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Is it needed to integrate mixture degree in Stand Density Management 
Diagram (SDMD)?
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Stand density management diagrams (SDMDs) are robust decision-support tools 
available  to  forest  managers  under  limited  information.  SDMDs  which  are 
based on empirical models at stand level, graphically represent the temporal 
relationships among stand density, and different stand variables such as qua-
dratic mean diameter, dominant height, and mean tree volume. They are used 
to define initial planting spacing or thinning interventions, to meet various 
management objectives. Nowadays, there is a growing interest in mixed-spe-
cies forests as an option for adaptive forest management, where they are con-
sidered a guarantor to safeguarding a wide variety of ecosystem services with-
in the framework of sustainability. But there is still a lack of knowledge and ef-
ficient tools and models for mixed stands such as SDMDs. This study aims to 
develop an SDMD for Pinus sylvestris L. and Pinus pinaster Ait. mixed stands in 
the Sierra de la Demanda (Spain) using data from the third Spanish National 
Forest Inventory. Both species are two of the most important conifers in Eu-
rope and the western Mediterranean basin. Different variables can be used to 
develop an SDMD. In this case, quadratic mean diameter, dominant height, to-
tal stand volume, number of trees per hectare, and stand density index were 
used. These equations were fit by simultaneous fitting including a new vari-
able representing the proportion of both species in the mixed stand. The re-
sults of the simultaneous fitting showed the new variable representing the 
proportion of both species was not significant. Based on that, the SDMD was 
constructed without including mixture degree. This SDMD can be used by for-
est managers as an efficient tool to plan thinning operations.

Keywords: Reineke Index, Dominant Height, Silviculture, Thinning, Pinus sylv-
estris L, Pinus pinaster Ait.

Introduction
Maintaining  and  promoting  functionally 

vigorous forests entails the sound regula-
tion of tree numbers per unit area  versus 
average tree size, such a process impacts 
how a stand develops over a rotation pe-
riod.  Density  management  is  one  of  the 
most robust and effective tools available to 

foresters, in order to achieve desired con-
ditions  of  the  managed  stands;  conse-
quently,  a  wide  range  of  stand  manage-
ment objectives can be acquired. Hence, it 
may help in overcoming some harmful ef-
fects of climate change and site degrada-
tion. In this regard, stand density manage-
ment diagrams (SDMDs) have emerged as 
a time-saving and cost-effective approach. 
On  the  contrary  to  thinning  trials  which 
have  some  critical  restrictions  (Dean  & 
Baldwin 1993, Valbuena et al. 2008, Schnell 
et al. 2012), SDMDs are simple decision-sup-
port tools found to help forest managers in 
the decision-making process under limited 
information,  they  are  flexible  and  adapt-
able to different site conditions and man-
agement  goals  (Schnell  et  al.  2012).  They 
are  efficient  in  quantitative  silviculture  as 
they help forest  managers to design,  dis-
play and evaluate various density manage-
ment regimes (Jack & Long 1996,  Newton 
2003) to predict what stand post-thinning 
density  would  be.  In  terms  of  operating 
costs, SDMDs are an inexpensive tool, mak-
ing  them  a  favorable  option  in  a  region 
such as the Mediterranean, where the silvi-
cultural  practice  must  be  enacted  under 
critical budget constraints (Valbuena et al. 
2008) due to low productivity and manage-
ment based on public fundings.

The main principle of any SDMD is based 
on the stand self-thinning rule. SDMDs are 
defined as empirical models at stand level. 
This  graphically  represents  the  temporal 
relationships  among  stand  density,  and 
different stand variables such as quadratic 
mean  diameter,  dominant  height,  and 
mean tree volume (Farnden 1996,  Newton 
1997). This size-density relationship is a cor-
nerstone for the establishment of those di-
agrams  by  characterizing  the  growing 
stock, using indices that relate the average 
tree size (e.g., diameter, volume, or height) 
to the number of trees per hectare (Barrio 
Anta  &  Alvarez  González  2005).  Among 
these density  indices which are based on 
size-density  relationships,  Reineke’s  stand 
density index (SDI – Reineke 1933) was the 
most widely used (Shaw & Long 2007, Val-
buena  et  al.  2008,  VanderSchaaf  &  Burk-
hart  2012,  Quiñonez-Barraza  et  al.  2017). 
Moreover,  Reineke’s  index  is  more  accu-
rate  in  Mediterranean  pine  forests  than 
Hart’s index (Rodríguez et al. 2008).

