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Daily prediction modeling of forest fire ignition using meteorological 
drought indices in the Mexican highlands
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We analyzed the behavior of forest fires for daily prediction purposes in one
of the regions with the highest fire incidence in Mexico. The  main objective
was to build logistic regression models (LRMs) for daily prediction of forest fire
ignition based on meteorological drought indices. We built 252 LRMs for seven
types of vegetation cover of greater representativeness and interest  for the
study area. Three dynamic variables were considered to estimate daily dry-
ness in combustible fuels based on the effective drought index and the stan-
dardized  precipitation-evapotranspiration  index.  Additionally,  two  weather
data sources were included in drought indices: conventional weather stations
(CWS) and automatic weather stations (AWS). Prediction efficiency assessment
for  LRMs was  done through the relative operating  characteristic  (ROC)  and
model precision efficiency (MPE). The results show that LRMs using data from
CWS performed relatively better than those  based on data from AWS,  as the
former data sources have higher spatial density and thus generate predictions
with higher accuracy (ROC ≥ 0.700, MPE ≥ 0.934). For both data sources, the
use of standardized precipitation-evapotranspiration index as a fuel dryness
estimator is recommended, as it reflects an atmospheric moisture balance be-
tween precipitation and reference evapotranspiration (ROC ≥ 0.734, MPE = 1).
Such predictive models can be used as inputs in early warning systems for for-
est fire prevention or mitigation.

Keywords: Logistic Regression, Effective Drought Index, Standardized Precipi-
tation-Evapotranspiration  Index,  Conventional  Weather  Stations,  Automatic
Weather Stations

Introduction
Wildfires are natural agents that regulate

several ecosystems worldwide. These phe-
nomena respond to climate characteristics
and vegetation resistance to ignition dur-
ing  periods  of  drought.  Some benefits  of
fire in ecosystems include the reduction of

plant  competition  for  water  and  soil  re-
sources,  sanitation and disease control  of
vegetation,  the  release  of  nutrients  and
seed germination  of  several  species (CO-
NAFOR 2010).

Several factors influence the ignition and
spread of fire in a wildfire: (i) meteorologi-
cal aspects (Pyne et al. 1996), such as tem-
perature (Ruiz & Reyes 2005), wind speed
and direction (Ayala & Olcina 2002),  solar
radiation,  and precipitation (Villers  2006);
(ii) geographical aspects (Pyne et al. 1996),
such as slope (Ruiz & Reyes 2005) and ori-
entation of slopes that may receive further
insolation (SMA 2009); (iii)  anthropogenic
aspects, such as the distance to communi-
cation  routes,  agricultural  burning,  camp-
fires of walkers, cigarette butts, and inten-
tional actions (CONAFOR 2010, 2020, Flores
et al. 2016). According to the National For-
estry  Commission  of Mexico  (CONAFOR
2010),  the  conditions influencing fire igni-
tion and spread can be grouped as: (i) per-
manent  conditions,  such  as  fuel  loading,
vegetation  coverage,  slope,  and  orienta-
tion of slopes; (ii) dynamic conditions, such
as temperature, wind speed and direction,
solar radiation, and precipitation.  Further,
Guo et al. (2016) group the causes of fires
as  regional  (e.g.,  climate)  and  local  (e.g.,
vegetation, topography, and human activi-
ties).

Previous  studies  found  that  logistic  re-

gression  models  (LRMs)  for  fire  ignition
prediction  have  become  relevant  due  to
the relative simplicity of their construction.
For example, research in Australia was con-
ducted based on patterns and driving fac-
tors of fire occurrence (Zhang & Lim 2019).
In Mexico, it has been shown that wildfires
are related to human influence and condi-
tions (Carrillo  et  al.  2012).  In Portugal,  re-
searchers  associated  the  magnitude  of
fires with vegetation, land use, climate fac-
tors, and human actions (Fernandes 2019);
whereas in China, driving forces of the oc-
currence of fires were assessed as regional
and local factors (Guo et al. 2016).

According to Vicente-Serrano et al. (2012),
the use of meteorological drought indices
to  estimate  the  dryness  of  fuels  was
adopted because no physical variables can
accurately quantify  drought.  Drought and
dry fuels are highly correlated phenomena
that  can be  helpful  in fire prediction (Ha-
disuwito & Hassan 2018). The meteorologi-
cal drought indices used in this study were
the effective drought index (EDI) and the
standardized  precipitation-evapotranspira-
tion index (SPEI). The use of these indices
is due to their popularity and effectiveness
in modeling the drought phenomenon dur-
ing the last decade (Hadisuwito & Hassan
2018). Some studies have used drought in-
dices  such  as  SPEI  to  identify the  occur-
rence of fires (Varol et al. 2017,  McEvoy et
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al.  (2019),  whereas  Hadisuwito  &  Hassan
(2018) analyzed SPEI and EDI as fire-com-
patible  indices. In this study, we used  the
EDI index which employs a precipitation re-
duction function to estimate soil moisture
conditions (Byun & Wilhite 1999).

