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A geographically weighted deep neural network model for research on 
the spatial distribution of the down dead wood volume in Liangshui 
National Nature Reserve (China)
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In natural forest ecosystems, there is often abundant down dead wood (DDW)
due to wind disasters, which greatly changes the size and structure of forests.
Accurately determining the DDW volume (DDWV) is crucial for sustaining forest
management, predicting the dynamic changes in forest resources and assessing
the risks of natural disasters or disturbances. However, existing models cannot
accurately express the significant spatial nonstationarity or complexity in their
spatial  relationships.  To this end,  we established a geographically weighted
deep neural network (GWDNN) model that constructs a spatially weighted neu-
ral network (SWNN) through geographic location data and builds a neural net-
work through stand factors and remote sensing factors to improve the inter-
pretability of the spatial model of DDWV. To verify the effectiveness of this
method, using 2019 data from Liangshui  National Nature Reserve, we com-
pared model fit, predictive ability and residual spatial autocorrelation among
the GWDNN model and four other spatial models: an ordinary least squares
(OLS) model, a linear mixed model (LMM), a geographically weighted regres-
sion (GWR) model and a deep neural network (DNN) model. The experimental
results show that the GWDNN model is far superior to the other four models
according to various indicators; the coefficient of determination R2, root mean
square error (RMSE), mean absolute error (MAE), Moran’s I and Z-statistic val-
ues of the GWDNN model were 0.95, 1.05, 0.77, -0.01 and -0.06, respectively.
In addition, compared with the other models, the GWDNN model can more ac-
curately depict local spatial variations and details of the DDWV in Liangshui
National Nature Reserve.

Keywords:  Down Dead Wood Volume (DDWV), Ordinary Least  Squares (OLS)
Model, Linear Mixed Model (LMM), Geographically Weighted Regression (GWR)
Model, Deep Neural Network (DNN) Model, Geographically Weighted Deep Neu-
ral Network (GWDNN) Model

Introduction
Coarse woody debris (CWD) is an impor-

tant material in forest ecosystems (Hagan
& Grove 1999) and mainly includes stand-
ing dead trees,  down dead wood (DDW),
snags  and  large  branches  (Harmon  et  al.
1986). DDW is an important component of
CWD (Pfeil et al. 2007, Jenkins et al. 2004).
In Liangshui National Nature Reserve, DDW
often results from windthrows, which are

defined as the uprooting of trees by winds
(Lavoie et al.  2012).  DDW not only has an
economic  impact  (Costa  &  Ibanez  2005,
Kinnucan 2016) but also plays key roles in
nutrient  cycling,  carbon  storage,  vegeta-
tion  succession  and  the  maintenance  of
biodiversity (Chojnacky & Heath 2002, Polo
et al. 2013). Therefore, the accurate deter-
mination of the spatial distribution of DDW
volume  (DDWV)  is  particularly  important

for disaster prediction and sustainable for-
est management.

At present, commonly used spatial effect
models can be divided into two categories:
parametric  models  and  nonparametric
models  (Fassnacht et  al.  2014,  Adamec &
Drápela 2017). The former refers to statisti-
cal  regression methods,  such as the ordi-
nary least squares (OLS) model, spatial re-
gression  models  and  the  geographically
weighted regression (GWR) model.  These
methods can be used to easily  determine
the  relationships  between  response  and
predictor  variables.  However,  spatial  ef-
fects in data often appear in the form of
patches  or  geographic  gradients,  which
can  violate  the  independence  and  homo-
geneity assumptions of OLS and other tra-
ditional  statistical  methods  (Green  et  al.
2005, Subedi et al. 2018). To this end, to in-
clude  spatial  effects  in  the  regression
framework, scholars have used spatial  re-
gression models, which estimate the covar-
iance matrix to model the spatial autocor-
relation of variables in adjacent locations;
examples  include  the  spatial  lag  model
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(SLM), the spatial  error model (SEM) and
the  linear  mixed  model  (LMM  – Anselin
2001, Lu & Zhang 2011, Quirós-Segovia et al.
2016,  Qi et al.  2020). The GWR model  fits
the  spatial  relationship  of  each  location
within  a  given  bandwidth,  explores  the
nonstationarity  of  a  space  and  enhances
the description and prediction of the spa-
tial  distribution, which makes it a very at-
tractive tool for forestry modeling (Bruns-
don et al. 1996, Mennis 2006).

