quantifying
vertical stand structure, hypothesis (3) re-
lates SSCI and the Gini  coefficient  of tree
height. The fourth hypothesis is related to
the use of the mean of different structural
attributes. The assumption was: as age in-
creases, the mean value changes (i.e., it in-
creases or decreases). Therefore, it may be
better to use alternative parameters (e.g.,
range,  variance)  for  descriptive  statistic
and evaluation.

Materials and methods

Study areas
The study was conducted in two areas in

Germany,  one  is  located  in  north-eastern
Hesse (51° 02′ N, 10° 04′ E – henceforth: “NE
Hesse”),  the  other  in  the  north-western
part  of  the  Lusatian  hill  country,  Saxony
(51° 28′  N, 14° 04′  E  – “Lusatia”). Both for-
ests  sites  are  privately  owned  and  man-
aged. Further information on the study ar-
eas is presented in Tab. 1.

Sampling design
The data collection was conducted on an

existing  grid  of  forest  inventory  plots.
Based  on  forest  management  plans  and
available inventory data, eight and four for-
est stand types were defined in NE Hesse
and  Lusatia,  respectively.  Here,  a  stand
type represents a uniformly managed area
with similar stocking in terms of tree spe-
cies,  tree  age  and  growth  rates.  In  NE
Hesse, stand types included dominating Eu-
ropean  beech  (Fagus  sylvatica,  hereafter
“Fs”)  with  further  admixed  tree  species
and  dominating  Norway  spruce  (Picea
abies,  “Pa”)  with  further  admixed  tree
species,  each represented  with  the  three
age classes pole wood (pw), immature for-
est  stands  (ifs)  and mature  forest  stands
(mfs).  In  addition,  there  are  two  stand
types with other coniferous tree species (in
the  following  “OCTS”),  one  ifs  and  one
mfs.  In  Lusatia  three  stand  types  with
strongly  dominating  Scots  pine  (Pinus
sylvestris, “Ps”) with the three age classes
pw, ifs,  and mfs were selected, and addi-
tionally pine with admixed deciduous tree
species (henceforth “PADTS”) with the age
class  ifs.  The  following  DBH  thresholds
were applied when classifying pw, ifs and
mfs: (i) pw: DBH < 20 cm; (ii) ifs: 20 cm ≤
DBH < 30 cm;  (iii)  mfs: DBH ≥ 30 cm. Each
of these 12 stand types were represented
by 6 to 8 sample plots. A table with charac-
teristics of these stand types is provided in
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Tab. 1 - Brief description of the two study areas. (MAP): mean annual precipitation;
(MAT): mean annual temperature. Climate data from DWD (2020).

Variable
Study area

NE Hesse Lusatia

Elevation (m a.s.l.) 172-515 120-320

Climate suboceanic-subcontinental subcontinental

MAP (mm) 600-1000 670-720

MAT (°C) 6.5-8.0 7.8-8.5

Soil type terra fusca, brown earth sandy brown earth

Natural vegetation Hordelymo-Fagetum Luzulo-
Fagetum

Vaccinio vitis-idaeae-Quercetum 
Galio sylvatici-Carpinetum

Tree species 
composition

Fagus sylvatica (44%), Picea 
abies (24%), Fraxinus excelsior 
(8%), Acer spec. (5%), Quercus 
sp. (4%), other (15%)

Pinus sylvestris (65%), Picea 
abies (13%), Betula pendula 
(6%), Quercus spec. (4%), other 
(12%)

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Consistency of forest structural heterogeneity indices

Tab. S2 (Supplementary material). The test
of the age dependence of the indices (see
hypothesis 4) was performed for the four
groups of forest stand types Fs, Pa, OCTS,
and Ps.

Data sampling
Both the conventional inventory data and

the  TLS  data  were  recorded  on  circular
plots with a diameter of 12 m. The conven-
tional  inventory  was  carried  out  in  both
study  areas  in  February  and  March  2018.
The TLS sampling in NE Hesse were done in
February  2018.  In Lusatia,  these measure-
ments were conducted in April 2019.