The  main  goal of  this  study  was  to  de-
velop LRMs for  daily  prediction of  forest
fire ignition in Mexican highlands using me-
teorological  drought  indices.  The  specific
objectives  were:  (i)  estimating EDI  and
SPEI  drought  indices  from conventional
weather  stations  (CWS) and  automatic
weather  stations  (AWS) data sources;  (ii)
calculating three explanatory variables on
a daily basis from EDI and SPEI indices as
an estimate of the dryness of fuels prone
to  fire;  (iii)  generating  LRMs  for  every
month and for each of the main  types of
vegetation in the study area; (iv) assessing
the level of certainty of each LRM  in pre-
dicting fire occurrence.

Materials and methods

Study area
The study area is to the central region of

the Mexican plateau (18° 18′ - 20° 20′ N, 98°
27′ - 100° 43′ W – Fig. 1) covering an area of
53,962  km2 with  more  than  32  million  in-
habitants. The altitude in the region ranges
between 226 and 5400 meters  a.s.l.  Four
types of climate can be identified: (i) tem-
perate  sub-humid with  annual  rainfall  be-
tween 600 and 1000 mm; (ii) warm sub-hu-
mid with annual rainfall between 1000 and
2000 mm; (iii) dry with annual rainfall from
300 to 600 mm; and (iv)  cold weather  in
the highlands of  volcanoes.  About 52% of
the territory is covered by agricultural and
urban  areas  (INEGI  2020),  while  the  rest
has  tropical  deciduous  forest  (26.2%),
grassland (24.2%), oak forest (21%), pine for-
est  (19.8%),  oyamel  forest  (3.9%),  shrubs
(3.1%), and juniper forest (1.8%).

Datasets

Weather data
Two weather  data sources were consid-

ered for the calculation of drought indices:
conventional  weather  stations (CWS) and
automatic weather stations (AWS). Among
the  most  significant  differences  between
CWSs and AWSs are the  observation and
data registration processes.  In a CWS, at-
mospheric  variables are measured once a
day and recorded by an observer, whereas
in  AWSs,  the  logs  are  automatic  and  re-
corded between  48  and  144  times  a  day
(WMO 2018). Globally, CWSs have a denser
spatial  network  than  AWSs  in  Mexico,
though AWSs have more timely coverage
of data than CWSs. Daily precipitation data
and maximum and minimum temperatures
for  the  training  period  (2006-2014)  were
obtained from 748 CWS stations. Because
the AWS network in Mexico has been  es-
tablished  recently,  we considered meteo-
rological data from 124 AWS stations in the
training  period  (2012-2014),  namely daily
precipitation and maximum and minimum
temperatures (Fig.  1).  For both CWSs and
AWSs, model validation was performed on
data collected in 2015.

Forest fires
According to images from NASA’s MODIS

sensor,  in  the  period  from  2003  to  2016,
1,300,000  fires  occurred  worldwide  (An-
dela et al. 2019), of which 8.6% in Mexico,
and 23.4% of these occurred in the Mexican
highlands  (CONAFOR  2020).  The  Forest
Protector  of  the  State  of  Mexico  (PRO-
BOSQUE) is a local institution that collects
and  provides  daily  fire  records  in  the  re-
gion. The date, start time, duration, cause,
burned  surface,  and  geographic  coordi-
nates (centroid of the burned area) of the
fire  event  are  recorded  in  this dataset
(PROBOSQUE 2020). In this study, we used

daily data of 2320 fires from 2006 to 2015.
The  outermost ring in  Fig.  2 shows that

the  fire  season  extends over the  first
months of the year,  especially March (30%
of  the  total  fire  events  in  the  area)  and
April (36.5%). Also, wildfires predominantly
start between 1:00 and 3:00 p.m. (53.5% of
events),  i.e., the hottest  and driest  hours
due  to  sunstroke.  Additionally,  the  mean
duration of  the fires  is  between one and
five  hours  (82.7%  of  events),  and  the
burned area is less than 4 ha in 87% of fire
events (Fig. 2).

Logistic regression model
A  logistic  regression  model  (LRM)  was

used to predict the daily occurrence of fire
ignition. An LRM is  developed using  a de-
pendent variable,  which is  defined as the
response observed by the  combined influ-
ence of other independent variables (Hos-
mer et al.  2013).  In the logistic regression
model the dependent variable has two pos-
sible values: “1” for the occurrence of the
event and “0” (zero) for the opposite. The
model  is  implemented using  eqn.  1 and
eqn. 2:

(1)

(2)

where β0 is the regression constant (inter-
cept) and βk is the weight of the k-th inde-
pendent variable xk. The result of the func-
tion P estimates the probability  of  occur-
rence of  the  event,  i.e.,  in  this  study  the
probability of fire occurrence.

Dependent variable
Seven representative types of vegetation

cover with a high frequency of fires were
identified in the study region: pine forests,
oak forests, oyamel forests, juniper forests,
tropical  deciduous forests,  grassland,  and
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Fig. 1 - Map of vegeta-
tion types and local-
ization of the weather
stations (CWS: blue 
circles; AWS: red tri-
angles) in the Mexi-
can highlands.
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Modeling forest fire ignition using drought indices

shrubland (Fig. 1). Daily fire maps were pro-
duced for each vegetation type by overlay-
ing  the  map of  each  type of  vegetation
with satellite images of fire occurrence: the
dependent variable took the value “1”  for
pixels affected by the wildfire, and “0” oth-
erwise. 

