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Estimation of canopy attributes of wild cacao trees using digital cover 
photography and machine learning algorithms
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Surveying canopy attributes while conducting fieldwork in the rain forest is
time-consuming. Low-cost imagery such as digital cover photography is a po-
tential source of information to speed up the process of vegetation assess-
ments  and reduce costs  during  expeditions.  This  study presents  an image-
based non-destructive  method to  estimate  canopy attributes  of  wild  cacao
trees in two regions of the rain forest in Colombia, using digital cover photog-
raphy and machine learning algorithms. Upward-looking photography at  the
base of each cacao tree and machine learning algorithms were used to esti-
mate gap fraction (GF), foliage cover (FC), crown cover (CC), crown porosity
(CP), clumping index (Ω), and leaf area index (LAI) of the canopy cover. Here
we used the cacao wild trees found on forestry plots as a case study to test
the application of low-cost imagery on the extraction and analysis of canopy
attributes.  Canopy  attributes  were  successfully  extracted  from the  canopy
cover imagery and provided 92% of classification accuracy for the structural
attributes of the canopy. Canopy cover attributes allowed us to differentiate
between canopy structures of the Amazon and Pacific rainforests sites suggest-
ing that wild cacao trees are associated with different vegetation types. We
also compare classification results for the computer extraction of canopy at-
tributes with a digital  canopy cover benchmark.  We conclude that  our ap-
proach was effective to quickly survey canopy features of vegetation associ-
ated with and of crop wild relatives of cacao. This study allows highly repro-
ducible estimates of canopy attributes using cover photography and state-of-
the-art machine learning algorithms such as deep learning Convolutional Neu-
ral Networks.
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Introduction
Colombia  is  considered  as  one  of  the

main centers of diversity for crop wild rela-
tives  of  cacao  (González-Orozco  et  al.
2020). The genus Theobroma and Herrania,
as well as wild species of Theobroma cacao
L.,  are the main taxonomic entities of ca-
cao  (Cuatrecasas  1964).  They  grow  in  re-
mote areas of rainforests where much of
its diversity is present, but accessing those
regions is  challenging.  Studying crop wild
relatives is a priority for the conservation
of genetic resources (Maxted et al. 2007).
Unfortunately,  the  available  information
about these crop wild relatives of high agri-
cultural,  economic,  and  cultural  impor-
tance is limited. Accurate estimate of for-
est canopy structure is central for a wide
range  of  ecological  studies  and  applica-
tions.  Because  of  the  difficulty  of  direct
measurements,  indirect  methods  have
been  widely  used.  Canopy  photographic
methods are among the most widely used
on account of their simple, fast, and cost-
effective procedures.

In  the  past,  tree  crown  attributes  have
been estimated using vertical  digital  pho-
tography (Brown et al. 2000,  Patterson et
al. 2011). Digital cover photography (DCP) is
a  high  resolution,  restricted-view  angle

method, that provides mainly vertical sam-
pling of the canopy (Smith et al. 2008, Chi-
anucci  et  al.  2014b,  2016,  Alivernini  et  al.
2018,  Chianucci  2020)  and is  an emerging
method to estimate canopy attributes (Chi-
anucci & Cutini 2012, Chianucci 2020). Accu-
rate estimates  of  canopy attributes  using
DCP  overcomes  the  difficulties  of  hemi-
spherical photography, which are sensitive
to image processing, which are tedious and
time-consuming  (Chianucci  et  al.  2014a,
Alivernini  et  al.  2018).  Cover  photographs
also provide  higher  resolution than hemi-
spherical  photographs.  In  terms of  image
processing,  machine  learning  algorithms
have been used to estimate forest canopy
imputation  using  Advanced  Spaceborne
Thermal Emission and Reflection Radiome-
ter (ASTER) data (Shataee et al.  2012),  as
well as other remote sensing images (Noo-
rian et al. 2016). For instance, canopy hemi-
spherical photography (CHP) segmentation
and gap fraction (GF) calculation were per-
formed  using  deep  learning  neural  net-
works (Li et al. 2020). Deep learning regres-
sion  has  also  been  used  to  make  hemi-
spherical photography independent of sun-
light  illumination  conditions  (Díaz  et  al.
2021).  Here,  we  use  upward-looking  DCP
(as  in  Chianucci  et  al.  2014a)  rather  than
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downward-looking  photographs  because
of load constraints during fieldwork in the
expeditions as well as constraints in human
resources.