With  the  development  of  computers,
nonparametric  models,  including machine
learning methods such as k-nearest neigh-
bor (KNN), artificial neural network (ANN –
Deb  et  al.  2017),  support  vector  machine
(SVM), random forest and deep neural net-
work (DNN  – Schmidhuber  2015)  models,
have  been  found  able  to  handle  the  re-
sponse variables and predict the complex-
ity  of  the  relationships  among  variables,
and these models  are widely  used within
each  domain.  However,  neural  networks
rarely consider the spatial weighting prob-
lem independently  and rarely  consider  or
directly  add location coordinates into the
network as variables (Chen et al. 2018, Mo-
hammadinia et  al.  2019).  At  present,  only
geographical  general  regression  neural
network (GGRNN) and geographically neu-
ral network weighted regression (GNNWR)
models  combine  spatial  effects  and  ma-
chine  learning.  The  GGRNN  model  com-
bines  the  kernel  function  of  the  GWR
model,  which is fixed as a spatial  weight,
with  the  GRNN  model  (Irfan et  al.  2016),
and the GNNWR model combines the spa-
tially  weighted  neural  network  (SWNN)
with the OLS model (Du et al. 2020, Wu et
al.  2020,  2021).  Both models  can improve
model fitting and prediction results. How-
ever,  studies of  these models are few. In
this  paper,  the  geographically  weighted

deep neural network (GWDNN) model is in-
troduced, which combines the SWNN with
the intermediate output parameters of ma-
chine  learning  (specifically,  a  DNN).  The
SWNN  matrix  can  solve  the  problem  of
choosing an incorrect weight function in a
complex relationship (Du et al. 2020). Fur-
thermore, the form of the weight function
does not require a priori assumptions (Du
et  al.  2020).  Theoretically,  the  GWDNN
model  achieves  stronger  fitting  accuracy
and prediction performance than the gen-
eral spatial model and can more accurately
describe spatial  relationships  in  many do-
mains,  especially  the complexity of forest
ecosystems.

By  realizing  accurate  modeling  of  the
DDWV with stand factors and remote sens-
ing  factors,  this  study  demonstrated  the
potential  of  GWDNNs  to  describe  spatial
relationships.  This  method  establishes  a
two-layer  DNN  structure,  in  which  one
layer of the neural network is used to es-
tablish the spatially  weighted matrix,  and
the other layer is used to estimate a param-
eter for each variable and realizes precise
deconstruction and efficient calculation of
spatial  nonstationarity.  To  investigate
whether  the GWDNN model  can improve
the prediction of DDWV, the Liangshui Na-
tional Nature Reserve in the city of Yichun
(China)  was  considered  as  a  study  area.
The  coefficient  of  determination  R2,  root
mean square error (RMSE), mean absolute
error (MAE),  Moran’s I  and Z-statistic  val-
ues  of  five  models  (OLS  model,  LMM,
GWR,  DNN  and  GWDNN  models)  were
compared  to  assess  model  fit,  prediction
accuracy  and  residual  spatial  autocorrela-
tion. The advantages of the GWDNN model
in predicting spatial relationships were ver-
ified.

Materials and methods

Study area
The study area of Liangshui National Na-

ture  Reserve  is  located  in  the  city  of
Yichun, Heilongjiang Province, on the east
slope of the Dalidailing branch south of the
southern Xiaoxing’an Mountains and is sur-
rounded by 6  forest  farms of  the Dailing
Forestry  Experimental  Bureau.  The  geo-
graphical location is 47° 07′ 19″-47° 14′ 40″
N, 128° 48′ 08″-128° 55′ 45″ E (Fig. 1). The to-
tal area of the reserve is 12,133 ha, with 98%
forest  coverage,  and the total  forest  vol-
ume is 1.7 million cubic meters. The study
area has  a  temperate  continental  climate
with  an  average  annual  temperature  of
-0.3  °C,  and the  annual  average precipita-
tion is 676.0 mm. The main forest type is
mixed forest, and there are large tracts of
primitive Pinus  koraiensis forest  and  sec-
ondary birch  and broad-leaved forest. The
main broad-leaved tree species include Be-
tula  platyphylla,  Quercus  mongolica,  Phel-
lodendron amurense, Fraxinus mandshurica
and Juglans mandshurica (Zhen et al. 2013).

Survey data (variable factors)
The data were collected during an investi-

gation for the forest resource planning and
design  of  the  Liangshui  reserve  in  2019,
which is called the second-class survey. For
the  purpose  of  forest  resource  manage-
ment,  31 compartments and 464 subcom-
partments  were  defined.  In  addition,  sys-
tematic  sampling  was  conducted  every  1
km.  There  were  130  fixed  sample  plots.
Each plot was round-shaped with an area
of 0.06 ha. The 130 sample plots comprised
65 coniferous and broad-leaved mixed for-
est  plots,  31  broad-leaved  mixed  forest
plots,  and  34  coniferous  relatively  pure
forests. The main variables recorded in 130
fixed plots were geographic location (lati-
tude and longitude), elevation (from digital
elevation model  – DEM, m),  slope (SLOPE,
deg), aspect, average age of the dominant
tree species (AGE, years), canopy, average
diameter at breast height of the dominant
tree species (DBH, cm), total standing for-
est stock (TSFS,  m3)  and DDWV (m3).  For
the determination of DDWV, we recorded
tree species, quantity and DBH of the DDW
in each sample plot and calculated DDWV
through the unitary volume table for Liang-
shui National Nature Reserve.