Static and semi-static independent 
variables

The independent variables were selected
according to the results  of  Vilchis-Francés
et  al.  (2015),  who  used  principal  compo-
nent analysis (PCA) to obtain the best ex-
planatory  fire  variables,  finding that  fuels
dryness, maximum wind, distance to roads,
orientation  and  slope  of  the  hillsides  ex-
plained  more  than  89%  of  the  total  ob-
served variance in fire occurrence (Vilchis-
Francés et al. 2015).

The four variables mentioned above were
used  in  this  study and  were  classified  as
static (track distance, slope, and slope ori-
entation) and semi-static  (maximum wind
speed), thus generating the following:
• Distance to roads: it reflects the distance

from communication routes such as train
tracks, roads, terraces, and gaps, as well
as  infrastructure  associated  with  roads
such  as  tunnels,  bridges,  and  collection
places (INEGI 2020).

• Slopes and hillside orientation: a digital el-
evation model (DEM) was used to calcu-
late the slope and orientation of the  hill-
sides.

• Maximum wind speed: although this vari-
able is very dynamic, it was considered a
semi-static variable because CWS stations
in Mexico do not have anemometers.  It
was generated with data available from
AWS stations from 2012 to 2015, and used
as a monthly average for CWS and AWS
models in their corresponding periods.

Dynamic independent variables
Daily  data  from  CWS  and  AWS  sources

were used to build EDI and SPEI meteoro-
logical drought indices. The following  fuel
dryness variables were defined:  (i) CN-DEP
(consecutive days of negative deviation for
effective precipitation) from the EDI Index;
and (ii) CN-SPEI (consecutive days of nega-
tive SPEI value).

CN-DEP calculation
The effective drought index (EDI) defines

the effective precipitation EPi as the reduc-
tion  of  daily  precipitation  of  previous  m
days  (Byun  & Wilhite  1999).  Precipitation
from previous days is added to total water
availability as a form of average precipita-
tion (eqn. 3):

(3)

where EPi is the effective daily precipitation
in millimeters, pm is the precipitation of the
m previous days in millimeters, and i is the
duration of the sum of the previous days.
In this work,  m was set to 15 because this

value represents the total water stored in
the soil for short periods, as suggested by
Byun & Wilhite (1999).

The  effective  precipitation  deviation
(DEP) was calculated as follows (eqn. 4):

(4)

where DEPi is the deviation of the effective
precipitation EPi from the effective average
precipitation (MEPi) of previous years.

Finally,  the CN-DEP  was obtained by de-
termining the duration of each period with
moisture deficiency. This index  was calcu-
lated based on the consecutive number of
days showing negative DEPi values (Tab. 1).

SPEI calculation
The SPEI represents a standardized atmo-

spheric  moisture balance  and reflects  the
deviation of moisture conditions from dry-
ness.  The difference  D  between precipita-
tion availability and demand for reference
evapotranspiration (Vicente-Serrano et  al.
2010) is calculated as (eqn. 5):

(5)

where Di is the moisture balance in the i-th
day, pi is the precipitation, PETi is the refer-
ence  evapotranspiration,  calculated  ac-
cording to Hargreaves & Samani (1985). Fi-
nally, SPEI was obtained as follows (eqn. 6,
eqn. 7):

(6)

(7)

where p is the probability of surplus for D,
and  C0 =  2.515517,  C1 =  0.802853,  C2 =
0.010328, d1 = 1.432788, d2 = 0.189269, d3 =
0.001308 are constant values (Vicente-Ser-
rano et al. 2010).

CN-SPEI calculation
This  index  is  based  on  the  EDI  method

proposed by Byun & Wilhite (1999) for SPEI
estimation, adapted as follows: (i) SPEI (Vi-
cente-Serrano  et  al.  2010)  is  obtained  at
daily  scale  based  on  eqn.  5,  eqn.  6,  and
eqn.  7;  (ii)  SPEI results  are reclassified  as
“1” when SPEI < 0 and “0” when SPEI ≥ 0;
this  new binary  variable  was  named con-
secutive days of negative index SPEI (CN-
SPEI);  (iii)  the consecutive CN-SPEI values
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Tab. 1 - Example of the estimation of CN-
DEP or CN-SPEI by counting consecutive
days  with  moisture  deficit.  (ISPEI/DEP):
series  with  variable change (1:  SPEI  or
DEP < 0; 0: SPEI or DEP ≥ 0); (ΣDSPEI/DEP):
sum  of  consecutive  days  with  a  mois-
ture  deficit  (CN-DEP  or  CN-SPEI  with
value  1).  At  day  6,  the  CN-DEP  or  CN-
SPEI value is  4 (third column) because
the previous days of the CN-DEP or CN-
SPEI  value are 1  (second column),  and
the accumulated value is 4. The 7th day
has  a  CN-DEP  or  CN-SPEI  value  of  0
(third  column) because  the  CN-DEP or
CN-SPEI value is 0.

Day ISPEI/DEP ΣDSPEI/DEP

1 0 0

2 0 0

3 1 1

4 1 2

5 1 3

6 1 4

7 0 0

8 0 0

9 1 1

.... .... ....

Fig. 2 - Forest fire 
characteristics in 
Mexican highlands 
(source: PROBOS-
QUE 2020). Overall, 
2885 fires were ana-
lyzed in the period 
2006-2015. The 
burned area (inner-
most ring) is ex-
pressed in hectares, 
duration (second 
concentric ring) in 
hours, hour of begin-
ning (third concen-
tric ring) in hours, 
and the temporality 
(outermost ring) is 
the frequency of 
monthly occurrence 
of fires. The percent-
age of fire occur-
rence is in parenthe-
ses.
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equal  to  1  (Byun  &  Wilhite  1999)  are
counted, where each positive value stops
the sum and resets the count to 0 (Tab. 1);
this  sum  was  called  CN-SPEI  and  is  ex-
pressed in days.