Practically, SDMDs are used to define ini-
tial  planting spacing or  thinning interven-
tions, consequently, to meet various man-
agement objectives, which include but not 
be limited to: increasing stand stability and 
decreasing crown fire risk (López-Sánchez 
& Rodríguez-Soalleiro 2009);  creating and 
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conserving habitat for wildlife endangered 
species (Shaw & Long 2007); reducing vul-
nerability to beetles’ attacks (Anhold et al. 
1996,  Long  &  Shaw  2005);  or  optimizing 
stand  density  for  timber  production  pur-
poses at rotation age (Cabrera-Pérez et al. 
2019).

SDMDs have been developed worldwide 
for a broad set of species, which varied be-
tween  broad-leaved  and  conifer  species. 
However, most of them were focused on 
monoculture stands where  Quercus  robur 
L. (Barrio Anta & Alvarez González 2005), 
Pinus  banksiana  Lamb.  (Sharma  &  Zhang 
2007), Pinus palustris P. Mill. (Shaw & Long 
2007),  Pinus  halepensis Mill.  and  Pinus 
pinaster (Valbuena et al. 2008),  Pinus radi-
ata  D.  Don (Castedo-Dorado et  al.  2009), 
Picea  abies (L.)  Karst.  (Vacchiano  et  al. 
2013),  Cunninghamia  lanceolata (Lamb.) 
Hook. (Tang et al. 2016), Eucalyptus grandis 
W. Hill  RS (Marangon et  al.  2017)  or  Cas-
tanea  sativa  Mill.  (Patrício  &  Nunes  2017) 
were  the  target  species.  In  comparison, 
there are very few SDMDs for mixed-spe-
cies forests: Abies balsamea (L.) Mill., Picea 
rubens Sarg., Picea mariana (Mill.) BSP. and 
Picea  glauca (Moench)  Voss  forests  in 
northeastern  North  America  (Swift  et  al. 
2007), Mixed-Conifer Stands in Sierra Nev-
ada (Long & Shaw 2012), Juniperus procera 
Hoechst. Ex. Endl and  Podocarpus falcatus 
Thunb.  Mirb  natural  mixed  forests  in 
Ethiopia  (Tesfaye  et  al.  2016),  and  Pinus-
Quercus natural  mixed  forests  in  Mexico 
(Cabrera-Pérez et al. 2019). Studies have re-
vealed  that  species  mixing  can  provoke 
changes  in  above-ground  species  allome-
tries in both pine-pine mixtures, including 
P. pinaster–P. sylvestris mixtures, involving 
five pine species covering different biogeo-
graphical distributions (Condés et al. 2020), 
and  coniferous-broadleaf  mixtures  (Dieler 
& Pretzsch 2013). In view of the foregoing, 
it is important to develop SDMDs in mixed 
forest.

Scots pine (Pinus sylvestris) and Maritime 
pine (Pinus pinaster) are two of the impor-

tant coniferous species in Europe and the 
Mediterranean basin. Where P. sylvestris is 
widely distributed over the Eurasian conti-
nent (Mátyás & Samuel 2004), while P. pin-
aster occurs in the western Mediterranean 
Basin, and the Atlantic coast in Spain, Por-
tugal, and France, and currently it is used 
for forestation even outside its natural dis-
tributions (Alia & Martin 2011). For the time 
being, the new tendency gives priority to 
safeguarding a wide variety of ecosystem 
services within the framework of  sustain-
ability by adopting the species-mixing prin-
ciple as an option for adaptive forest man-
agement (Ammer 2017).