The experimental data included the fixed
sample plot data and visible light (R, G and
B  bands)  remote  sensing  images,  which
were derived from the Chinese Academy of
Forestry (CAF)’s LiCHy Hyperspectra (AISA
Eagle  II)  airborne  observation  system
(Pang  et  al.  2016).  This  system  is  a  push
broom imaging system comprising a hyper-
spectral sensor and a data acquisition unit
housed in a rugged control computer. The
designed flight altitude is 1050 m, and the
flight  speed  is  approximately  160  km  h-1.
The image rate can be up to 160 Hz, the fo-
cal length is 18.1 mm, and the field of view
(FOV) is 37.7″, with a spectral resolution of
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Fig. 1 - The study area in Yichun (northeastern China).
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9.6 nm and a spatial resolution of 0.52 m.
In the imaging process of remote sensing
images,  due to changes in flight  attitude,
height and speed, the image pixels are dis-
torted, offset, compressed or stretched rel-
ative to the actual position of the ground
target.  Therefore,  we used the ENVI  RPC
model  to  perform  geometric  corrections
for  these  deformations.  Furthermore,  for
atmospheric correction,  the ENVI FLAASH
module was used to eliminate the absorp-
tion  and  scattering  of  electromagnetic
waves from sunlight and ground objects by
the atmosphere (Aquino et al. 2018, Sun et
al. 2021). Seven kinds of visible vegetation
indexes  were  extracted  (Du  &  Noguchi
2016,  Choi  et  al.  2020,  Boonpook  et  al.
2021):  the  visible-band  difference  vegeta-
tion index (VDVI – eqn. 1), the excess green
index (EXG – eqn. 2), the red:green ratio in-
dex (RGRI  – eqn. 3), the excess green mi-
nus excess red index (EXGR – eqn. 4), the
vegetation index (VEG  –  eqn. 5), the color
index of  vegetation  (CIVE  – eqn.  6),  and
the normalized green-red difference index
(NGRDI – eqn. 7):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where  R,  G and  B  are the red band, green
band and blue band, respectively, and r, g,
and  b are the normalized red band, green
band and blue band, respectively.

Variable screening
The  stepwise  regression  method  was

used to screen the seven stand factors and
seven remote sensing factors. Then, to ex-
amine the models for multicollinearity, vari-
ance  inflation  factors  (VIFs)  were  calcu-
lated (Miles 2005), and variables with VIFs
greater  than 10 were eliminated.  Descrip-
tive  statistics  of  the  dependent  variable,
stand  variables  and  remote  sensing  vari-
ables are shown in Tab. 1.

Parametric methods

OLS model
The traditional linear regression model is

based on the OLS method to establish a lin-
ear relationship, as shown in eqn. 8:

(8)

where  Y is the dependent variable vector,
X is the independent variable vector, and β
is the OLS model coefficient vector.

LMM
The  LMM  can  be  used  to  incorporate

fixed  effects  and  a  single  compartment
random effect, with 31 levels (Bates 2005),
as expressed in eqn. 9:

(9)

where  Y is an  n×1 dependent variable vec-
tor, X is an n×p matrix of the p - 1 predictors
(with the first column as 1s to estimate the
intercept), n is the number of sample plots,
p is the number of fixed-effect parameters,
β is a  p×1 vector of unknown fixed-effect
parameters, Z is a known n×q design matrix
for the q random effects, and γ is a q×1 vec-
tor that includes the empirical best linear
unbiased predictors (EBLUPs) for the ran-
dom effects. A diagonal structure was used
for the covariance matrix of the compart-
ment random-effects, while an exponential
correlation structure was proposed for the
residual (between-plots) covariance matrix
(Zhang & Gove 2005).

GWR model
The  GWR  model  is  an  extension  of  the

traditional linear regression model and can
establish local parameter estimates (Bruns-
don et al. 1996). The GWR model is defined
as follows (eqn. 10):

(10)

where Y is the independent variable vector,
(ui,  vi)  denotes  the  spatial  coordinates  of
location  i,  β0(ui,  vi)  is  the  intercept,  and
βk(ui,  vi) is the coefficient of  k explanatory

variables. The estimation of parameters is
obtained by eqn. 11:

(11)

where W(ui,  vi) is an n×n weight matrix, the
off-diagonal  elements  of  which  are  zero,
and the diagonal elements of which are the
spatial  weights.  GWR spatial  weights  can
be  estimated  by  spatial  kernel  functions,
with  Gaussian  and  bisquare  kernel  func-
tions  currently  being  the  most  common
methods  (Fotheringham  et  al.  1998).  The
specific expression for the Gaussian func-
tion is (eqn. 12):

(12)

while for the bisquare function (eqn. 13):

(13)

where b is a non-negative decreasing func-
tion describing the functional  relationship
between  the  weight  and  the  distance,
called  the  bandwidth,  and  dij is  the  Eu-
clidean distance. The model parameter es-
timation and prediction accuracies largely
depend on the bandwidth choice. We used
the corrected Akaike information criterion
(AICc) to select the GWR model  with the
optimal bandwidth (Subedi et al. 2018).