Construction of LRM
Building LRM starts with integrating CWS

and AWS data sources to calculate depen-
dent and dynamic variables. These models
were called CN-DEP, SPEI, and CN-SPEI, cor-
responding to the dynamic variables of fuel
dryness (Fig. 3). Six LRMs were developed
with the weather data source and the fuel
dryness variables (CWS-CN-DEP, CWS-SPEI,
CWS-CN-SPEI, AWS-CN-DEP, AWS-SPEI, and
AWS-CN-SPEI). Each LRM was built for each
month of the fire season (January to June)
and for each of the types of vegetation de-
scribed above. All variables were standard-
ized in raster format with a pixel resolution
of  1  km2.  Given  that  the  burned  area  of
most fires is less than 4 ha (0.04 km2), it is
assumed that a single pixel in the vegeta-
tion  cover  is  thoroughly  burned,  which
does not always happen. However, the dis-
tance between daily fires was checked, and
none were within 1 km of each other.

Standardization of units and magnitudes 
of independent variables

The variables  were normalized with  val-
ues  between  0  and  1  to  avoid  assigning
greater  weights  to  variables  of  greater
magnitude.  The  value 1  was  assigned  to
pixels having  magnitudes  of each variable
that  most  affect  fire ignition in the study
area, and 0  to the rest  (Tab. 2).  For exam-
ple, we considered the danger of fire igni-
tion to be greater within a distance of 200
m on each side of the roads, due to possi-
ble campfires,  throwing of  cigars (Carrillo
et al. 2012) or sparkles from the friction of
train wheels on tracks. Besides, agricultural
areas are usually close to secondary roads
where fires can quickly get out of control
(CONAFOR  2020).  Therefore,  the  value  1
was assigned to pixels at distances < 200 m
from roads, train tracks, or crop fields, and
0 for further distances.

The slope of hills  affects fires when they
are  more  pronounced,  as  fire  spreads
faster in conjunction with wind speed (Vil-
lers 2006). The value 1 was assigned to pix-
els  with the maximum slope  in the study
area  (52.9°),  whereas 0  was  assigned  to
pixels showing minimum slope. Hillside ori-
entation has a more significant impact on
fire when exposed to increased radiation,
as fuels such as leaves and branches on the
ground are heated and dried (Villers 2006).
In  the  study area,  pixels  of  hillsides  with
south,  southeast,  and  southwest  orienta-
tion (135° to 225°) took the value of 1, while
the  value  0  was  assigned  to orientations
northeast (45° to 135°) and northwest (225°
to 315°). The wind favors fire the higher its
speed (Ayala & Olcina 2002). Thus, value 1
was assigned to pixels  showing  the maxi-
mum  wind  speed  recorded  in  the  region
(6.22 m s-1), and 0 to minimum values (close
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Tab. 2 - Magnitudes normalization of the explanatory variables included in the logistic
regression models (LRMs) and their units.

Variable Explanatory variable Units Magnitude
(M)

Scale
(in LRM)

Static

Distance to roads m
0 ≤ M ≤ 200 1

M > 200 [1, 0]

Slope deg 0 ≤ M ≤ 59.2 [0, 1]

Orientation (Aspect) deg

0 ≤ M ≤ 45 0

45 < M ≤ 135 [0, 1]

135 < M ≤ 225 1

225 < M ≤ 315 [1, 0]

315 < M ≤ 359.9 0

Semi-Static Wind speed m s-1 0 ≤ M ≤ 6.22 [0, 1]

Dynamic 
(drought index)

(i) CN-DEP day
0 ≤ M ≤ 60 [0, 1]

M > 60 1

(ii) SPEI -
-5 ≤ M < 0 [1, 0]

M ≥ 0 0

(iii) CN-SPEI day
0 ≤ M ≤ 60 [0, 1]

M > 60 1

Fig. 3 - General flow chart of the construction of forest fire prediction daily models
using drought indices.
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Modeling forest fire ignition using drought indices

to 0).
Regarding dry fuels,  we assigned a value

of  1 to  pixels  subject  to 60  consecutive
days with moisture deficit (CN-DEP and CN-
SPEI).  Indeed,  according  to  Turco  et  al.
(2019), the best performance in fire predic-
tion is attained when SPEI is greater than
two months. The SPEI index values range
from  -5 to 5, with negative values indicat-
ing  dry  conditions  of  the fuel. Therefore,
the value 1 was set for pixels showing the
extreme drought magnitude of the SPEI in-
dex (-5) and the value 0 when SPEI reached
0. Pixels with positive SPEI values (indicat-
ing humid conditions) had also a value of 0.

Fire hazard categories
Four  categories  of  ignition hazard  were

proposed:  low,  moderate,  high,  and  very
high. To this purpose, the probability of oc-
currence of fire (P) was calculated for all
pixels  for each  month  and  each  type  of
vegetation cover over the training period.
The obtained  P values were sorted in de-
scending order, and the quartiles Q1, Q2, Q3

of  the  P  distribution  were  taken as  the
thresholds of the aforementioned fire cate-
gories  (Tab. 3).