This work addresses the issue of how to
compute  canopy  cover  properties  using
DCP and machine learning algorithms. Clas-
sification accuracy is estimated using cross-
validation and comparison to a digital cov-
er  photography  benchmark  (Grotti  et  al.
2020).

Materials and methods

Study area
The study of crop wild relatives (CWR) of

cacao trees was performed in the rainfor-
est  of  three  Colombian  departments:  Ca-
quetá,  Putumayo,  and  Chocó  (Fig.  S1  on
Supplementary  material)  between  2018
and  2019.  The  first  cacao-BIO  expedition
traveled to the Caguán and upper Caquetá
rivers  in  Caquetá  and  Putumayo  depart-
ments,  where  five  parcels  surrounding  a
wild  Theobroma tree  were  examined
across  different landscapes (flooded,  firm
ground, and riverbanks). Later, the second
expedition took place in La Victoria munici-
pality  part  of  the  Canton  de  San  Pablo
(Chocó  department)  where  three  parcels
around a wild cacao tree in the rain forest
were examined. The expedition collected a
total  of  eight  upward-looking  DCPs,  one
for each parcel.

Estimation of canopy properties
A key point to estimate canopy attributes

is to separate canopy large gaps from nor-
mal size gaps (Smith et al. 2008, Chianucci
& Cutini  2012,  Chianucci  et  al.  2014a,  Aliv-
ernini  et al.  2018). One of the latest tools
provides a free Python library called “Can-
opy Cover” (CaCo – https://github.com/aliv
ernini/caco) that performs a segmentation
of the canopy and its gaps, as well as a seg-

mentation  of  large  gaps  and  normal  size
gaps  using statistical  methods,  from  DCP
(Alivernini et al. 2018 – see Fig. 1 for an illus-
tration  of  the  canopy,  small  and  large
gaps). CaCo does not currently provide all
the  canopy  attributes  computed  here,
since it centers more on providing statistics
of  the  gaps  found.  In  this  work,  six  ma-
chine learning algorithms are used to clas-
sify  upward-looking  DCPs  into  the  sky
(gaps),  leaves,  and  trunks:  K-Nearest
Neighbors  (KNN  – Altman 1992),  Support
Vector Machines (SVM  – Chen 2009), Ran-
dom Forests (RF – Ho 1995), Extreme Gra-
dient Boost (XGBoost  – Cheng & Guestrin
2016), Multilayer Perceptron (MLP  – Rum-
elhart et al. 1986) and deep learning Con-
volutional Neural Networks (CNN - Krizhev-
sky et al. 2017). The algorithm in CaCo that
statistically separates large gaps from nor-
mal size canopy gaps was used here, based
on the sky class, detected using supervised
machine  learning  algorithms.  The  Python
code  used  here  is  available  in  GitHub
(https://github.com/julioduarte2020/Canop
yCover), where a modified version of CaCo
is  included  that  estimates  all  canopy  at-
tributes. The innovation of this work is the
use of DCP and supervised machine learn-
ing  algorithms to  classify  the  images  and
then estimate the canopy attributes.

Samples  of  the  sky,  trunk,  and  leaves
were  selected  on  each  DCP  image  using
the  free  software  MultiSpec  (https://eng
ineering.purdue.edu/~biehl/MultiSpec/)  to
form the training data. Five-fold cross-vali-
dation  was  used  to  estimate  the  perfor-
mance of each classifier,  i.e.,  the samples
selected  are  randomly  split  into  training
samples  (80%)  and  testing  samples  (20%)
five times, covering the training data. The
performance  of  each  classifier  was  mea-
sured  in  terms  of  classification  accuracy,
sensitivity,  and specificity. KNN, SVM, and
RF classifiers were implemented in python