For  all  living  trees  with  a  DBH  ≥ 7  cm,
species  identity,  spatial  position,  DBH
(stem diameter at 1.30 m) and tree height
were  recorded.  The  DBH  was  measured
with a caliper, tree height was determined
using a laser hypsometer. Tree height was
measured on a subsample of two trees per
unit in each circular plot, with unit defined
as a group with the same tree species, ver-
tical structure, and age class in each stand
type.  Among  all  other  trees,  tree  height
was  estimated  and  transferred  based  on
measured  values  using  conventional  H  =
f(DBH)  models.  Deadwood  recordings
were carried out similar  to the criteria of
the living stock: minimum diameter > 7 cm,
for lying deadwood the thick end must be
in  the  plot.  The  diameter  of  lying  dead-
wood, as  equivalent to “DBH”,  was mea-
sured  horizontally  1  m  away  from  the
thicker end. The length of lying deadwood
was measured using a tape measure. The
diameter of standing deadwood was mea-
sured with a caliper at a height of 1.3 m.

The TLS data were obtained with a Riegl
VZ®400i  (RIEGL,  Horn,  Austria)  terrestrial
laser  scanner  with  full-waveform capabili-
ties. To take full advantage of the TLS and
to achieve a high point density, each plot
was  scanned  from  five  positions  using  a
multi-scan approach (Liang et al. 2016). In
our  scan  design,  the  plot  centre  repre-
sented  the  first  scanning  position.  Four
more positions were established in all four
cardinal  directions  about  18  m  from  the
centre. Two scans were taken at each scan
position.  Given  the  100°  × 360°  field-of-
view, the scanner was tilted by 90° horizon-
tally after the first scan and a second scan
was performed to cover the whole canopy
above the scanner. The following scan set-
tings were chosen for all scans: angular res-
olution  of  0.04  deg  (corresponding  to  a
resolution of 7 mm at 10 m distance), laser
frequency of 600 kHz. All scans were car-
ried out under a clear and calm skies.

In order to fully utilise the TLS data and to
calculate the SHITLS, the raw data were pro-
cessed  according  to  the  workflow  pre-
sented in Fig. 1. All scans of a plot were reg-
istered  with  each  other  once  all  point
clouds were filtered to remove stray points
and noise with a reflectance less than -15
dB or a pulse shape deviation greater than
15  (Pfennigbauer  &  Ullrich  2010).  During
registration,  the  coordinate  origin  was

placed at the first scanning position (i.e., in
the centre of the plot).

To  automatically  segment  individual
trees,  we used the open-source tool  Sim-
pleTree v. 4.33.06, a plugin of the Compu-
Tree v. 5.0.054 platform (Hackenberg et al.
2015).  For  further  analyses  and  calcula-
tions, only trees with a DBH  ≥ 7 cm were
considered.  Segmented single trees  were
modelled using quantitative structure mod-
els (QSMs  – Raumonen et al. 2013). QSMs
are  based  on  cylinders  fitted  to  the  seg-
mented individual-tree point cloud by the
principle  of  least  squares.  With  the  soft-
ware  TreeQSM  v. 2.30  (Akerblom  et  al.
2017),  running  under  MATLAB  v. R2018a,
we computed QSMs using the average val-
ues of five model runs for each tree.  The
following parameter  values  were used to
obtain the QSMs: minimum patch size = 20
mm; maximum patch size = 40 mm; relative
cylinder  length 3,  4,  6;  relative  radius  for
outlier removal 3, 4.5; minimum cylinder ra-
dius = 0.5 mm. All  needed tree structural
attributes  were  either  derived  from  the
point clouds or the QSMs.

Indices based on single attributes
The  Gini  coefficient  (GC)  is  used  to  de-

scribe the inequality of a distribution, and
is based on the Lorenz curve. GC is bound-
ed between 0 and 1,  allowing a simple in-
terpretation. For a perfectly equal distribu-
tion the GC is 0. The more unequal the dis-
tribution, the closer the value is to 1.  The
following formula was used to calculate GC
at the plot level (eqn. 1):

(1)

where x is  the  observed  value,  n is  the
number of trees measured in the plot and i
is the rank of the observed value in ascend-
ing order. The GC was applied to the DBH
(hereafter: GCDBH) and to tree height (here-

after: GCH).
The Shannon index (HS) indicates the di-

versity of biotic communities and is based
on the dominance of each species (S), mea-
sured from 0 to ln(S). If the species distri-
bution is uneven, HS approaches 0. For the
calculation  the  following  formula  is  used
(eqn. 2, eqn. 3, eqn. 4):

(2)

(3)

(4)

with  S being  the  total  number  of  tree
species per plot; pi the probability of occur-
rence of tree species i, which is the relative
abundance of the i-th tree species from the
total  number  of  tree individuals  per  plot,
measured from 0.0 to 1.0; N being the total
number of tree individuals; and ni the num-
ber of tree individuals of the tree species i.