Validation of LRM
Spatial  certainty of predictions was esti-

mated  with  the  sensitivity  and  specificity
adjustment curve of LR prediction models,
called  relative  operating  characteristic
(ROC). The ROC curve represents the ratio
of occurrence of a class (simulation) com-
pared to the referenced idea (reality – Pon-
tius 2002). ROC = 1 indicate the perfect as-
sociation between the analyzed variables,
while ROC < 0.5 indicates a random  distri-
bution of the variables considered. 

To  identify  the  optimal  LRMs  using  the
different  explanatory  variables  and  select
the best fitting models, a ROC threshold of
0.700  was  adopted.  Model  precision  effi-
ciency (MPE) was calculated from the con-
fusion matrix (Tab. 4) and used as a match-
ing  statistic  between  simulated  data  and
actual data. MPE is the percentage of cor-
rect predictions or simulations for true pos-
itive and true negative data, and provides a
convenient means for identifying how the
model error is spread between false posi-
tives and false negatives, since a model can
better perform  in predicting in one direc-
tion  than  the  other  (Sánchez 2016).  MPE
was calculated as (eqn. 8):

(8)

where R0S0 is the number of pixels “0” that
were  simulated  as  “0”  (true  negatives);
R1S1 is the  number of pixels “1” that were
simulated as “1” (true positives);  ntot is the
total number of pixels analyzed. The proba-
bility threshold (P) values used for assign-
ing  0  or  1  in  the  confusion  matrix  corre-
spond to  the median (Q2)  of  the training
data  for  each  type  of  vegetation.  The
threshold MPE ≥ 0.700 was set to accept
the LRMs.

Results

Drought indices
Overall,  252  LRMs  were  built  to predict

daily fire ignition, resulting from the combi-
nation  of  drought  indices  (EDI  and  SPEI)
and weather data sources (CWS and AWS)
applied monthly for each of the 7 types of
vegetation cover.  Tab.  S1  (Supplementary
material) reports the median monthly ROC
and MPE values of each model, grouped in
6 LRM classes (CWS-CN-DEP, CWS-CN-SPEI,
CWS-SPEI, AWS-CN-DEP, AWS-CN-SPEI, and
AWS-SPEI)  and seven  types of vegetation
cover (oak forest, oyamel forest, pine for-
est, shrubs, juniper forest, tropical decidu-
ous forest, and grassland). The median val-
ues  reported in Tab. S1 were used to build
the diagrams in Fig. 4. 

AWS-SPEI  models  showed the  best  per-
formances  (Fig.  4a),  with  median  ROC  =
0.757 (red diagram in Fig. 4a). Close perfor-
mances were showed by CWS-SPEI models,
with a median ROC value of 0.734. The full
list  of  median  ROC  values  for  the  252
monthly models is reported in Tab. S1 (Sup-
plementary material). The best results  for
each  month  of the  fire  season  were  ob-
tained using the following models: January
CWS-SEPI  (0.742),  February  AWS-SPEI
(0.821), March AWS-SPEI (0.751), April CWS-
CN-SPEI (0.748), May CWS-CN-SPEI (0.778),
and June CWS-SPEI (0.742).  Any combina-
tion  of  LRM  with  SPEI  had outstanding
ROC values, as depicted in Fig. 4a.

For  the  training  period,  the  maximum
MPE value (0.795) was  obtained using the
AWS-SPEI model (green diagram in Fig. 4a).
Monthly  MPE  results  (Tab.  S1  in  Supple-
mentary  material)  showed  that  the  best
models for January were CWS-CN-DEP (me-
dian  MPE = 0.767),  for April  the CWS-CN-
DEP and CWS-SPEI models (median MPE =
0.769),  while  for  February,  March,  May,
and  June,  the  best  performances  were

shown  by  the  AWS-SPEI  models  (median
MPE  =  0.833,  0.778,  0.802  and  0.810,  re-
spectively). In general, all LRMs evaluated
over the training period had MPE > 0.700.

One of the main problems presented  by
LRMs was the small  amount of  matching
fire and weather data for the validation pe-
riod (2015). Indeed,  the number of fire  oc-
currence in at least one type of vegetation
in the validation dataset was only 307. De-
spite  the little  dataset,  the  validation  re-
sults were outstanding for all  LRMs, with
values greater than 0.940 (blue diagram in
Fig. 4a). Monthly validation shows that the
six types of LRMs had median MPE values
greater than 0.880 for February and April,
except for AWS-CN-DEP which had median
MPE = 0.723 in February (see also Tab. S1 in
Supplementary  material).  As  for January,
only  CWS-CN-SPEI  models  had sufficient
data for validation. The month of May had
MPE values < 0.800, still indicating a satis-
factory  accuracy  in  the  prediction  of  fire
occurrence.  The  month  of  June  did  not
provide sufficient data for the validation of
LRMs, although  an  increase in humidity  is
observed in June  due to  the beginning of
the rainy period in the  Mexican highlands.
However,  all  LRMs  showed  outstanding
performances (MPE > 0.700)  over the vali-
dation period.