Nonparametric models

DNN model
With the development of computer tech-

nology, DNNs have a wide range of applica-
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Tab. 1 - Descriptive statistics of the dependent variable, stand variables and remote
sensing variables.

Variables Name Mean SD Min Q1 Q3 Max

Dependent
variable

Down dead wood volume 
(DDWV, m3)

3.44 4.72 0.01 0.73 3.9 25.63

Stand
variables

Elevation (DEM, m) 401.06 76.22 270 344 430 638

Slope (SLOPE, deg) 8.58 5.21 1 6 10 36

Aspect 5.45 2.31 1 4 7 9

Average age of dominant tree 
species (AGE, years)

98.08 47.57 30 55 150 170

Canopy 0.53 0.14 0.3 0.4 0.6 0.9

Average diameter at breast height 
od dominant tree species (DBH, cm)

40.36 18.36 11.6 26 54 91

Total standing forest stock 
(TSFS, m³)

14.94 8.17 0.89 9.4 18.45 45.97

Remote 
sensing 
variables

Visible-band difference vegetation 
index (VDVI)

0.33 0.03 0.27 0.31 0.36 0.41

Excess green index (EXG) 0.5 0.05 0.39 0.47 0.54 0.64

Red:green ratio index (RGRI) 0.58 0.05 0.44 0.54 0.61 0.7

Excess green minus excess red 
index (EXGR)

0.6 0.09 0.41 0.55 0.67 0.86

Vegetation index (VEG) 1.95 0.01 1.67 1.88 2.02 2.29

Color index of vegetation (CIVE) 18.39 0.02 18.33 18.38 18.4 18.44

Normalized green-red difference 
index (NGRDI)

0.27 0.04 0.18 0.25 0.3 0.39
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VDVI=(2G−R−B)/(2G+R+B)

EXG=(2−r−b)

RGRI=R /G

EXGR=EXG−1.4r−g

VEG=g /r a b(1−a) ,a=0.667

CIVE=0.44r−0.88 g+0.39b+18.79

NGRDI=(G−R)/(G+R)

YOLS=β 0+ β 1 X1

+β 2 X2+β 3 X3

+β 4 X 4+β 5 X5+ε

Y LMM=X β +Zγ +ε

YGWR=β 0(ui , v i)+∑
k=1

p

β k (ui ,v i)x ik+ε i

W ij=exp(− d ij
2

2b2)
W ij=[1−(d ij

b )
2]
2

β̂ (ui ,v i)=
X´W (ui ,v i)Y
X´ W (ui , v i) X
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tions in various fields and can reliably de-
termine the complex relationship between
features (Lecun et al. 2015). A DNN is a ma-
chine  learning  method  for  characterizing
data that can simulate the neural structure
of the human brain. Its core experimental
steps  include  data  processing,  network
model  construction,  network  training,
method selection and implementation and
model generalization performance testing.
In this study, the construction of DNNs re-
lied on the Keras deep learning framework
(Ketkar  2017).  The  construction  informa-
tion between adjacent layers is transmitted
in the form of full  connections. For a hid-
den  layer,  the  expression  of  the  transfer
process is shown in eqn. 14:

(14)

where l is the number of layers in the net-
work,  xl is an n×c matrix of input features,
n is the batch size,  c is the feature dimen-
sions, Wl

T is the weight matrix, bl is the off-
set parameter vector, yl is the output map-
ping of  the  layer,  and  σ is  the  activation
function.

In the DNN model, 4 layers of the neural
network  are  designed  to  fit  the  complex

relationships  between  the  independent
and  dependent  variables.  Among  them,
the five selected variables conform to the
input layer, the 2 layers in the middle are
the  hidden  layers,  and  the  prediction  re-
sults are the output layer. The hidden layer
uses a fully connected layer. The activation
function is the rectified linear unit (ReLU)
function,  which  is  computationally  effi-
cient,  has good sparsity and does not  re-
quire unsupervised pretraining. The param-
eter initialization strategy enables the neu-
ral network model to learn useful informa-
tion during the training process. However,
the neural network model is prone to fall
into  local  optima and is  easily  overfit  be-
cause the initial model is complex and the
amount of noise in the training set is too
large. It is necessary to use the dropout al-
gorithm to discard neurons in the hidden
layer with a certain probability in the itera-
tive training process, but their weights will
be  retained.  The  network  participates  in
the next training iteration, and the weights
are updated, which is equivalent to using
multiple models to train the same dataset.
Finally,  the  weights  are  assigned  to  the
neurons  to  optimize  the  network  struc-
ture.