Calculation of SHICONV

The SHICONV was calculated using the eight
structural attributes following the method
introduced  by Sabatini et al. (2015). These
attributes were: (i) living volume; (ii) num-
ber of trees with DBH > 40 cm; (iii) DBH di-
versity Gini-Simpson index; (iv) tree height
(standard deviation); (v) coarse woody de-
bris (CWD) index; (vi) tree species richness;
(vii) basal area of standing deadwood and
(viii)  volume  total  deadwood.  The  exact
calculation of  the eight  attributes  can be
found in Tab. S3 (Supplementary material).
Sabatini  et  al.  (2015) showed  that  the
SHICONV was higher in multi-layered forests
than in single and double layer forests. Fur-
thermore, a linear increase with increasing
age  of  the  forest  stands  was  observed.
Each structural attribute was given a score
between 0 and 1. This score is based on a
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Fig. 1 - Workflow of 
data acquisition and 
processing. (TLS): 
terrestrial laser scan-
ning; (QSM): quanti-
tative structure 
model; (SH): struc-
tural heterogeneity; 
(SHICONV): structural 
heterogeneity index 
based on conven-
tional inventory 
data; (SSCI): stand 
structural complex-
ity index (based on 
single TLS scans); 
(SHITLS): structural 
heterogeneity index 
(based on multiple 
TLS scans and indi-
vidual tree segmen-
tation and QSM 
modelling).
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linear  regression  assigned  to  each  struc-
tural attribute variable. Here, the eight at-
tributes  were  each  used  as  independent
variables.  To avoid  outliers,  the  minimum
attribute score of  0 was allocated to the
12.5-percentile, and the maximum attribute
score of 10 was allocated to the 87.5-per-
centile.  Values above and below this limit
have been removed.  Using the remaining
values, a linear regression through quartile
values  could  be  determined  to  ensure  a
uniform  distribution.  Subsequently,  the
score of each structural attribute could be
determined,  all  eight  individual  scores
were summed and put into perspective. No
weighting  of  individual  attributes  took
place.  To  implement  the  SHICONV in  our
study, a few adjustments had to be made
in  advance.  The  entirety  of  sample  plots
was  randomly  subdivided  into  a  training
(30 %) and test (70 %) data set. The training
data set was used to generate a regression
to  evaluate each structural  attribute.  The
regression equation could then be applied
in the test data set to calculate the SHICONV.
Successively,  the  total  data  set  was  ran-
domly divided again into a training and test
data  set  and  the  calculations  were  re-
peated fifty times. The mean of each plot
was used in further analyses.

Calculation of SHITLS and SSCI
The  data  of  the  SHITLS and  SSCI  were

taken from Reich et al. (2021). The methods
of how to  calculate  these two TLS-based
indices are described in detail for the SHITLS

in  Reich  et  al.  (2021) and  for  the  SSCI  in
Ehbrecht et al. (2017). In short, the follow-
ing  eight  TLS-based  structural  attributes

were used to calculate the SHITLS: (i) crown
density  (range); (ii)  ratio  crown  width  to
crown  length  (coefficient  of  variation  –
CV); (iii) CBH (GC); (iv) volume of branches
of 1st, 2nd, and 3rd order (range); (v) ratio
crown displacement to height (range); (vi)
crown surface area (GC); (vii)  ratio crown
area to crown volume (CV); and (viii) crown
sinuosity (GC). In order to eliminate possi-
ble age effects, the mean or median of the
examined attributes was not taken into ac-
count, instead the respective range, the GC
or  the  CV of  the examined attribute was
used. The methodological approach to the
calculations is similar to that of the SHICONV.
Again,  the  dataset  was  subdivided into  a
training and a testing set, regressions have
been  derived,  and  scores  were  assigned.
As with the SHICONV, the eight structural at-
tributes  were  each  used  as  independent
variables.