Effects by weather data source and 
vegetation cover

ROC results for LR modeling periods (Fig.
4a) generally  show that  CWS models  had
better performances in predicting fire oc-
currence with  maximum  certainty  values
(two CWS and one AWS models with ROC ≥
0.700).  Moreover,  Tab. S1 shows that CWS
monthly models  had better performances
(9 models with ROC ≥ 0.700) as compared
with AWS models (7 models exceeding the
0.700 threshold). Also, 5 AWS models had
minimum ROC values in their monthly pool
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Tab. 3 - Fire ignition hazard classes. Q1, Q2 and Q3 are quartiles of P (probability of fire
occurrence). (*): see the maps in Fig. 5.

Probability of fire 
occurrence (P) Danger class Pixel color*

P ≤ Q1 low green

Q1 < P ≤ Q2 moderate yellow

Q2 < P ≤ Q3 high orange

P > Q3 very high red

Tab. 4 - Confusion matrix for the LRMs. R0S0 are true negatives (real data 0 and simu-
lated as 0); R1S0 are false negatives (real data 1 and simulated as 0); R0S1 are false posi-
tives (real data 0 but simulated as 1); R1S1 are true positives (real data 1 and simulated
as 1).

Simulation data
Actual data

0
(negatives)

1
(positives)

0 (negatives) R0S0 R1S0

1 (positives) R0S1 R1S1
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(ROC< 0.600).
Fig. 4b and Tab. S1 show the ROC results

of the 252 LRMs summarized by vegetation
cover  (red  diagram  in  Fig.  4b).  The  best
performing  LRMs  were  those  for  the  ju-
niper forest (median ROC = 0.806), tropical
deciduous  forest  (ROC  =  0.760),  oyamel
forest (ROC = 0.742), and shrubland (ROC =
0.725).  Meanwhile,  the  predictions were
less accurate for oak forest (median ROC =
0.651),  grassland (ROC = 0.641),  and pine
forest (ROC = 0.606). The diagram in green
color  of Fig.  4b presents the MPE results
of the  252  LRMs in  the  training  period
grouped by  type  of  vegetation.  The  out-
standing  models  with  MPE  ≥  0.700 were
tropical  deciduous  forest  (MPE  =  0.814),
oyamel forest (MPE = 0.778), shrubs (MPE
=  0.776),  oak  forest  and  juniper  forest
(both  MPE  =  0.714).  Although  grassland
(MPE  =  0.698)  and  pine  forest  (MPE  =
0.691) vegetation types had MPE < 0.700, it
is  judged  that  all  coverages  showed  out-
standing  results  at  the  training  stage.  Fi-

nally,  the  diagram in blue color  in Fig.  4b
shows that the LRMs had outstanding effi-
ciency  in  the  validation  period  (MPE  ≥
0.900) for all  types of vegetation (Tab. S2
and  Tab.  S3  in  Supplementary  material).
Specifically, Tab. S2 provides monthly ROC
and MPE values and Tab. S3 shows the co-
efficients for daily  fire prediction in Mexi-
can highlands.

An example of the application of the six
LRMs  (CWS-CN-DEP,  CWS-CN-SPEI,  CWS-
SPEI,  AWS-CN-DEP,  AWS-CN-SPEI,  and
AWS-SPEI) in the Mexican highlands is re-
ported in Fig. 5(a-f) where the ignition haz-
ard  for April 5th, 2012 is shown. In general,
all  LRMs predicted a high ignition danger
(categories “very high” and “high”) in the
western part of the study area (Fig. 5a to
Fig.  5f).  According to PROBOSQUE, these
sites are most frequently  affected by wild-
fires every year. These areas correspond to
the  highest  altitude  lands,  near  the two
highest  volcanoes  of  Mexico.  The  domi-
nant vegetation of these areas are pine, oy-

amel, and oak forests, which due to their
proximity to urban areas, are of interest for
the environmental services they provide.

Discussion

LRMs and explanatory variables for 
daily fire prediction

The construction of 252 LRMs for fire pre-
diction has  taken  into  account  the  geo-
graphical, biophysical and climatic aspects
of the studied region, with the aim of ob-
taining specific models for each month in
the fire season and each type of vegetation
in the Mexican highlands. Such objective is
consistent with current approach of devel-
oping fire prediction tools in homogeneous
areas  with  low temporality  (Martell  et  al.
1987). In addition, modeling was applied on
a regional scale in Mexico, and allow to an-
alyze the impacts of fires on local natural
resources  (Depicker  et  al.  2020).  Further-
more,  the LRMs  presented  in  this  study
had high spatial resolution (pixel area of 1
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Fig. 4 - ROC and MPE results of the 252 logis-
tic regression models (LRMs) developed for 
daily prediction of forest fire ignition based 
on meteorological drought indices. (a) LRMs 
were grouped in 6 classes (CWS-CN-DEP, 
CWS-CN-SPEI, CWS-SPEI, AWS-CN-DEP, AWS-
CN-SPEI, and AWS-SPEI), with median ROC 
values represented in red, MEP for the train-
ing period in green, and MPE for the valida-
tion period in blue. (b) LRMs were grouped 
by type of vegetation cover (oak forest, 
oyamel forest, pine forest, shrubs, juniper 
forest, tropical deciduous forest, and grass-
land), with median ROC values represented 
in red, MEP for the training period in green, 
and MPE for the validation period in blue. 
The median values displayed are also 
reported in Tab. S1 (Supplementary mate-
rial).



