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Surface biomass characterization plays a key role in wildfire management. It
allows classifying vegetation fuels flammability for fire risk analysis, to define
silvicultural prescriptions for fire hazard reduction, to plan prescribed burn-
ing, or to model fire behavior and its effects, such as greenhouse gas and pol-
lutant emissions. To facilitate fuel classification and analysis of potential fire
behavior and effects in Italy,  we harmonized 634 measurements of surface
wildland fuels from Alpine,  temperate and Mediterranean environments. The
dataset provides quantitative data for duff, fine dead fuels and downed woody
material, live grasses and shrubs fuel components. Surface fuel data were har-
monized by subdividing loads (Mg ha-1) to standard size classes for dead (0-6,
6-25 and 25-75 mm) and live (0-6, 6-25 mm) fuels, collecting percent cover
and depth/height (cm) of the various fuel components, and classifying observa-
tions into 19 fuelbed categories. To ensure comparability with existing vegeta-
tion classification systems, we classified each observation according to the Eu-
ropean Fuel Map, the Corine Land Cover classes (level IV), the European Forest
Types, and the forest categories of the Italian National Forest Inventory. The
dataset and a photo description of each fuelbed category are available as Sup-
plementary material. This dataset is the first step to develop several products
at the national scale such as: (i) fuel type classification and mapping; (ii) car-
bon stock and wildfire emission estimates; (iii) calibration of fuel models for
the simulation of fire behavior and effects.
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Introduction
Fire is a widespread disturbance in most

vegetation types in Italy under Alpine, tem-
perate and Mediterranean conditions (Elia
et  al.  2020).  Regional  fire  management

agencies  and National  Parks  are in an in-
creasing need of fire risk assessment,  esti-
mates of fire emissions at different spatial
scales,  fuel  management  and  prescribed
burning planning (Ascoli & Bovio 2013,  Co-

rona et al. 2015, Bacciu et al. 2018). The use
of decision support systems (DSS) for fire
effects  modeling,  fire behavior  simulation
and risk analysis is spreading in both the re-
search  and  operational  sectors  in  Italy
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(Salis et al. 2013, Vacchiano et al. 2014, Elia
et al. 2015). A quantitative characterization
of  fuels  in  Italian  forests,  shrublands  and
grasslands is the first step towards devel-
oping harmonized fuel datasets to support
fire management decisions and calibrating
fuel  inputs  for  fire  software  applications
and  DSS  used  by  professionals  and  re-
searchers (Bacciu et al. 2009,  Ascoli  et al.
2015).

Several approaches have been proposed
to  quantify  and  classify  fuel  complexes,
each compatible  with  a  specific  modeling
system for fire behavior and effects predic-
tion (Sandberg et al. 2001, Dimitrakopoulos
2002,  Alvarez et al. 2012,  Keane 2013,  Cruz
et al. 2018). Fire effect models, e.g., FOFEM
(Reinhardt et al. 1997), requires several in-
formation about fuel components (e.g., lit-
ter,  downed woody fuel),  often based on
vegetation types or fuelbed characteristics
(Reinhardt et al. 1997, Ottmar et al. 2007).
Widespread  DSS  for  fire  behavior  predic-
tion  – such as BehavePlus (Andrews et al.
2005),  Farsite  (Finney  1998),  FlamMap

(Finney 2006), the Fire and Fuel Extension
to  the  Forest  Vegetation  Simulator  (An-
drews 2018), or the Rothermel R  package
(Vacchiano & Ascoli 2015) – require a num-
ber of parameters represented by “fire be-
havior  fuel  models”  as  input  (hereafter
“fuel model”), related to surface fuels ac-
cording to the fuel modeling system devel-
oped  by  Rothermel  (1972).  However,  a
source of uncertainty in available fuel de-
scription derives from the use of different
terminologies  to  indicate  similar  fuel
classes or categories (Keane 2013). This pa-
per employs the terminology provided by
Keane (2015), who defined the fuelbed as
the array of biomass types for a given area,
further composed by fuel types (e.g., litter,
shrubs,  grasses,  downed  woody  material
and  tree  crown  foliage)  and  components
(e.g., diameter size range; live or dead sta-
tus) with specific properties. Furthermore,
a fuel complex identifies the dominant fuel
of a fuelbed (Bebi et al. 2003).