The SSCI was calculated on all  plots ac-
cording  to  the  approach  introduced  in
Ehbrecht et al. (2017). The calculations re-
quire a 360° scan generated from the su-
perimposition of scan 1 and 2 on the first
scan position (plot centre point). The SSCI
exists of two components: the mean frac-
tal  dimension index (MeanFRAC)  and the
effective  number  of  layers  (ENL).  The
MeanFRAC is calculated from the average
of all  2560 FRACs. A single FRAC is calcu-
lated by connecting the points of a vertical
planar  scan  line  to  a  polygon  and  taking
the ratio of the area (A) to the respective
perimeter (P).  The following formula  was
used for this purpose (eqn. 5):

(5)

The resulting MeanFRAC is a dimension-
less ratio with no absolute scale. The ENL is
an index of layer complexity based on the
ratio of occupied voxels (p) in a layer (i).
Our  calculations  are  based  using  a  voxel
grid with a size of 20 cm and a layer thick-
ness of 1 m. The following formula is used
for the ENL and the overall  SSCI  (eqn.  6,
eqn. 7):

(6)

(7)

MeanFRAC and ENL were calculated us-
ing R v. 3.6.1 (R Core Team 2018) with the
“VoxR” (Lecigne 2020) and “sp” (Pebesma
et al. 2019) packages, respectively.

Since the calculations for the SSCI, more
precisely for the ENL, are based on the as-
sumption that the layers run parallel to the
ground  (Ehbrecht  et  al.  2016),  an  adjust-
ment  to  the  typical  mountain  ranges  on
the study sites in Hesse and Lusatia had to
be performed beforehand.

Following  the  approach  of  Perles-Garcia
et al. (2021) the point clouds were rotated
on the x- and y-axis around the scanner po-
sition to eliminate a possible influence of
slope effects. First, ground points within a
3 m radius of the scanner were extracted
by fitting a  3D plane using singular  value
decomposition  with  the  scan  centre  at
(0.0.0). All points were then rotated about
the  derived  surface  normal  vector.  Thus,
the  recomputed  point  cloud  always  con-
tains  a  horizontally  oriented  terrain  sur-
face.

Statistical analysis
The statistical analysis and all calculations

with structural attributes were performed
using R v. 3.6.1 (R Core Team 2018). The GC
was  calculated  with  R  using the  package
“ineq” (Zeileis & Kleiber 2014). Correlation
analyses  between  the  different  indices
were  performed  using  Spearman’s  rank
correlation coefficient using the R package
“pspearman” (Savicky 2014). Furthermore,
a principal component analysis (PCA) and a
concordance analysis were performed. PCA
is  used to  structure,  reduce and visualize
the amount of data. Based on linear combi-
nations and correlations, it aims to bundle
a  large  proportion  of  the  information  of
the variables in the principal components.
The PCA was calculated with the package
“factoextra” (Kassambara & Mundt 2020)
in  R.  Finally,  the  concordance  of  the  re-
spective indices to each other  was deter-
mined.  This  was  done  using  the  concor-
dance correlation coefficient (CCC) accord-
ing to Lin (1989) using the R-package “De-
scTool” (Signorell et al. 2021).  The CCC in-
cludes a Lin-correction term about the pre-
cision of the correlation to the ideal angle
bisector.  It  thus  evaluates  the  degree  to
which the pairs of observation fall  on the
45°  line through the  origin  of  the coordi-
nate  system.  For  the  calculation  and  the
comparability  of the CCC,  all  indices were
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Tab. 2 - Spearman’s rank correlation coefficient between all structural heterogeneity
indices, both in total and separately for the two study areas NE Hesse and Lusatia.
(SHITLS):  structural heterogeneity index (terrestrial laser scanning); (SHICONV): conven-
tional  structural  heterogeneity  index;  (SSCI):  stand  structural  complexity  index;
(GCDBH):  Gini  coefficient  (diameter  at  breast  height);  (GCH):  Gini  coefficient  (tree
height); (HS): Shannon index; (*): p < 0.05; (**): p < 0.01; (***): p < 0.001; (ns): not sig -
nificant.