GWDNN model
DNNs rarely  consider  the spatial  weight

problem independently and rarely consider
or  directly  add  location  coordinates  into
the network as variables (Chen et al. 2018,
Mohammadinia et al. 2019). Therefore, we
proposed  a  GWDNN  model,  a  two-layer
DNN  structure  in  which  one  layer  of  the
neural network is used to establish the spa-
tial  weights, namely, the SWNN (Du et al.
2020, Wu et al. 2020), and the other layer is
used to estimate a  parameter  α for each
variable. The theoretical structure is as fol-
lows (eqn. 15):

(15)

where w(ui, vi) is a 6×6 diagonal matrix rep-
resenting the geographical weights for ob-
servation i (eqn. 16), and α is the intermedi-
ate  output  layer  parameter  predicted  by
the DNN (eqn. 16):

(16)

In  the  GWR  model,  spatial  weighting  is
achieved with a function such as the Gauss-
ian function or double square function, but
its structure is simple, and it is difficult to
accurately estimate nonstationarity due to
the difficulty in choosing the correct kernel
function for complex relationships. To ad-
dress this problem, using the superior fit-
ting  ability  of  neural  networks,  Wu et  al.
(2020) proposed an SWNN to construct the
nonstationary  weight  matrix  and  calcu-
lated the kernel weights as the weights of
a complex problem. According to this ap-
proach,  the kernel  weights  of  point  i are
computed as follows (eqn. 17):

(17)

where [di1, di2, …, dij] are the distances from
point  i to  all  the  samples.  Consequently,
the definition of the GWDNN model can be
illustrated  as  shown  in  Fig.  2.  The  entire
GWDNN contains  three steps:  (1)  predict-
ing the spatial weights through the coordi-
nates (SWNN); (2) predicting the parame-
ter α by using the DNN in OLS form; and (3)
obtaining the predicted values by multiply-
ing  the  independent  variable,  the  esti-
mated spatial  weights and the parameter
α.

The entire training processes of the DNN
and GWDNN are shown in  Fig.  3.  This  ex-
periment uses simple cross-validation, and
the dataset is randomly divided into train-
ing  sets  and  validation  sets.  During  the
training  step,  when  the  training  process
meets  the  early  stopping  condition  or
when the  number  of  epochs  reaches  the
set  maximum  value,  the  training  step  is
completed, and the best network weights
are  saved.  When  the  training  process  is
complete, the validation set is used to esti-
mate the predictive power of  the model.
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Fig. 2 - The proposed GWDNN model for point i.

Fig. 3 - Flow chart
of the DNN and

GWDNN training
process.
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y l=σ (W l
T x l+bl)

YGWDNN=w0(ui , v i)α 0+w1(u i , vi )α 1X1
+w2(ui , v i)α 2X 2+w3(ui , vi)α 3 X3

+w4(ui , vi)α 4X 4+w5(u i , vi)α 5X5

w(u1, v1 )=[w0 (u1 , v1) 0 0 0

0 w1 (u1 ,v 1) 0 0
0 0 ⋯ 0
0 0 0 w5(u1 , v1)

]

w(u1 ,v1)=SWNN ([d i1 , di2 ,…,d ij ])
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The validation set does not  participate in
the model training process (Du et al. 2020).
In this paper, the MAE is used as the train-
ing loss function of the DNN and GWDNN
models, and the MAE of the validation set
is used as the index of overfitting. By set-
ting  the  maximum  number  of  epochs  to
view the trend in the MAE of the training
set and the verification set, we can find the
optimal model parameters under the opti-
mal number of iterations.

The  OLS  model  and  LMM  were  imple-
mented with the “nlme” library in R, and
the  GWR  model  was  implemented  using
the “mgwr” library in Python. The DNN and
GWDNN models  were implemented using
the “TensorFlow” and “Keras” libraries in
Python.

Evaluation of DDWV models
Based on ground-truthed DDWV samples,

a total of 104 samples were randomly se-
lected from among the 130 samples from
Liangshui  National  Nature  Reserve  for
model training, and 26 samples were used
for  model  verification.  The  R2,  RMSE  and
MAE values were used to assess model fit
and prediction ability.

Spatial effects include spatial autocorrela-
tion and nonstationarity. Ignoring the spa-
tial effects of a model will misleadingly re-
duce  the  significance  of  a  test  and  the
model’s predictive ability (Li et al. 2007). To
investigate  the  spatial  autocorrelation  in
the model  residuals,  this  study calculated
the  spatial  autocorrelation  index  (i.e.,
Moran’s I) for the residuals of the five mod-
els (eqn. 18):

(18)

where xi and xj are the values of the sample
locations  i and j (where i ≠ j), respectively,
n is the number of sample plots, x̄ is the av-
erage of the observed values, and wij(d) is
the weight estimated according to the dis-
tance between sample locations i and j.