Due to the increased use of Rothermel’s
based fire software and DSS in Italy by fire

managers  and  researchers  (Arca  et  al.
2007, 2019, Bacciu et al. 2009, Vacchiano &
Ascoli  2015,  Ascoli  et  al.  2015,  Elia  et  al.
2016, Salis et al. 2016), a standardized field
protocol for inventorying surface fuels ac-
cording to Rothermel’s fuel models inputs
has been proposed in Italy (Bovio & Ascoli
2013, Bovio et al. 2014). This protocol repre-
sented  the  basis  for  several  unpublished
surveys carried out nationwide in the last
decade. However, a complete and harmo-
nized inventory of Italian wildland fuels is
still lacking.

The aims of the present paper are to: (i)
harmonize  and  make  freely  available  un-
published  surface  fuel  data  across  major
vegetation  types  in  Italy;  (ii)  categorize
data  into  fuelbeds  and  establish  associa-
tions  with  land  cover  classes  and  forest
classifications used in Europe and Italy; (iii)
summarize fuel data for each fuelbed, pro-
viding  descriptive  statistics  of  average
characteristics and their variability; (iv) re-
lease  a  fuel  characteristics  dataset  useful
to calibrate Rothermel’s based models and
DSS.

Material and methods

Sampling design
Provided  the  spatial  distribution  of  the

available data, an  a priori sampling design
was not applicable to this study, which is
instead based on an  a posteriori collection
of unpublished inventories carried out over
the last 10 years. Among existing surveys,
only those with data harmonizable in terms
of  the  protocol  adopted  to  characterize
the surface fuel complex were included in
the  study.  Most  fuel  observations  in  the
dataset  (65%)  followed  the  field  protocol
described  by  Bovio  &  Ascoli  (2013) and
Bovio et al.  (2014).  This  uses a  mixed ap-
proach with both destructive (i.e., vegeta-
tion removed and analyzed in the labora-
tory) and non-destructive techniques (see
next paragraph), such as indirect estimates
of fuel loads based on allometry equations
(Corona et al.  2012,  Castagneri  et al. 2013,
Sirca et al. 2016,  Conti et al. 2019). The re-
maining 35% of survey data adopted proto-
cols that are similar to the ones mentioned,
but applied a fully destructive sampling to
the shrub component, as they were mostly
carried out in shrubland fuelbeds (Bacciu et
al. 2009,  Duce et al. 2012,  Castagneri et al.
2013, Vacchiano et al. 2014).

The  study  sites  encompass  grasslands,
shrublands and forest ecosystems growing
in  Alpine,  temperate,  and  Mediterranean
environments  throughout  a  large  part  of
insular and peninsular Italy (Fig. 1). Site se-
lection  excluded  forests  disturbed  in  the
previous 10 years (e.g., affected by wildfire
or windthrow, intensively grazed areas, or
silvicultural  interventions);  thus the  data
set includes 377 sites with a number of ran-
domly located sample plots ranging from 1
to 15 per site (average of 2.28 ± 2.11).  Ac-
cording  to  the  aforementioned  protocols
(Bovio & Ascoli 2013, Bovio et al. 2014), the
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Fig. 1 -  Distribution of study sites (black dots) where fuel data were inventoried in
Italy. Pie charts represent the relative amount of samples in different fuel complexes
(grass only, grass + shrub, litter only, litter + grass + shrub, shrub only). Pie dimension
is relative to sample abundance.
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structure of the fuel complex was assessed
along three 10-m long transects, positioned
to  form  an  equilateral  triangle  (i.e.,  each
transect had a different direction to avoid
directional bias). Along each transect, sur-
face litter depth, grasses height, and shrub
crown height were measured at 1 m inter-
vals. Surface litter and duff were collected
through  destructive  sampling  in  three
0.0625  m2 squares  (1  square  along  each
transect); downed wood < 75 mm, grasses
and shrub fuels were collected on three 1
m2 squares.  Harvested  fuels  were  oven-
dried in the laboratory at 90 °C for 12 to 48
hours  depending  on  the  fuel  component
(i.e., 12 hours only for fully cured, very fine
grasses) to determine the dry weight (Pel-
lizzaro et  al.  2007,  Dimitrakopoulos  et  al.
2010, Ubysz & Valette 2010). For each sam-
pling point,  we calculated the dry weight
load of  dead (duff,  litter,  downed woody
material,  dead  fraction  of  grasses  and
shrubs) and live (grasses, shrubs) fuel com-
ponents  and  structural  variables  as  de-
scribed  in  the  next  paragraph  and  syn-
thetized in the Fig. S1 (Supplementary ma-
terial).