Study
Area

Index SHITLS SSCI SHICONV GCDBH GCH

To
ta

l

SSCI 0.329** - - - -

SHICONV 0.208 ns -0.036 ns - - -

GCDBH 0.004 ns 0.014 ns 0.421*** - -

GCH 0.267* 0.123 ns 0.635*** 0.641*** -

HS 0.228* 0.030 ns 0.758*** 0.384*** 0.607***

N
E 

H
es

se

SSCI 0.362** - - - -

SHICONV 0.157 ns 0.014 ns - - -

GCDBH -0.066 ns 0.009 ns 0.396** - -

GCH 0.192 ns 0.116 ns 0.533*** 0.718*** -

HS 0.306* 0.113 ns 0.692*** 0.261ns 0.521***

Lu
sa

ti
a

SSCI 0.027 ns - - - -

SHICONV 0.464** 0.091 ns - - -

GCDBH 0.221 ns 0.134 ns 0.454* - -

GCH 0.488** 0.183 ns 0.767*** 0.532** -

HS 0.327* 0.060 ns 0.855*** 0.585*** 0.76***
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standardized between 0 and 1 in advance.
Differences between age classes within the
four groups of forest stand types (i.e., Fs,
Pa, OCTS, Ps) were tested using analysis of
variance  (ANOVA)  followed  by  post-hoc
analysis (Tukey’s test).

Results
Most significant correlations were found

between  the  three  simple  indices  GCDBH,
GCH, HS, and the SHICONV (Tab. 2). The two
GCs were highly positively correlated with
each other, both for the total of all 12 stand
types  as  well  as  for  the  two study areas
separately (always  r > 0.53). Interestingly,
the HS was much closer correlated with the
GCH than with the GCDBH (e.g., over all the 12
stand types: r = 0.61 and r = 0.38, respec-
tively).  Among  the  correlations  of  the
three simple indices with the SHICONV, the HS

had the highest  values and the GCDBH the
lowest (e.g., total: r = 0.76 and r = 0.42, re-
spectively).  The  GCH was  more  similar  to
the  HS than  to  the  GCDBH (e.g.,  total:  r  =
0.64).  The  correlations  of  these  four  in-
dices with the SSCI were all not significant,
with a range from r = -0.04 to r = 0.18. Com-
pared to the SSCI, the second TLS-based in-
dex (SHITLS) showed a different pattern. A
large  variation  in  correlation  coefficients
emerged,  though  only  in  the  range  be-
tween r = 0 to r = 0.49.  Over all  12 stand
types, the GCDBH was not correlated at all
with  the  SHITLS,  while  very  weak  correla-
tions were found with GCH, HS, and SHICONV

(r = 0.27, r = 0.23, r = 0.21, respectively), and
a weak correlation was observed between
the SSCI and SHITLS (r = 0.33). In a separate
analysis of the two study areas, NE Hesse
showed lower correlations coefficients be-
tween  SHITLS  and  the  other  indices  than
Lusatia,  with  the  exception  of  SSCI  (r  =
0.36 in NE Hesse, r = 0.03 in Lusatia).

The  PCA  confirms  the  pattern  that
emerges from the Spearman’s rank correla-
tions (Fig. 2). Two groups can be identified:
on the one hand, GCDBH, GCH, HS and SHICONV,
on the other hand, SSCI and SHITLS.

The  concordance  analysis  showed  CCCs
between 0.000 and 0.596  (Tab.  3).  Here,
similar  to  the  Spearman’s  rank  correla-
tions, the highest CCCs were found for the
GC. The CCC between GCDBH and GCH was
0.578.  Solely  the  concordance  between
GCH and the HS was higher (0.596). Further
moderate  concordance  values  were  ob-
served between the SHITLS and the simple
indices  GCDBH (0.366),  GCH (0.401),  and HS

(0.424).  The  SSCI  and  SHICONV displayed
weak  and very  weak  concordances  to  all
other calculated indices. The lowest values
were  found  for  SSCI  and  GCDBH (0.000),
SHICONV and GCDBH (0.013),  and SHICONV and
HS (0.016), respectively.