The global Moran’s I can reveal the over-
all  spatial  autocorrelation  of  the  study
area, but if  the significance of the spatial
autocorrelation  on  each  plot  must  be
checked, the global Moran’s  I must be lo-
calized (Tiefelsdorf 2002); that is, the local
Moran’s I must be used. Its expression is as
follows (eqn. 19):

(19)

This  study  used  Z-statistics  (eqn.  20)  to
determine whether the spatial distribution
of the model residuals was random. If the
absolute value of the Z-statistic is greater
than 1.96, then the independence assump-
tion of  the model  residuals  is  contrary to
the assumption of these models, and these
residuals show clustering patterns. For the
global and local models, we calculated the

global  Moran’s  I separately  and  set
Moran’s  I to zero when the residual distri-
bution  was  completely  spatially  random
(Tiefelsdorf & Boots 1995,  Zhen et al. 2013
– eqn. 20):

(20)

where (eqn. 21):

(21)

Results

Model coefficients
The dependent variable and the five stan-

dardized  independent  variables  SLOPE,
AGE, TSFS, VDVI and VEG were used to es-
tablish the five models. The regression co-
efficients  are  significant  at  the  α level  of
0.05, which shows the strong statistical sig-
nificance of the five selected variables. The
VIF  values  indicate  no  multicollinearity
among the selected variables. Because the
design of the GWDNN model is similar  to
that of the OLS model, we also calculated
the  coefficients  for  the  GWDNN  model
(Tab. 2).

Hyperparameter analysis of the 
nonparametric models

The setting of the parameters in the DNN
and GWDNN models is  particularly  impor-
tant  in  the  training  process.  The  DNN  is
fully connected with a total of 4 layers. The
network layer includes 1 input layer, 2 hid-
den layers and 1 output layer. The numbers
of neurons are set to  n × 5,  n × 32,  n × 32
and n × 1; the initial learning rate (LR) is set
to 0.001; the maximum number of epoch it-
erations is 2000; the batch size is 10; and
the  dropout  rate  of  the  dropout  layer  is
0.5. Two branches are set in the middle of
the GWDNN structure: one branch is used
to find the spatial weight, and the number

of features in each layer is [n × 130, n × 128,
n × 128, n × 128, n × 6]; the other branch is
used to find the parameters, and the num-
ber of features in each layer is [n  × 6, n  ×
64,  n × 64,  n × 6], among which the inde-
pendent variabels and the set 1 are used to
obtain the output layer  n × 1, the initial LR
is  set  to  0.001,  the  maximum  number  of
epoch iterations is 2000, the batch size is 5,
and the dropout rate of the dropout layer
is 0.4. The specific DNN and GWDNN hyper-
parameters are shown in Tab. 3.

Model evaluation
Tab. 4 presents the training sets and vali-

dation sets of the 5 models for fitting and
predicting DDWV. For both the training set
and the validation set, the GWDNN model
is the best performing model, and the OLS
model  is  the worst.  The evaluation index
results  for  the LMM and GWR model  are
similar.  However,  the  fitting  accuracy  of
the LMM is slightly higher than that of the
GWR model,  whereas  prediction accuracy
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Tab. 2 - OLS model, LMM, GWR model and GWDNN model results.

Model Estimate Intercept SLOPE AGE TSFS VDVI VEG

OLS

Coefficient 3.58 1.39 2.65 -2.04 1.34 -1.79

SE 0.31 0.33 0.42 0.41 0.34 0.37

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

VIF - 1.19 1.81 1.67 1.23 1.33

LMM

Coefficient 3.54 1.29 2.55 -2.08 1.36 -1.68

SE 0.37 0.39 0.44 0.41 0.36 0.39

P-value <0.001 0.002 <0.001 <0.001 <0.001 <0.001

GWR

Mean_Coefficient 3.28 1.16 2.46 -2 1.29 -1.58

Min_Coefficient 2.6 0.14 1.95 -3.66 0.36 -2.37

Median_Coefficient 3.15 1.32 2.24 -1.82 1.13 -1.57

Max_Coefficient 4.43 1.81 3.74 -1.19 2.43 -0.78

GWDNN

Mean_Coefficient 2.32 0.05 1.67 -1.08 0.27 -1.05

Min_Coefficient -2.2 -0.14 -0.25 -9.26 -0.16 -2.85

Median_Coefficient 2.18 0.04 1 -0.42 0.32 -0.9

Max_Coefficient 6.98 0.35 10.98 10.36 0.94 -0.29

Tab. 3 - DNN model and GWDNN model
hyperparameter settings.

Hyper-
parameter

DNN
model

GWDNN
model

Input n×5 n×130 (A),
n×6 (BC)

Hidden1 n×32 n×128, n×64

Hidden2 n×32 n×128, n×64

Hidden3 - n×128

Output n×1 n×1

LR 0.001 0.001

Epoch
maximum

2000 2000

Dropout 0.5 0.4

Batchsize 10 5

Epoch stop 1175 792
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∑
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∑
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exhibits  the  opposite  pattern.  The  non-
parametric  models  perform  much  better
than the parametric models in fitting and
prediction accuracy. Compared with that of
the  GWR  model,  the  RMSE  of  the  DNN
model was decreased by 28% and 41%, and
that of the GWDNN model was decreased
by 61% and 45%.