Mixed forests are increasingly becoming 
more worthwhile in comparison to mono-
culture  forests,  as  their  favorable  effects 
on  various  ecosystem  services  at  higher 
levels,  including  production  (Gamfeldt  et 
al. 2013). Moreover, they have more resis-
tance to natural disturbance factors (Jactel 
et  al.  2017),  and species  mixing can posi-
tively influence the stability of productivity 
(Del Río et al. 2017). All these demonstrate 
the widely known multifunctionality of the 
mixed  forests  (Van  Der  Plas  et  al.  2016), 
consequently,  enhancing the  contribution 
to climate change mitigation and adapta-
tion. Species mixing dilutes the risk of bi-
otic or abiotic stress and disturbances that 
emerged  from  climate  change.  This  re-
sponse  pattern  can  be  attributed  to  di-
verse susceptibilities among species to par-
ticular disturbances. As a consequence, the 
number  of  surviving  trees  is  directly  pro-
portional to the number of tree species in a 
stand  (Pretzsch  et  al.  2017).  Moreover, 
these remaining trees can rather provide a 
base  structure  for  the  stand  functioning 
and recovery (Jactel et al. 2009). Although 
there are many studies  reporting the no-
table effects of mixed forests in terms of 
stability  and  important  productive  capac-
ity, there is still an inadequate knowledge 
of the mechanisms and trade-offs underly-
ing these effects,  and the need for  more 
understanding of the spatial and temporal 

levels at which these effects are operating 
(Coll et al. 2018).

The main objective of this study is to de-
velop an SDMD for  Pinus sylvestris and  Pi-
nus pinaster mixed stands in the Sierra de 
la  Demanda,  Burgos  and  Soria,  Spain.  In 
parallel  with  developing  the  SDMD,  we 
aimed  at  studying  the  behavior  of  both 
species in mixed stands.

Material and methods

Study area
The  Sierra  de  la  Demanda  (Northern 

Spain) is an elongated mountainous massif, 
rising  in  the  extreme  northwest  of  the 
Iberian system (Fig. 1).

Scots pine (Pinus sylvestris) forests in the 
study area cover 296.02 km2 of land (about 
19.19% of the total forest cover) while Mar-
itime pine (Pinus pinaster) cover only 20.57 
km2 of land (about 1.06% of the total forest 
cover – AGALSA 2006).

Its climate is characterized as Continental 
Mediterranean but owing to its elevation, 
it experiences long, cold winters and short, 
cool summers. Average total annual precip-
itation, according to data from the Meteo-
rological Station in Pradoluengo from 1990-
2006, is at 746.9 mm with a high of 87.19 
mm in November and a low of 36.16 mm of 
rainfall  in  February.  Temperatures  range 
from annual isotherms of 3.48 to 18.78 °C 
(AGALSA 2006).

Data
Data from the third Spanish National For-

est Inventory (SNFI3, 1997- 2007) were ex-
tracted as a primary input for the purpose 
of developing an SDMD for Pinus sylvestris 
and  Pinus  pinaster mixed  stands  in  the 
Sierra  de  la  Demanda.  The  origin  of  the 
stands is either natural or plantation; maps 
with  information  about  stand  origin  data 
are  available  at  https://sites.google.com/ 
site/sigforestspecies/home.  Mixed  plots 
were defined based on the criterion of the 
combined  proportion  of  basal  area  for 
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Fig. 1 - Study area (Sierra de la Demanda, 
Northern Spain).
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both species accounted for at least 90% of 
the  total,  while  the  proportion  of  each 
species in the mixed plots was higher than 
15%  (Riofrío  et  al.  2017).  A  total  of  165 
mixed plots were analyzed. The main plots 
characteristics are summarized in Tab. 1.

The plots of the Spanish National Forest 
Inventory  are permanent  plots  systemati-
cally distributed on UTM square grids with 
a resolution of 1 × 1 km each. The plots are 
re-measured in approximately 10-year inter-
vals. Each plot is composed of four circular 
concentric subplots with radii of 5, 10, 15, 
and 25 meters. For trees in the 5 m circle, 
trees  with  a  diameter  at  breast  height 
(DBH) that exceed 7.5 cm are taken into ac-
count; in the 10 m subplot, those that ex-
ceed 12.5 cm; for trees in the 15 m circle, 
those greater  than 22.5 cm; and lastly,  in 
the 25 m subplot, those exceeding 42.5 cm. 
Variables taken into account include height 
(h), species, distance, and azimuth of trees 
measured  from  plot  center.  Forest  type, 
erosion  factors,  anthropogenic  activity, 
tree damage, shrub species, cover (in the 
10 m subplot),  and plot  identification are 
other  data  recorded  from  the  concentric 
subplots. The caliper was used to measure 
tree  diameter,  by  taking  two  diameter 
measurements  at  right  angles  to  each 
other.