From  Fig.  3 it  appears  that  there  is  no
clear age trend within the four groups of
stand types ( for further information on de-
scriptive statistics, see also Tab. S4 in Sup-
plementary material). This is confirmed by
the ANOVA (Tab. S5). An important reason
is  the generally  high variability  within the

individual stand types. No significant differ-
ences  could  be  detected  for  the  three
groups of stand types in NE Hesse (i.e., Fs,
Pa, OCTS – Tab. S5 in Supplementary mate-
rial).  In  Lusatia  the only  significant  differ-
ences  were  found  for  GCDBH (significantly
higher in ifs than in mfs), GCH and in SHICONV

(in  both indices:  significantly  higher  in  ifs
than in pw and in mfs).

Discussion
Although  the  general  goal  of  “manage-

ment  for  complexity”  (Puettmann  et  al.
2009) is very often pursued, we lack a com-
prehensive  evaluation  system  of  the  per-
formance of management measures imple-
mented  by  foresters.  The  results  of  our
study show that the outcomes of the dif-
ferent approaches to quantify forest struc-
tural  heterogeneity  are  highly  variable.
Thus, the choice of a specific index plays an
important role in the evaluation and inter-
pretation of forest structural  heterogene-
ity.

Our  results  provide  evidence  congruent
with our first hypothesis that the three in-
dices  consisting  of  a  single  attribute  and
the  SHICONV correlate  closely  with  each
other. GCDBH, GCH, HS and SHICONV had rank
correlation  coefficients,  that  were  almost

consistently  considerably  higher  than
those  of  the  other  indices  studied  and
were strongly clustered in the PCA loading
plot.  The  CCCs  were  particularly  high
among  GCDBH,  GCH and  HS.  DBH  and  tree
height  are  those  silvicultural  parameters
most commonly used to characterize tree
dimension. Given the close relationship be-
tween  these  two  parameters  (Pretzsch
2009),  a  positive  correlation  and  a  high
concordance between GCDBH and GCH was
expected, which was confirmed by our re-
sults.  Interestingly  the  rank  correlations
and concordance correlations between GCH

and  HS were  much  closer  than  those  be-
tween  GCDBH and  HS.  This  means  that  a
higher diversity in tree species is mainly re-
flected  in  a  higher  inequality  of  the  tree
height  distribution.  We  assume  that  this
finding can be attributed primarily  to the
effects  of  interspecific  niche  complemen-
tarity  between  trees  at  the  plot  level,
which rises with increasing tree species di-
versity  (Georgi  et  al.  2021).  A  higher  tree
species  diversity  enhances  the  likelihood
that trees differ with respect to growth-re-
lated functional  traits,  in  this  case height
growth and light requirements. Other stud-
ies with a similar approach to analyse the
correlation  between  GC  and  HS found

iForest 15: 424-432 428

Tab. 3 - Concordance correlation coefficient (CCC) according to Lin (1989) between all
structural heterogeneity indices in total for the two study areas NE Hesse and Lusatia.
(SHITLS):  structural heterogeneity index (terrestrial laser scanning); (SHICONV): conven-
tional  structural  heterogeneity  index;  (SSCI):  stand  structural  complexity  index;
(GCDBH):  Gini  coefficient  (diameter  at  breast  height);  (GCH):  Gini  coefficient  (tree
height); (HS): Shannon index.

CCC total SHITLS SSCI SHICONV GCDBH GCH

SSCI 0.185 - - - -

SHICONV -0.063 0.314 - - -

GCDBH 0.336 0.000 0.013 - -

GCH 0.401 0.151 0.069 0.578 -

HS 0.424 0.113 0.016 0.313 0.596

Fig. 2 - Principal compo-
nent analysis of the cal-
culated indices. (SHITLS): 
Structural heterogene-
ity index (terrestrial 
laser scanning); 
(SHICONV): conventional 
structural heterogeneity
index; (SSCI): stand 
structural complexity 
index; (GCDBH): Gini 
coefficient (diameter at 
breast height); (GCH): 
Gini coefficient (tree 
height); (HS): Shannon 
index.
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mixed results. Whereas  Keren et al. (2019)
observed only very weak correlations in GC
(examining the basal area, i.e., DBH) in old-
growth forests dominated by beech and fir
in  south-eastern  Europe,  Lexerod  &  Eid
(2006) demonstrated strong positive  cor-
relations  in  Norway spruce  and  pine  for-
ests. The tightness of the rank correlations
to SHICONV increased very sharply in the or-
der GCDBH, GCH and HS. Two of the structural
attributes  used  to  compute  SHICONV were
DBH  diversity  and  standard  deviation  of
tree  height.  DBH diversity  was  calculated
using the Gini-Simpson index,  which is  an
extension  of  the  Simpson  index  and  de-
scribes the probability that two individuals
exhibit  a  different  characteristic  (e.g.,
DBH).  However,  the use of  a  measure of
DBH variability and the standard deviation
of tree height as one of the eight structural
attributes of the SHICONV alone cannot ex-
plain  the  close  rank  correlation  to  GCDBH