Dataset description
The  dataset  includes  634  surface  fuel

samples,  each  described  by  41 variables
(Tab.  S1),  and is available in Excel® (.xlsx)
format  as  Supplementary  material  (Tab.
S3). The first dataset field is an identifica-
tion  code  (ID)  combining  the  broad  fuel
type  (2nd field),  the  study  site  code  (3rd

field), and the number of the fuel sample
collected at each site (4th field), useful for
filtering  data.  According  to  the  protocol
(Bovio & Ascoli 2013, Bovio et al. 2014), sur-
veys were carried out during the typical en-
vironment-specific fire season, to describe
fuel characteristics dynamics (e.g., level of
grass  curing)  in  the  nature  of  their  flam-
mable  status.  The  field  SamplingSeason
(Tab. S1) reports winter or summer classes,
corresponding  to  Alpine  and  Mediterra-
nean fire regime seasons in Italy (Elia et al.
2020), respectively. FuelComplex is a broad
fuel  classification  system  to  identify  the
dominant  fuel  of  a  fuelbed  driving  fire
spread  (i.e.,  litter,  grass,  shrubs,  grass  +
shrubs, litter + grass + shrubs). Fields from
the  5th position  to  the  20th are  variables
that  quantitatively  characterize  each  fuel
sample (Fig. S1). All fields with a  W as the
first letter (i.e.,  Wduff, W1h, W10h, W100h,
WGr,  WSh1h,  WSh10h)  report  fuel  load  in
Mg  ha-1 on  a  dry  weight  basis.  Loads  of
dead fuels  (W1h, W10h,  W100h)  are parti-
tioned  by  particle  diameter  classes  (<6
mm, 6-25 mm, 25-75 mm, >75 mm), corre-
sponding to timelag classes 1h, 10h, 100h,
i.e., the amount of time necessary for dead
fuels to lose-gain 63% of the difference be-
tween  their  initial  moisture  content  and
their  equilibrium  moisture  (Brown  et  al.
1982). Live grasses (WGr) included <6 mm
fuels only and cured grasses were added to
the 1h dead fuels. Live shrub fuel load was
partitioned in <6 mm (WSh1h) and 6-25 mm

(WSh10h)  size classes.  Fuel  cover  (%)  and
fuelbed depth (cm) of dead fuels (Cdead,
Ddead),  live grasses (CGr, DGr) and shrubs
(CSh, DSh) fuels were measured in 81% and
79% of sampling points, respectively. In ad-
dition,  45%  of  observations  included  data
on duff fuel  load (Wduff)  – a key compo-
nent to estimate fire emissions, especially
in forest ecosystems – while 96% of obser-
vations  reported  an  estimate  of  the  tree
canopy  cover  (CanCov).  Each  observation
contains  information  about  elevation,
slope and aspect, and climate information
according  to  the  Köppen-Geiger  climate
classification  (Beck  et  al.  2018)  and  the
“Worldwide  Bioclimatic  Classification  Sys-
tem” (Rivas-Martínez et al.  2011) available
in  raster  format  for  Italy  at  900 m  grain
(Pesaresi et al. 2017).  Most sampling sites
belong  to  Köppen-Geiger  temperate  and
mesothermal  climates  (41%  Csa  Mediter-
ranean hot summer, 32% Cfb Oceanic, 21%
Cfa Humid subtropical),  with a small  frac-
tion (6%) of boreal and tundra climates at
the topmost elevations up to 2100 m a.s.l.
From Rivas-Martinez classification,  we ex-
tracted values for bioclimate,  continental-
ity type based on the difference between
annual  maximum  and  minimum  tempera-
ture  (63%  subcontinental  and  semiconti-
nental,  37% euoceanic or semihyperocean-
ic),  ombrotype (Tab. S1) based on the an-
nual  ombrothermic  index  (24%  dry  and
semiarid, 21% subhumid, 55% humid and hy-
perhumid), and thermotype (Tab. S1 in Sup-
plementary  material)  based on thermicity
index  and  yearly  positive  temperatures
(38% Thermo-, Meso- and Supramediterra-
nean , 23% Mesotemperate, 39% Supra- and
Orotemperate).