Modeling forest fire ignition using drought indices

km2). It  has  been  demonstrated that  the
longer lead time prediction and the higher
the spatial resolution, the lower is the level
of  accuracy  attained in  fire  prediction
(Magnussen  &  Taylor  2012).  However,  it
should be noted that previous studies used
spatial scales between 10 and 20 km (Vega
et al. 1995, Padilla & Vega-García 2011, Mag-
nussen  & Taylor  2012), and  the  choice  of
these  scales makes it  challenging to  take
decisions at the operational level.

Fuel  dryness  variables  in  the  proposed
LRMs had a small (daily) time scale, which
is  recommended  when  weather  data  are
integrated  into  fire  prediction  models
(Arndt et al.  2013),  as annual climate  esti-
mates have been shown to have a negligi-
ble  contribution  in  forecasting models
(Hong et al. 2018). 

The  level  of  accuracy of fire  prediction
models  lies  in selecting independent vari-
ables  that  efficiently explain  the  occur-
rence of fires.  In this  study we included in
LRMs several  independent variables  which
have been previously reported as the most
influential  in fire ignition and propagation
(Vilchis-Francés et al.  2015).  Indeed,  these
variables  have  often  been  used  as  excel-
lent fire predictors in previous work: (i) fuel
dryness,  as  indicated  by  Martell  et  al.
(1987),  Vega  et  al.  (1995),  and  Ali  et  al.
(2009);  (ii)  climatic  aspects,  as  employed
by Vega et al. (1995), Padilla & Vega-García
(2011),  Magnussen & Taylor (2012),  Guo et
al. (2017), and  Rodrigues et al. (2019);  (iii)
geographical  aspects,  as  indicated  in  the
results of Vega et al. (1995), Padilla & Vega-
García  (2011),  and  Hong et al.  (2018); and

(iv) human-related aspects (e.g., infrastruc-
tures),  as  analyzed by  Vega  et  al.  (1995),
Magnussen  &  Taylor  (2012),  Arndt  et  al.
(2013),  Guo et al. (2017), and  Rodrigues et
al.  (2019).  Nonetheless, some LMR in this
study had prediction efficiency lower (or lit-
tle exceeding) than the set threshold (ROC
≥ 0.700), likely due to some level of collin-
earity between the explanatory variables.

In  general,  most  of  the proposed LRMs
showed a sufficient level of efficiency (me-
dian ROC ≥ 0.734 and median MPE ≥ 0.943)
to recommend their  use  in the prediction
of fire occurrence, as reported by Martínez
et al. (2004), Madrigal et al. (2007), Vilar et
al. (2008), Pacheco et al. (2009), Carrillo et
al. (2012),  Guns & Vanacker (2012),  Guo et
al. (2017), Rodrigues et al. (2019), and Turco
et  al.  (2019).  Also, in  this  study  we have
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Fig. 5 - Example of the appli-
cation of the six logistic

regression models (LRMs)
developed for the Mexican
highlands on April 5th, 2012.

The probability of fire occur-
rence (P), grouped in 4 fire

hazard classes, is shown: low
(green pixels), moderate (yel-
low pixels), high (orange pix-

els), and very high (red pix-
els). The percentage of the

potentially ignitable area for
each fire hazard class is given

in brackets.
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chosen LRMs as easy and suitable tools for
forest fire management,  according to  An-
drews et al. (2003) and Guo et al. (2016).

Drought indices as fuel dryness 
estimators

We built  252 LRMs with their respective
fuel dryness thresholds to model fire occur-
rence in an area characterized by a signifi-
cant climatic and topographic heterogene-
ity (Fig. 1). This is consistent with the con-
clusions  of  Aguado &  Camia  (1998),  who
stated that it is difficult to establish a single
drought  threshold  for  heterogeneous  ar-
eas in terms of climate and geography. Al-
though in this study SPEI was calculated on
a daily basis with satisfactory results, Turco
et al. (2019) estimated SPEI  over 3, 6, and
12 months,  obtaining the best fire predic-
tions  for  SPEI  calculated  over  more than
two months.  Vélez (1995) and  McEvoy et
al. (2019) mentioned that using evapotran-
spiration  in  drought  indices  the  moisture
status in light fuels (branches and leaves) is
better  estimated.  This  was considered  in
this  study by  including  SPEI  in  predicting
the dryness of potentially flammable fuels
(Fig.  4a,  Fig.  4b).  As  previously reported,
the  relationship between SPEI  and forest
fires is  very high (Varol et al.  2017,  Hadis-
uwito & Hassan 2018, McEvoy et al. 2019).

Limitations
The LRMs with the lower predictive effi-

ciency  were  obtained  for  those  types  of
vegetation which are most represented  in
the study area  (pine forest: ROC = 0.606,
MPE = 0.691; grassland: ROC = 0.641, MPE =
0.698; oak forest: ROC = 0.651 – Fig. 1, Fig.
4b). It is recommended to further enhance
the LRMs  for these  areas, since some col-
linearity may  exist in the analyzed dataset
between  anthropogenic,  meteorological,
and  geographical  explanatory  variables
(Guns  &  Vanacker  2012,  Rodrigues  et  al.
2019, Turco et al. 2019), despite the conclu-
sions  of Vilchis-Francés  et  al.  (2015).  In-
deed,  it is important to  reduce or remove
the possible collinearity between biophysi-
cal and social factors involved in fire initia-
tion and  propagation.  Therefore,  future
studies should be aimed to select as predic-
tors in  LRMs the first  orthogonal  compo-
nents of PCA  related to the previously se-
lected  explanatory  variables  (Padilla  &
Vega-García 2011, Guo et al. 2016, 2017).