using the Sklearn library. XGBoost was im-
plemented in python using the XGBoost li-
brary. MLP and CNN classifiers were imple-
mented in  python using the  Keras  library
with  Tensorflow  under  the hood.  Encour-
aging  results  were  obtained  by  setting  5
neighbors and leaf size of 100 for the KNN
classifier.  The  linear  SVM  classifier  was
used with default settings. As for RF classi-
fiers,  best results were obtained using 100
estimators and default settings. Regarding
XGBoost,  encouraging  results  were  ob-
tained  using  100  estimators  and  trees  as
the  booster.  For  the  MLP  classifier,  the
best  results  were  obtained  using  two
dense layers of size three with batch nor-
malization (Ioffe & Szegedy 2015) and Relu
activation (Glorot et al. 2011). Also, encour-
aging  results  were  obtained for  the CNN
classifier using a sliding window of size 9
pixels  around  each  pixel,  a  first  convolu-
tional layer with a kernel of size 3 and 20 fil-
ters, batch normalization and dropout lay-
er (Srivastava et al. 2014) of 0.2; a second
convolutional layer with a kernel of size 5
and  40 filters,  batch  normalization,  drop-
out of 0.2 and max-pooling of size 2×2. Af-
ter the two previous convolutional layers, a
flatten layer is added, followed by two MLP
layers of size half of the input of the previ-
ous layer, batch normalization, dropout of
0.2, and Relu activation.

With  each  DCP  image  classified  into
trunk,  leaves,  and sky,  the following can-
opy attributes can be estimated (Alivernini
et al. 2018 – eqn. 1 to eqn. 5):

(1)

(2)

(3)

(4)

(5)

where FC is the foliage coverage,  CC is the
crown cover, CP is the crown porosity, Ω is
the clumping index,  LAI is the leaf area in-
dex; gT is the total number of pixels of gaps
(sky); L is the number of pixels of all leaves;
pC is the number of pixels in the image mi-
nus the number of pixels of the trunk,  i.e.,
the number of pixels of the canopy;  gT/pC=
GF is the total gap fraction;  gL is the num-
ber  of  pixels  of  large  gaps,  estimated  as
those  gaps  which  size  is  larger  than  one
standard deviation above the mean of all
gaps (Alivernini et al. 2018); and k is the co-
efficient of extinction, which is assumed to
be 0.5 as in Alivernini et al. (2018).

Benchmark
Besides  cross-validation classification ac-

curacy  and  accuracy  with  respect  to  the
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Fig. 1 -  Canopy large and small  gaps (black: canopy; white:  small  gaps;  gray:  large
gaps) in the rain forest in Colombia.
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training data, we also tested the best two
classifiers: CNN and RF as well as CaCo us-
ing  a  digital  canopy  cover  benchmark
(Grotti et al. 2020) that consists of 315 DCP
images distributed on seven test sites (45
images on each test site), taken in a hemi-
spherical way (zenith angles between 2.5°
and 72.5° at intervals of 5°), and using a Ter-
restrial  Laser  Scanning  (TLS)  to  estimate
the total  gap fraction (GF)  from 3D point
data  cloud  available  from  the  TLS.  From
these 315 images, we select 63 DCP images
that are upward looking (zenith angles be-
tween 2.5° and 12.5°) with their respective
GF and effective leaf area index (LAIe) mea-
sures. The  LAIe can be computed as (Chia-
nucci 2020 – eqn. 6):

(6)

The  LAIe was computed as ln(GF)/k using
the GF for the benchmark and k=0.5 so that
the  LAIe of the benchmark corresponds to
the same equations used here. The LAIe for
the DCP images was computed as LAI  · Ω,
so that  there is  correspondence with the
eqn. 1 to eqn. 5 used here. Twenty-one im-
ages of the benchmark were chosen to se-
lect training samples for the trunk, leaves,
and sky, based on the availability of those
classes on each image.

Results

Performance of canopy classification 
algorithms

Fig.  2 shows  the  performance  of  each
classifier, where CNN and RF have the best
performance in terms of classification accu-
racy, sensitivity, and specificity.

Canopy attributes
Fig.  3 shows  the  classification  accuracy

for the three best classifiers CNN, RF, and
XGBoost, on each test site. As can be seen

from these results, CNN seems to perform
best for test sites 1, 2, 4, 5, and 6 and worst
for site 8. RF and XGBoost have similar per-
formance across all sites, being better than
CNN on sites 3, 7,  and 8. In  general,  CNN
performs well on all sites except on site 8,
where  it  falls  behind  RF  and  XGBoost  by
13% in accuracy.

The  only  difference  we  found  between
the image on site 8 and the other site im-
ages  is  that  the  image  on-site  8  is  very
sunny  compared  to  the  images  on  the
other sites, so it is probably due to this fac-
tor that CNN does not perform well on this
image.