Different  variables  are  necessary  to  de-
velop an SDMD: quadratic mean diameter 
(QMD),  dominant height (Ho),  total  stand 
volume (V),  number  of  trees  per  hectare 
(tree density,  N),  and stand density index 
(SDI).

The total stand volume, quadratic mean 
diameter (QMD), and tree density (N) were 
estimated  using  three  different  functions 
from  the  package  “basifoR”  (Lara  et  al. 
2021) in R (R Core Team 2019).

The dominant  height  was calculated ac-
cording to the criterion of Assmann, which 
is the definition most widely used in Spain 
(Bengoa  1999),  where  it  considers  the 
dominant height as the height correspond-
ing to the tree that presents the average 
height of the 100 thickest trees per hectare 
(Assmann 1970).

Due to the NFI design, trees are consid-
ered  in  different  subplots  depending  on 
their DBH, therefore the 100 thickest trees 
should be defined using the expansion fac-
tors.  For  this  reason,  the following equa-
tion derived from Assmann’s formula was 
used  to  calculate  the  dominant  height 
(eqn. 1):

(1)

where  Ho is the dominant height (m),  H  is 
the  tree  total  height  (m),  i takes  values 
from 1 to n of thickest trees, expfact is the 
expansion factor, n is the number of thick-
est considered trees; this value can vary de-
pending on each NFI plot.

Reineke’s index (SDI) was used as a stand 
density index. The optimal density-growth 
interval  was  determined  by  upper  and 

lower growing stock limits, where the up-
per limit intended to avoid trees mortality 
caused by  competition  due to  high trees 
density, and it was defined by 60% of maxi-
mum  SDI found for both species (Dean & 
Baldwin  1993),  while  the  lower  limit  was 
defined by 35% of maximum  SDI aiming to 
ensure  adequate  site  occupancy  (Long 
1985).

SDI was calculated by summing up the SDI 
for  P.  sylvestris (SDIsyl)  and  the  SDI  for  P. 
pinaster  (SDIpin) as described in eqn.  2 and 
eqn.  3,  respectively,  to  take into account 
the area occupied by each species in mixed 
stands (Riofrío et al. 2017):

(2)

(3)

where SDI is the Reineke’s stand density in-
dex,  N is the number of trees per hectare, 
QMD is the quadratic mean diameter, syl in-
dicates Pinus sylvestris and pin indicates Pi-
nus pinaster.

Model structure and statistical methods
The aimed SDMD model has the following 

fundamental  components:  (i)  Reineke’s 
stand density index; (ii)  an allometric sys-
tem of two linear equations (eqn.  4,  eqn. 
5):

(4)

(5)

where QMD is the quadratic stem diameter 
(cm), N is the stand density (tree ha-1), Ho is 
the dominant height (m), V is the stand to-
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Tab. 1 -  Summary of the data set (n = 165) from the third Spanish National Forest 
Inventory used to develop SDMD for Pinus sylvestris and Pinus pinaster mixed stands 
in the Sierra de la Demanda (Spain). (n): total number of plots; (DBH): average diame -
ter at breast height (cm); (QMD): quadratic mean diameter (cm); (H): average tree 
height (m); (Ho): dominant height (m); (N): the number of trees per hectare; (V): the 
over bark volume (m3 ha-1);  (G): basal area (m2 ha-1);  (SDI): Reineke’s stand density 
index.

Attributes 
(Variable)

Mean Minimum Maximum
Standard 

deviation (SD)

DBH 26.96 9.13 45.28 7.56

QMD 28.53 9.19 48.22 7.43

H 13.58 4.7 22.88 4.07

Ho 16.26 6.5 26.17 3.93

N 535.32 101.29 977.99 228.67

V 300.44 12.27 977.69 163.3

G 32.5 2.53 73.44 14.54

SDI 599.92 74.59 1250.36 250.42
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ln (V )=β 3+β 4⋅ln (QMD)
+β 5⋅ln (Ho)+β 6⋅ln(N )

ln (QMD)=β 0+β 1⋅ln (N )+β 2⋅ln (Ho)

SDI syl (pin )=N syl( pin)(QMD25.4 )
1.605

Tab. 2 - Coefficients resulted from the simultaneous fitting of the eqn. 6 and eqn. 7 to 
estimate  quadratic  mean  diameter  (QMD)  and  volume  (V)  respectively,  for  Pinus 
sylvestris and Pinus pinaster mixed stands.