and  GCH,  respectively.  Obviously,  at  least
some of  the other  attributes  also have a
close relation to the DBH and tree height
inequality,  e.g., living volume and tree spe-
cies  richness  (see  above).  HS and  SHICONV

were particularly closely correlated. In ad-
dition to the aspects  mentioned above it
would be interesting to analyse how HS is
related to the three deadwood attributes

included  in  the  SHICONV (i.e.,  CWD  index,
basal area of standing deadwood, total vol-
ume of  deadwood).  Del  Río  et  al.  (2016)
and  Park et  al.  (2019) also observed that
species  diversity  effects  strongly  impact
structural diversity of forest stands. Due to
the  close  rank  correlations  between  the
SHICONV and the indices consisting of a sin-
gle structural attribute, it can be concluded
that the SHICONV, despite its complex calcu-
lation  and  extensive  data  input,  may  not
comprehensively  reflect  the  stand  struc-
tural heterogeneity.

Both correlation analyses  (i.e.,  rank and
concordance  correlation)  showed  that
SHICONV and SHITLS were only weakly corre-
lated, and this was confirmed by the PCA.
Thus, we have to reject our second hypoth-
esis, which was based on the fact that both
indices are complex and were supposed to
be  comprehensive.  As  stated  above,  this
might not be the case with the SHICONV. For
the  elaboration  of  the  SHITLS Reich  et  al.
(2021) used  the  same principal  approach,
but  very  different  types  of  structural  at-
tributes  which were selected to calculate
this index. The tree crown represents an el-
ementary fundamental component for the
determination  of  3D  structural  diversity
(Lang et al.  2010,  Pretzsch 2014).  In addi-
tion, the inner crown structure may differ

from  the  outer  shape  (Hildebrand  et  al.
2021). The SHITLS integrates stand attributes
such  as  crown  sinuosity,  crown  width  to
crown length ratio or crown compactness
and has therefore the potential to fully rep-
resent the 3D nature of forests.

As a general pattern, it emerged that the
four indices based on conventional  inven-
tory data (GCDBH, GCH, HS and SHICONV) were
only  very  weakly  or  not  at  all  correlated
with the two TLS-based indices (SHITLS and
SSCI).  This  is  particularly  pronounced  for
the SSCI, for which all rank correlation co-
efficients and CCCs with the other four in-
dices  were  < 0.2  and < 0.31,  respectively.
Since the SSCI contains with the ENL a pa-
rameter  that  is  very  sensitive  to  tree
height, the assumption in the third hypoth-
esis  was  that  GCH correlates  closely  with
the SSCI. However, with correlation coeffi-
cients  of  <  0.2  this  cannot  be confirmed.
ENL  is  age-dependent,  initially  increasing
and  then  decreasing  as  stand  age  pro-
gresses (Ehbrecht et al. 2016). In addition,
the variability of ENL decreases slightly in
older and thus higher stands (Ehbrecht et
al.  2016).  Given the range of  ages classes
we included in our study this dependency
of ENL, and by this of SSCI, on tree height
variation  was  obviously  not  large.  This
might be different when also  very  young