This  study used the  SPEI  drought  index
on a daily basis, which was appropriate for
estimating the moisture content in light fu-
els, as indicated by Vélez (1995). However,
it  is  also  necessary  to  consider  the  mois-
ture content in heavier fuels if SPEI is calcu-
lated with weather data aggregated over
15  days  or  more,  such  as  the  previous
drought  accumulation  (CN-DEP  and  CN-
SPEI models). Similarly, a slight correlation
was  detected between  the  weather  data
sources  (CWS and AWS) used to generate
the  estimates  of  potentially  combustible
fuel  dryness;  however,  when  results  are
considered on a monthly basis, CWS mod-

els were more efficient in predicting fires.
This better efficiency could be due to the
high sensitivity of the prediction models to
weather data variability. Indeed, a variation
in the spatial and temporal distribution of
precipitation and temperature can  lead to
significant  differences  among model  pre-
dictions. It  is assumed that the lower the
daily variability in weather data, the higher
the ROC values of the LRM. Due to the lim-
ited data availability  for validation,  it  was
not  possible  to  conduct  certainty  assess-
ments  for  LRMs in  hedges  that  had high
fire prediction efficiencies,  such as  shrub-
land (ROC =  0.725,  MPE  =  0.776),  juniper
forest  (ROC  =  0.806,  MPE  =  0.714),  and
tropical  deciduous  forest  (ROC  =  0.760,
MPE = 0.814). It would certainly be advis-
able for government institutions to further
increase  the  information  collected  to  im-
prove the construction of predictive mod-
els  and strengthen the proportion of data
for  modeling (70% to  80%)  and validation
(20% to 30%).

Conclusions
In this study 252 monthly LRMs  for daily

fire ignition prediction were developed us-
ing different sources of weather data (AWS
and  CWS)  and  drought  indices  (EDI  and
SPEI)  to  estimate  fuel  dryness  (CN-DEP,
CN-SPEI, and SPEI) in selected types of veg-
etation in the Mexican highlands. The ex-
haustive dataset led to the creation of six
types of LRM (CWS-CN-DEP, CWS-CN-SPEI,
CWS-SPEI, AWS-CN-DEP, AWS-CN-SPEI, and
AWS-SPEI).  Based on  our results,  we sug-
gest the use of high-density CWS weather
data  sources,  as  they  offer  greater  cer-
tainty  in  generating  predictors  of  poten-
tially  ignitable  fuel  dryness.  On the  other
hand, a disadvantage of CWS networks is
that they do not generate data as rapidly
as AWS networks. For both weather data
sources, the SPEI drought index is recom-
mended to estimate fuel dryness,  as SPEI
reflects the balance between precipitation
and  reference  evapotranspiration,  while
EDI  is  based on  the former variable only.
Moreover, our results showed that SPEI is
better than CN-SPEI at estimating fuel dry-
ness,  though  they  come  from  the  same
SPEI  index.  Finally,  counting  the  days  of
moisture  deficit  does  not  fully  represent
the magnitude of this deficit.

Further  studies  aimed  to  improve daily
fire  prediction models  should  be focused
on the use of  satellite  images  of soil  and
vegetation moisture as dynamic predictors.
Moreover,  the optimization of the spatial
scale of models is desirable in order to im-
prove  the  prediction  accuracy. Finally,  we
advise  a  faster  release of  CWS data (cur-
rently available after six months) and high-
light  the  need  of  extending  AWS  spatial
coverage in the study area.

List of Abbreviations
(AWS):  Automatic  Weather  Station;

(AWS-CN-DEP):  CN-DEP  model  with  AWS
data  source;  (AWS-CN-SPEI):  CN-SPEI

model with AWS data source; (AWS-SPEI):
SPEI  model  with  AWS  data  source;  (CN-
DEP): Consecutive days of Negative devia-
tion from effective precipitation DEP; (CN-
SPEI):  Consecutive  days  of  Negative  SPEI
index; (CONAFOR): National Forestry Com-
mission  in  Mexico;  (CWS):  Conventional
Weather  Station;  (CWS-CN-DEP):  CN-DEP
model  with  CWS  data  source:  (CWS-CN-
SPEI):  CN-SPEI  model  with  CWS  data
source; (CWS-SPEI): SPEI model with CWS
data  source;  (DEM):  Digital  Elevation
Model; (DEP): Deviation from Effective Pre-
cipitation  EP;  (EDI):  Effective  Drought  In-
dex;  (EP):  Effective  Precipitation;  (ETP):
Reference  Evapotranspiration;  (LRM):  Lo-
gistic Regression Model; (MODIS): Moder-
ate Resolution Imaging Spectroradiometer;
(MPE): Model Precision Efficiency; (NASA):
National  Aeronautics  and  Space  Adminis-
tration; (P): Probability of occurrence; (p):
Precipitation;  (PCA):  Principal  Component
Analysis;  (PROBOSQUE):  Forest  Protector
of the State of Mexico; (ROC): Relative Op-
erating Characteristic; (SPEI): Standardized
Precipitation-Evapotranspiration Index.
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