Tab. 5 shows the spatial correlation of the
model  residuals  (Moran’s  I and  Z-statistic
values). The results show that the residuals
of  the OLS model  have significant spatial
autocorrelation. The residuals of the LMM
and  the  GWR,  DNN  and  GWDNN  models
have nonsignificant spatial autocorrelation.
In  general,  the  Z-statistics  can  be  com-
pared among the models. The models elim-
inated spatial autocorrelation in the follow-
ing order: GWDNN > GWR > LMM > DNN >
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Tab. 4 - Simple cross-validation model evaluation of the training set and validation set.

Models
Training set Validation set

R2 RMSE MAE R2 RMSE MAE

OLS 0.57 3.08 2.26 0.43 3.60 2.57

LMM 0.71 2.52 1.81 0.46 3.51 2.69

GWR 0.69 2.59 1.91 0.52 3.31 2.34

DNN 0.84 1.86 1.33 0.83 1.96 1.40

GWDNN 0.95 1.05 0.77 0.85 1.82 1.39

Tab. 5 -  Global Moran’s  I values of the
residuals of the five models.

Model Moran’s I Z-statistic

OLS 0.24 2.29

LMM 0.06 0.8

GWR 0.05 0.64

DNN 0.17 1.95

GWDNN -0.01 -0.06

Fig. 4 - The spatial
correlation be-

tween residuals
for the five mod-

els.

Fig. 5 - Spatial distribution of
(a) the ground-truth DDWV 
(down dead wood volume, 
m3), and (b-f) the results of 
the five predicting models.
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Modeling spatial distribution of down dead wood in Liangshui reserve

OLS. The spatial correlation of the residuals
of the DNN, which does not consider spa-
tial  effects,  is  high. When considering the
spatial weights in the GWDNN model, the
spatial  autocorrelation  is  eliminated  very
well. To compare the spatial relationship of
the residuals  among the models,  residual
spatial  correlation  diagrams  of  the  five
models were constructed at  500 m inter-
vals  (Fig.  4).  Moran’s  I is  relatively stable
across step lengths for the GWDNN model
and close to zero at all step lengths in the
other models. This finding shows that the
GWDNN model has a good ability to main-
tain spatial stability.

Mapping of the spatial distribution of 
DDWV

With  reference  to  the  ground-truthed
DDWV data, the results of the five different
models were compared. According to the
general  kriging interpolation in ArcGIS® v.
10.4 (ESRI, West Redlands, CA,  USA) geo-
statistical analysis, the spatial interpolation
process is similar to the weighted moving
average (Klobučar 2010). The cartography
can be visualized by using the symbolic rep-
resentation principle (Chen et al.  2018) to
more  directly  depict  the  spatial  variation
and details of the DDWV in Liangshui  Na-
tional Nature Reserve (Fig. 5).

The overall trend in the measured DDWV
and the spatial distributions from the five
models  are  consistent.  The  DDWV  values
ranged from 2.00 to 7.00 m3. To facilitate
comparison,  the values were divided into
seven levels by equal intervals of 1 m3 (Fig.
5). The maps show the various spatial dis-
tributions of DDWV. All six maps show that
the western part of the Liangshui reserve is
a  high DDWV region,  with  values  greater
than 7 m3, while low DDWV regions are lo-
cated near the river and road in the middle
and  western  parts  of  Liangshui  National
Nature Reserve, with values ranging from
0.00 to 2.00 m3. The DNN model predicted
poor levels in this region. The map result-
ing  from  the  GWDNN  model  exhibited
more  explicit  spatial  variations  than  the
other maps.

On the whole, the GWDNN model results
are closer  to the measured data and can
describe the spatial  distribution of  DDWV
in  more  detail  than  the  other  model  re-
sults. Such maps can guide resource alloca-
tion  for  forest  management.  The  forest
DDWV  mapping  results  of  these  models
were  insufficient  for  evaluation  in  this
study, as we were limited by sample size.
Future  verification  work  should  be  con-
ducted;  conventionally,  such  verification
work  is  performed  by  using  independent
sample  sets  or  acknowledged  high-accu-
racy  results  such  as  airborne  data,  espe-
cially  unmanned aerial  vehicle LiDAR data
(Chen et al. 2018, Li et al. 2019).

Discussion

Stand and remote sensing predictors
Currently,  in the already existing models

for  mortality  and  CWD  distribution,  the
predictors are usually stand factors, which
have been confirmed to have great poten-
tial in previous studies (Spetich et al. 1999,
Zhen  et  al.  2013,  Bassett  et  al.  2015).  In
other forest models, multispectral charac-
teristics,  texture characteristics  and vege-
tation  index  are  used  as  predictive  vari-
ables, and the near infrared, which is more
sensitive than other  wavelengths,  is  used
as the band of vegetation to compute the
normalized  difference  vegetation  index
(NDVI) and the enhanced vegetation index
(EVI – Deb et al. 2017). These remote sens-
ing factors have pioneering significance in
machine learning and local regression esti-
mation.  However,  because  there  is  only
one visible light band and no near-infrared
band in many data, scholars have studied
visible light vegetation indexes, such as the
VDVI,  in  place  of  the  NDVI.  The  present
study represents the first time in which the
visible  vegetation  index  and  terrain  and
stand factors have been used to establish a
DDWV model. The results show that visible
remote sensing factors can be used to ex-
tract important information for DDWV esti-
mation.