Variable 
(eqn.)

Coefficients of regression

Coeff. Parameter Estimate Pr(>|t|)

QMD 
(eqn. 6)

β0 Intercept 2.56371 9.69E-12

β1 mixfrac (Mixture degree) 0.82466 0.486

β2 ln N (Density) -0.1976 1.69E-06

β3 mixfrac (Mixture degree) -0.34979 0.024

β4 ln Ho (Dominant height) 0.73041 < 2e-16

β5 mixfrac (Mixture degree) 0.41264 0.145

V
(eqn. 7)

β6 Intercept -7.58942 < 2e-16

β7 mixfrac (Mixture degree) -2.24766 0.3391

β8 ln QMD (Quadratic mean diameter) 1.64388 < 2e-16

β9 mixfrac (Mixture degree) 1.0148 0.1153

β10 ln Ho (Dominant height) 0.9352 1.5E-08

β11 mixfrac (Mixture degree) -1.07111 0.0818

β12 ln N (Density) 0.82928 < 2e-16

β13 mixfrac (Mixture degree) 0.26548 0.313

SDI=SDI syl+SDI pin

Ho=
∑
i=1

n

H i⋅expfact

100
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tal volume (m3 ha-1), and  βi are the regres-
sion coefficients.

Eqn. 4 relates the quadratic mean diame-
ter  with  stand  density  and  dominant 
height, while eqn. 5 relates the over bark 

volume with the quadratic mean diameter, 
dominant height, and stand density.

ln(QMD)  and  ln(V)  are  instrumental  and 
dependent  endogenous  variables,  while 
ln(Ho)  and  ln(N)  are  independent  exoge-

nous variables,  but  as  ln(QMD)  is  defined 
independently  of  the  system  in  eqn.  5, 
therefore  it  is  considered  as  an  indepen-
dent  exogenous  variable.  The  two  equa-
tions were fit simultaneously to prevent er-
ror correlation.

In order to test mixing effect on QMD and 
V, two models were developed from eqn. 4 
and eqn. 5 by taking mixture proportions 
into account. In this regard, a new variable 
(mixfrac), calculated using eqn. 8 and eqn. 
9,  representing mixing degree,  was intro-
duced into both eqn. 6 and eqn. 7 (Swift et 
al. 2007).

(6)

(7)

where (eqn. 8, eqn. 9):

(8)

(9)

The simultaneous fitting of the equations 
and  the  analyses  were  done  using  the  R 
statistical environment.

SDMD was constructed using the format 
described  by  Barrio  Anta  &  Alvarez  Gon-
zález (2005),  with quadratic  mean diame-
ter  (QMD)  and  density  (N)  on  the  major 
axes.  QMD was represented on the  x-axis 
as a logarithmic scale, while N was repre-
sented on the y-axis as a logarithmic scale 
too.  Then  isolines  representing  dominant 
height  (Ho),  over  bark  volume  (V),  and 
Reineke’s  stand  density  index  (SDI)  were 
superimposed on the bivariate graph.

Results
The results from the simultaneous fitting 

of eqn. 6 and eqn. 7 to estimate quadratic 
mean  diameter  and  total  stand  volume, 
show that all  coefficients were significant 
at a 0.05 significance level, except for the 
mixture degree variable (mixfrac – Tab. 2). 
R-squared (R2) for ln(QMD) and ln(V) equa-
tions were quite high (0.795 and 0.9506 re-
spectively),  reflecting  efficient  goodness-
of-fit statistics (Tab. 3). Due to the non-sig-
nificant effect of the mixture degree vari-
able  (mixfrac),  it  was  eliminated  and  an-
other run of simultaneous fitting of the ini-
tial  system  of  equations  represented  by 
eqn  4  and  eqn.  5  was  done  to  estimate 
quadratic  mean diameter  and total  stand 
volume. The results  show that all  the co-
efficients  were  quite  significant  at  a  0.05 
significance level (Tab. 4). Again, from the 
validation statistics of simultaneous fitting 
of  the  two  equations  system  formed  by 
eqn. 4 and eqn. 5 (Tab. 5), R-squared (R2) 
values for ln(QMD) and ln(V) equation were 
quite  high  (0.7743  and  0.9479  respec-
tively).  These  results  indicate  efficient 

277 iForest 16: 274-281

Tab. 3 - Validation statistics of simultaneous fitting of the eqn. 6 and  eqn.  7 to esti-
mate quadratic mean diameter (QMD) and volume (V) respectively, for Pinus sylvestris 
and Pinus pinaster mixed stands.