429 iForest 15: 424-432

Fig. 3 - Boxplots of six indices of structural heterogeneity for 12 forest stand types in the two study areas NE Hesse (eight stand
types) and Lusatia (four stand types). (A) Gini coefficient of diameter at breast height (DBH); (B) Gini coefficient of tree height; (C)
Shannon index (based on tree species); (D) structural heterogeneity index based on data from conventional inventory (SHICONV); (E)
stand structural complexity index based on single-scan TLS data (SSCI); (F) structural heterogeneity index based on multiple-scan
TLS data (SHITLS). (Fs): European beech (Fagus sylvatica); (Pa): Norway spruce (Picea abies); (OCTS): other coniferous tree species;
(Ps): Scots pine (Pinus sylvestris); (PADTS): pine with admixed deciduous tree species. Stand age classes: (pw) pole wood; (ifs)
immature forest stands; (mfs) mature forest stands. Data for SHITLS and SSCI from Reich et al. (2021).
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and considerably older stands would be in-
cluded. Ehbrecht et al. (2017) tested the re-
lation between SSCI and GCDBH and found a
considerably closer relation (r2 = 0.36 over
all  plots  of  their  study)  than  that in  our
study (r = 0.014). This is surprising because
in  both  studies  very  similar  approaches
were  used,  including  the  range  of  age
classes and dominant tree species (beech,
spruce  and  pine).  We  can  only  speculate
about the reasons, one might be a shorter
gradient in GCDBH in our study. From Fig. 4
in  Ehbrecht  et  al.  (2017) it  appears  that
GCDBH ranged from < 0.1  to >  0.4  in  their
study, whereas a large number of plots had
index values between 0.1  and 0.25 in our
study (see  Fig.  2A).  Anyhow, our  findings
support  the conclusion of  Ehbrecht  et  al.
(2017) that the SSCI quantifies stand struc-
tural complexity holistically and with a high
spatial  resolution  by  taking  into  account
the entire 3D arrangement of structural el-
ements without focusing on individual ob-
jects.

We found very little evidence to support
our fourth hypothesis that most indices are
age-dependent. We based our expectation
for  example  on  the  assumption  that  the
variance  around  the  median  of  DBH  and
tree  height  increases  with  increasing  age
of forest stands. However, this usually re-
quires  planting  or  seeding  for  establish-
ment  of  forest  stands  which  results  in
stands with uniform age structure. There-
fore, for an accurate evaluation of the age-
dependence of the indices, the mode of es-
tablishment of the studied stands must be
considered. The beech stands in NE Hesse
were mostly established by natural regen-
eration through shelterwood cuttings and
so-called  “standards”.  Therefore,  still-
standing mature trees of the previous gen-
eration  were  present  in  the  pole  wood,
having a strong potential to influence the
results  of  the  index  calculations.  Accord-
ingly, the index values of GCH,  HS, SHICONV,
and SHITLS showed a higher median in pole
wood  than  in  immature  forest  stands.  In
the  mature  forest  stands,  an  increase  in
these indices can be observed again. Simi-
lar results have been found in other studies
for beech forests (Scherzinger 1996,  Saba-
tini  et  al.  2015,  Stiers  et  al.  2018).  The
conifer stands were mainly established ei-
ther  with  small  clear  cuts,  the  so-called
“femel”  selection  cutting  or  patch  cuts.
Remnants  of  mature  trees  were  rare  ex-
ceptions.  Whereas  pole  wood  and  imma-
ture  forest  stands  of  spruce  in  NE Hesse
mostly had similar index values, higher in-
dex values were often observed in mature
forest stands (the SSCI being the only ex-
ception). Remarkably, this pattern was not
found in the pine stands in Lusatia. The rea-
sons for this can be found in the mixture of
tree species,  since the areas in NE Hesse
have  higher  degrees  of  mixtures  than
those  in  Lusatia,  where  especially  young
stands are characterized by an almost pure
stand.

Conclusion
The choice of a specific index plays an im-

portant  role  in  substantively  evaluating
and  interpreting  forest  structural  hetero-
geneity. In view of future sustainable for-
est management strategies as well  as on-
going  climate  change,  a  standardization
and harmonization would be highly desir-
able.  Several  studies  indicate  that  indices
based  on  multiple  structural  attributes
should  be  preferred  over  those  including
only  one  attribute.  Since  the  SHICONV has
close  correlations  to  simple  indices,  the
recommendation goes for using the SHITLS,
which  places  a  particular  focus  on  tree
crown  attributes  because  of  their  great
contribution to overall stand structural het-
erogeneity. The use of TLS data offers mul-
tiple benefits in terms of precision, repro-
ducibility and comprehensiveness. This ap-
proach,  however,  requires more intensive
work than the other TLS-based approach,
the SSCI, both in the field and at the com-
puter.  Future studies should therefore be
profoundly  devoted to  the in-depth com-
parison of SHITLS and SSCI.
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