The model coefficients of traditional par-
ametric  models  include  a  substantial
amount of information (Tab. 2). The regres-
sion coefficients  of  the  five selected vari-
ables are significant at an  α level of 0.05.
Among  them,  the  model  coefficients  of
SLOPE, AGE and VDVI are positive, indicat-
ing  positive  correlations  with  the  depen-
dent variable (DDWV). Thus, for example,
when holding the other predictor variables
constant, the steeper the slope, the higher
the  DDWV.  The coefficients  for  TSFS  and
VEG are negative, indicating negative cor-
relations  with  the  dependent  variable
(DDWV). This result indicates that DDWV in
the study area is more strongly associated
with  larger  trees,  commonly  older  trees,
with low TSFS (Zhen et al.  2013). Because
the GWDNN model was constructed in the
form of an OLS model, statistics were cal-
culated for the coefficients of the GWDNN
model.  In  the  GWDNN  model,  the  coeffi-
cients of VEG were negative values, while
the coefficients of the other variables ex-
hibited  positive  and  negative  values.  In
other words, the variation in the GWDNN
coefficients  was  greater  than  that  of  the
GWR coefficients, which might explain the
significant increases in fitting performance
and prediction performance achieved with
the GWDNN model.

Model comparison
The fitting accuracy and prediction accu-

racy were compared among the five mod-
els based on the R2, RMSE, MAE, Moran’s I,
Z-statistic, combined accuracy, and residual
spatial  autocorrelation  results,  and re-
vealed that the GWDNN model is the best.
In  many  studies,  machine  learning  has
been proven to be significantly superior to
the GWR model and the LMM (Behrens et
al. 2018,  Chen et al. 2018). However, there

are  many  differences  between  the  LMM
and  GWR  model.  For  example,  Quirós-
Segovia  et  al.  (2016) discovered  that  the
quality  of  the  height-diameter  models  of
GWR and LMM regressions were compara-
ble. Wei et al. (2019) studied the spatial dis-
tribution of PM2.5 and found that the LMM
was better than the GWR model; however,
the  GWR  model  has  been  shown  to  per-
form better than the LMM in many other
studies  (Liu  et  al.  2014,  Zhang  &  Gove
2005). For the GWDNN model, a multi-layer
DNN was constructed to consider the influ-
ence of the spatial weights on the model,
which improved the spatial influence after
only  considering  the  geographic  position
coordinates as variables previously.

The potential of the different models was
demonstrated  during  the  modeling  proc-
ess: establishment of the OLS model is sim-
ple and fast, and the correlations between
different variables can be found intuitively.
The  GWR  model  considers  the  model  re-
sults  under different bandwidths.  The ad-
vantage of the GWR model over the LMM
is the possibility of determining the spatial
location of every parameter without addi-
tional measurements (Zhang & Gove 2005).
The DNN model has strong fitting and veri-
fication  ability  but  cannot  eliminate  the
spatial autocorrelation. The GWDNN model
combines  the  SWNN  and  DNN  and
achieves accurate deconstruction and effi-
cient calculation of spatial nonstationarity.
The GWDNN model achieves excellent per-
formance. In terms of predicting the spatial
distribution of DDWV, the GWDNN model
results  are  the  closest  to  the  ground-
truthed distribution. In addition to offering
statistical graphics and GIS mapping capa-
bilities,  the  GWDNN model  can intuitively
provide key information on the distribution
of DDWV, which is of great significance for
forest  decision-making  and  management
planning.

Conclusion
DDWV was predicted by using parametric

and nonparametric models of stand and re-
mote  sensing  factors.  The  nonparametric
models  were found to be far  superior  to
the parametric  models  in terms of  fitting
and verification accuracy, and the Moran  I
and  Z-statistic  values  of  the  DNN  model
were lower than those of the LMM and the
GWR model in terms of the stability of the
model residual space. However, by chang-
ing the network structure to consider the
spatial  weights,  the  GWDNN  model
showed greater  advantages  in fitting and
verification,  and  produced  ideal  residuals
by  verifying  the  spatial  autocorrelation.
Through the application of GIS technology
in the study area, clear spatial distribution
information was obtained; thus, this meth-
od  enables  very  good  assessment  of  the
damage  caused  by  natural  disasters  and
can provide key information on forest re-
sources  for  decision-making  and manage-
ment plans and be used to prevent and re-
duce the disturbance due to natural disas-

iForest 14: 353-361 359

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Sun Y et al. - iForest 14: 353-361

ters and losses.
In summary, the results of this study sug-

gest  that  the  feasibility  of  the  GWDNN
model as a spatial model should be further
investigated and promoted  in  the  future.
DNNs are popular algorithms that can mine
data better than other networks. However,
due to the lack of  a clear connection be-
tween  network  parameters  and  approxi-
mate mathematical functions, DNNs are of-
ten called “black boxes”.
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