Variable 
(eqn.)

Parameter Value

QMD 
(eqn. 6)

RSE (Relative standard error) on 159 degrees of freedom 0.1317

R2 (Coefficient of determination) 0.795

Adjusted R2 0.7885

p-value (Probability value) < 2.2e-16

V
(eqn. 7)

RSE (Relative standard error) on 157 degrees of freedom 0.1596

R2 (Coefficient of determination) 0.9506

Adjusted R2 0.9484

p-value (Probability value) < 2.2e-16

Tab. 4 - Coefficients resulted from the simultaneous fitting of the eqn. 4 and eqn. 5 to 
estimate  quadratic  mean  diameter  (QMD)  and  volume  (V)  respectively,  for  Pinus 
sylvestris and Pinus pinaster mixed stands.

Variable 
(eqn.)

Coefficients of regression

Coeff. Parameter Estimate Pr(>|t|)

QMD
(eqn. 4)

β0 (Intercept) 2.69703 <2e-16

β1 ln N (Density) -0.26759 <2e-16

β2 ln Ho (Dominant height) 0.82344 <2e-16

V
(eqn. 5)

β3 (Intercept) -8.18200 < 2e-16

β4 ln QMD (Quadratic mean diameter) 1.90971 < 2e-16

β5 ln Ho (Dominant height) 0.68569 2.05e-12

β6 ln N (Density) 0.88702 < 2e-16
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ln (QMD)=β 0+β 1mixfrac
+(β 2+β 3mixfrac)⋅ln(N )
+(β 4+β 5mixfrac )⋅ln (Ho)

ln (V )=β 6+β 7mixfrac
+(β 8+β 9mixfrac)⋅ln (QMD)
+(β 10+β 11mixfrac)⋅ln(Ho)
+(β 12+β 13mixfrac)⋅ln (N )

mixfrac=0.5−|(sylfrac−0.5 )|

sylfrac= P .sylvestris basal area
Total basal area

Tab. 5 - Validation statistics of simultaneous fitting of the eqn. 4 and eqn. 5 to esti -
mate quadratic mean diameter (QMD) and volume (V) respectively, for Pinus sylvestris 
and Pinus pinaster mixed stands.

Variable
(eqn.)

Parameter Value

QMD 
(eqn. 4)

RSE (Relative standard error) on 162 degrees of freedom 0.1369

R2 (Coefficient of determination) 0.7743

Adjusted R2 0.7715

p-value (Probability value) < 2.2e-16

V
(eqn. 5)

RSE (Relative standard error) on 161 degrees of freedom 0.1618

R2 (Coefficient of determination) 0.9479

Adjusted R2 0.9469

p-value (Probability value) < 2.2e-16

Tab. 6 - Silvicultural management alternative shown in Fig. 3. (N): density (trees ha-1); 
(QMD): quadratic mean diameter (cm); (Ho): dominant height; (V): the over bark vol-
ume (m3 ha-1).

Entry
N (tree ha-1) QMD (cm) Ho (m) V (m3)

Before After Before After Before After Before After

I-II 1000 409 22.7 26.5 15.3 14.3 294.3 187.5

III-IV 409 181 37.1 44 21.5 20.3 471.8 304.8

V (Final cut) 181 - 54 - 26 - 534.3 -
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goodness-of-fit  statistics  and  the  right 
choice of both the equation form and the 
independent variables.

Thus,  the two linear models  eqn.  4 and 
eqn. 5 without the mixture degree are the 
appropriate choices to develop the aimed 
Stand Density Management Diagram. Even-
tually,  the  two adjusted linear  models  to 
estimate quadratic mean diameter and to-
tal stand volume for Pinus sylvestris – Pinus 
pinaster mixtures  in  the  Sierra  de  la  De-
manda were (eqn. 10, eqn. 11):

(10)

(11)

where QMD is the quadratic stem diameter 
(cm), N is the stand density (tree ha-1); Ho is 
the dominant height (m), and V is the stand 
total volume (m3 ha-1).