Fig. S2-S6 (Supplementary material) show
the  estimated  canopy  attributes  using
CNN, RF, XGBoost, and CaCo on each test
site.  The  first  three  sites  correspond  to
Chocó and the last five sites correspond to
Caquetá and Putumayo. The different clas-
sifiers showed that, in general,  the Choco
canopies  are thicker and denser  than the
Caquetá and Putumayo sites.

Fig.  4 shows in  the  x-axis  the  TLS total
gap fraction (GF) of the benchmark versus
the  estimated  GF in  the  y-axis  using  (a)
CNN, (b) RF, and (c) CaCo. From this figure,
RF obtains the best R2 statistic, followed by
CaCo,  and  CNN;  while  CaCo  obtains  the
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Fig. 2 - Classifica-
tion performance.

Fig. 3 - Classifica-
tion accuracy on 
each test site.

Fig. 4 - Estimated gap fraction (GF) using (a) CNN, (b) RF, and (c) CaCo vs. TLS.

Fig. 5 - Estimated LAIe using (a) CNN, (b) RF, and (c) CaCo vs. TLS.
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best slope.  Fig.  5 shows in the x-axis  the
LAIe estimated using the benchmark GF ver-
sus the estimated  LAIe from the images in
the  y-axis  using  (a)  CNN,  (b)  RF  and  (c)
CaCo. From this figure, RF obtains the best
R2 statistic,  followed  by  CaCo  and  CNN;
while CNN obtains the best slope followed
by RF and CaCo.

Discussion
Estimated canopy cover attributes using

CaCo tend to vary less from one site to the
next,  while  they tend to vary more using
CNN, RF and XGBoost classifiers, indicating
a greater  sensitivity to the varying condi-
tions on each test site (Fig. S2-S6 in Supple-
mentary material).  The estimation of can-
opy cover attributes, as given  in eqn. 1 to
eqn. 5, depends on a good classification of
the  sky,  tree  trunks,  and  leaves,  as  pro-
vided  by  the  best  three  classifiers,  i.e.,
CNN,  RF,  and XGBoost.  In  contrast,  CaCo
only considers two classes: sky and canopy;
however,  CaCo  results  are  not  that  far
away from the CNNs, RFs, and XGBoost re-
sults, showing that even though Caco was
made for  sky-canopy classification,  it  pro-
vides also good results. As a matter of fact,
in  some cases,  CaCo results  are closer  to
CNN than RF or XGBoost, also indicating a
high sensitivity of the estimated canopy at-
tributes to classification accuracy.  RF and
XGBoost have similar classification perfor-
mance (Fig.  3)  and similar  estimated  can-
opy  attributes.  The  canopy  cover  bench-
mark estimate of the GF uses a similar sky-
canopy segmentation algorithm (Chianucci
2020) to CaCo (Alivernini  et  al.  2018),  de-
spite that CNN, and RF also obtained good
prediction accuracies of GF and LAIe overall.

The proposed technique can be used in
agroforestry systems to estimate the can-
opy attributes using upward or downward
DCP images, which would allow determin-
ing if for instance cacao trees are raised in
a well-shaded farm, or if the programming
of  cultural  practices  such  as  pruning  the
canopy of trees is required. Canopy cover
should be higher the warmer and drier the
climate is, and there is a non-linear relation-
ship between shade and yield (https://clim
atesmartcocoa.guide/entry-points/shading-
and-agroforestry/).  The  percentage  of
shade  can  be  easily  computed  from  the
classification  images  obtained  using  the
proposed supervised classification method.

Conclusions
A method to estimate canopy cover  at-

tributes from upward-looking DCP and ma-
chine learning  algorithms have  been  pro-
posed  here.  Given  that  canopy  cover  at-
tributes are very sensitive to classification
accuracy, it is of utmost importance to ob-
tain good classification accuracy of the sky,
tree trunks, and leaves. Deep learning con-
volutional  neural  networks  provided,  in
general,  the  best  classification  results,
compared  to  other  well-known  classifica-
tion  methods.  Given  that  we  compare
CNN, RF and CaCo against a known bench-

mark and the results are satisfactory, there
is confidence that the estimated canopy at-
tributes  using  DCP  images  and  machine
learning algorithms are close to reality.
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