An SDMD for the mixed stands of  Pinus 
sylvestris and P. pinaster in the Sierra de la 
Demanda  was  elaborated  using  the  data 
obtained from the Spanish National Forest 
Inventory (eqn. 10 and eqn. 11), and the for-
mula of Reineke’s stand density index (Fig.
2), where quadratic mean diameter (QMD) 
and density (N) were plotted on x-axis and 
y-axis  respectively  as  logarithmic  scales, 
while the isolines of dominant height (Ho, 
in  red),  total  volume  (V,  in  blue),  and 
Reineke’s index (SDI, in green) were super-
imposed  on  the  bivariate  graph.  The  iso-
lines in bold black represent the upper and 
lower  growing  stock  limits  and  they  are 

60% of maximum  SDI for the upper limits 
(Dean  &  Baldwin  1993)  and  35%  of  maxi-
mum  SDI for the lower limit  (Long 1985). 
Optimal density levels should be found be-
tween  these  limits,  meaning  both  bold 
black  lines.  Values  above  the  maximum 
limit mean silvicultural treatments like thin-
ning should be done and values below the 
minimum limit  mean the density  is  inade-
quate.

Discussion
The value of  the stand density  manage-

ment diagram developed in this study for 
Pinus sylvestris  – P. pinaster mixed stands, 
emerges  from  the  current  orientation  of 
moving further in developing efficient tools 
and models in quantitative silviculture for 
mixed stands, to quantitatively and qualita-
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Fig. 2 - Stand Density Man-
agement Diagram (SDMD) 

for mixed stands of Pinus 
sylvestris and P. pinaster in 
the Sierra de la Demanda.

Fig. 3 - Silvicultural man-
agement alternative for 

mixed stands of Pinus 
sylvestris and Pinus 

pinaster in the Sierra de la 
Demanda.
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tively enhance forest wood and non-wood 
production  and  ecosystem  functions  and 
services, especially in light of the lack of in-
formation on mixed forests combined with 
a raised interest in such forest systems.

An  example  of  alternative  management 
in this type of forest is shown in Tab. 6 and 
Fig. 3. In this case, a set of thinning inter-
ventions was applied two times and differ-
ent intensities (I-II and III-IV) and a final cut, 
which was defined by a dominant height of 
26 m. The initial density was 900 trees ha -1 

and a quadratic mean diameter of 22.7 cm. 
The first thinning was applied to obtain a 
density  of  409  tree  ha-1.  Then  the  stand 
grew considering no natural mortality until 
a  quadratic  mean  diameter  of  26.5  cm 
when  the  second  thinning  should  be  ap-
plied.  The  density  decreased  from  409 
trees ha-1 to 181 trees ha-1 after this second 
thinning. Again, the stand grew until a qua-
dratic mean diameter of approximately 54 
cm, when the final cut should be applied.

Mixed-species stands as diverse systems 
show a greater increment in above-ground 
woody  biomass  than  pure-species  stands 
(Vilà et al. 2007, Paquette & Messier 2011). 
For  example,  the  annual  woody  biomass 
production of mixed stands in the Alto Tajo 
region in Spain, which consist of two pine 
species (Pinus sylvestris and Pinus nigra J.F. 
Arnold) and two oak species (Quercus ilex 
L.  and  Quercus  faginea  Lam.),  exceed the 
production  of  monocultures  stands  by 
more than 48% (Jucker et al. 2014). More-
over, mixed stands have a higher level of 
carbon  storage  in  the  root  system  (Bras-
sard et al. 2011), in addition to their role in 
enriching wildlife taxa (Castagneyrol & Jac-
tel 2012).

Our  results  showed  that  introducing  a 
new variable reflecting species mixing ef-
fects into the system of equations was not 
significant, while it was significant in other 
studies and was retained in the models to 
formulate SDMD (Swift et al. 2007). Our re-
sults indicated that there was no impact of 
species mixing on stand yield represented 
by quadratic mean diameter and over bark 
volume. This is contrary to what Riofrío et 
al. (2019) concluded that at stand level for 
the two species in mixed stands, there was 
a shared gain in productivity with respect 
to varying tree growth responses to inter-
specific  competition  for  each  species.  In 
another study of mixed stands (a combina-
tion between Pinus sylvestris and Fagus syl-
vatica L.),  the  results  were  similar  to  the 
previous one,  where it  showed increased 
productivity  in  the  stands  with  superior 
growth of  Pinus sylvestris compared to  Fa-
gus  sylvatica growth,  which  was  reduced 
(Pretzsch et al. 2015).

The  reasons  behind  these  discrepancies 
can be  attributed to  the  smaller  scale  of 
our data compared to the data in the study 
of Riofrío et al. (2019). Moreover, the mix-
ing degree variable (mixfrac – Swift et al. 
2007)  as  a  way of  explaining the propor-
tion of each species in the two allometric 
models, total stand volume and quadratic 

mean diameter,  does  not  capture  the  ef-
fects on stand yield in the mixed stands of 
study. There is a lack of knowledge about 
mixed stands though it is increasing during 
the  last  few  years  (Pretzsch  &  Schütze 
2016, Riofrío et al. 2019). Different cases of 
site-growth  relationships  in  mixed  stands 
can  be  observed  based  on  different  site 
conditions. In the first case, when the inter-
actions  between  the  two  species  are  ab-
sent, the stand mutual gain in productivity 
would result in a proportional increase of 
each species, it means the total productiv-
ity  summarizes  the  productivity  of  each 
species  individually  as  in  pure  stands.  In 
other  cases,  when  there  are  interactions 
between both species, the total productiv-
ity does not correspond to the sum of indi-
vidual productivities in pure stands, as facil-
itative  or  competitive  effects  affect  final 
productivity  (Pretzsch  et  al.  2015).  More-
over,  Aldea  et  al.  (2018) reported  that 
drought events in the Mediterranean sites 
where mixed stands of co-existing species 
of Pinus pinaster Ait. and Quercus pyrenaica 
Willd  might  affect  both  species’  growth, 
putting the stability of such mixed stands 
at risk.

Therefore,  increased  temperatures  and 
higher frequency of drought events, which 
are  forecasted  for  the  Mediterranean  re-
gion  based  on  climate  change  scenarios, 
may alter radial variation cycles and cause 
a  similar  reduction  in  radial  growth  for 
both species.

In the present work,  the interaction be-
tween  both  species  is  not  clear  because 
mixture degree was not significant in both 
the  quadratic  mean  diameter  or  volume 
models.

Reineke’s index (SDI) is being used world-
wide  and  not  just  for  pure  even-aged 
stands,  where  it  has  been generalized to 
be  used  in  all  types  of  stands  including 
mixed  stands  (Shaw  &  Long  2007).  Rein-
eke’s index can be computed based on the 
number of trees per unit area and one of 
the  following  stand  attributes:  quadratic 
mean diameter, mean stem volume, mean 
stand  height,  or  stand  basal  area.  How-
ever, Burkhart (2013) reported that SDI cal-
culated  using  quadratic  mean  diameter 
performed  best  in  comparison  with  the 
other stand attributes.

Conclusions
In the present study, a stand density man-

agement  diagram  for  Pinus  sylvestris and 
Pinus pinaster mixed forests has been de-
veloped.  This  diagram  could  be  a  user-
frendly  tool  for  owners  and managers  to 
manage  mixed  stands  using  simple  vari-
ables like dominant height or density.

The  increasing  interest  in  mixed-species 
forests is due to their recognized role in re-
inforcing  ecosystem  functions  and  ser-
vices.  Although,  the  advantages  have 
prompted growing research to understand 
the  mechanisms  behind  their  functioning 
and  stability  compared  to  monocultures, 
resulting in notable insights in this regard. 

But at the same time, there is still a gap in 
the  applied  knowledge,  i.e.,  the  need for 
silvicultural  tools and management guide-
lines for forest managers to plan, establish 
and  sustain  mixed  forest  systems.  How-
ever, as the mixed forest is a complex sys-
tem in terms of different mixing effects at 
different  levels,  there  is  still  a  lack  of 
knowledge and room for more studies in 
this area. This complexity of mixing effects 
is  reflected  in  our  results  which  showed 
that the interaction between both species 
is not clear, thus no effects on stand yield. 
Eventually, to examine the behavior and in-
fluences  on  productivity,  further  studies 
should  be  done  by  considering  different 
levels and scales.
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