Fuel  observations  were  then  grouped
into 19 surface fuelbeds (fields: FuelBed, Fu-
elBedCode – Tab. 1), based on expert opin-
ion considering the vegetation type, domi-
nant fuel, its spatial arrangement and spe-
cies-specific  flammability  properties  that
determine  potential  surface  fire  behavior
(Ottmar et al. 2007, Keane 2013). For exam-
ple,  fuel  observations  in  Mediterranean
conifer forests with a long-needle and por-
ous litter (i.e.,  Pinus halepensis,  P. pinaster
and  P.  pinea  forests)  were  grouped  into
two fuelbeds according to the absence (fu-
elbed 16) or presence (fuelbed 17) of flam-
mable understory grasses and shrubs. Fu-
elbeds  with  codes  from  1  to  3  represent
grass-dominated  fuel  complexes,  4  to  6
shrublands, 7 to 12 broadleaved forests, 13
to 17 coniferous forests, while 18 and 19 re-
late to riparian vegetation and marshes, re-
spectively. A photo description of each fu-
elbed is provided in Fig. S2 (Supplementary
material).

The  vegetation  physiognomy  at  each
sample point was used to associate (sensu
Keane  2013)  fuelbed  classes  to  relevant
fuel,  land  cover  and  forest  classification
systems. Cross-links were established with
existing  vegetation  classification  systems
in Europe and in Italy (Tab. 1): (i) European
fuel  map  classification  (EFFIS  2017);  (ii)

Corine Land Cover,  level  IV  (ISPRA 2010);
(iii)  European Forest  Types (Barbati  et  al.
2014); and (iv) forest categories of the Ital-
ian National Forest Inventory (INFC 2005),
for forest fuelbeds only. In some cases, a
fuelbed  was  uniquely  associated  with  a
vegetation  class.  For  example,  fuelbed  7
“Mountain beech litter”,  which has a dis-
tinctive combustibility due to the compact-
ness  of  the  beech  litter  and  the  lack  of
grasses and shrubs in the understory typi-
cal in mountain beech forests (Maringer et
al. 2020), was uniquely associated with the
“Faggete” class in the INFC (Tab. 1).  How-
ever, different fuelbeds may be associated
to  the  same  vegetation  class,  and  con-
versely,  more  vegetation  classes  may  be
associated to the same fuelbed description
(e.g., fuelbeds 8 and 9 are both associated
to the European Forest  Type 8.2  and the
INFC category “Boschi a rovere, roverella e
farnia”), which is a typical issue in fuelbed
classification systems (Keane 2013).

In addition to surface fuel data, a biblio-
graphic  research  on  crown  foliage  and
branch  fuel  loads  is  presented in  Tab.  S2
(Supplementary material)  with the aim to
complement forest fuelbeds (from 7 to 19)
with  canopy  information,  necessary  for
several  fire  effect  models,  e.g.,  FOFEM
(Reinhardt et al. 1997).

Results
Dataset  descriptive  statistics  are  pre-

sented  by  the  sampled  variability  across
the fuel complexes (i.e., dominant fuel of
the  fuelbed),  and  then  by  the  variability
within the fuelbeds. A comparison with in-
ternational  established  fuel  inventories  is
also presented to verify that the range in
loads by fuel  components falls  within the
range of variability in reference inventories
(see  also the  Discussion).  Finally,  a  multi-
variate analysis was carried out to describe
geographical and climatic gradients in the
dataset.

Dataset descriptive statistics
Fuel complexes show distinct characteris-

tics (Fig. 2). Loads of dead fine fuels (size
<6 mm) and downed fuels (size 6-75 mm)
were  generally  higher  in  fuel  complexes
with  litter  only  (LI),  or  litter  mixed  with
grasses  and shrubs  (LS),  and shrubs  only
(SH). Although in grasses the mean load of
dead fine fuels was very low, several out-
liers were recorded (Fig. 2a), mainly due to
fuelbed 3  “Continuous tall  Mediterranean
grasslands”, which is dominated by the tall
grass Ampelodesmos mauritanicus (Poir.) T.
Durand & Schinz and characterized by rela-
tively high loads of fine dead leaves within
the tussock. This represents a species-spe-
cific  surface  fire  environment  characteriz-
ing  fire-prone grasslands  of  the  southern
Tyrrhenian cost (Incerti et al. 2013) and was
therefore  identified  as  a  specific  fuelbed
(fuelbed 3  in  Fig.  S1).  Live  fuel  load with
particle size 6-25 mm was particularly abun-
dant in the shrub fuel complex (Fig. 2d).

Tab. 2 and Tab. 3 provides descriptive sta-
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Tab. 1 - Fuelbed association with the European Forest Fire Information System (EFFIS) fuel map classes, Corine Land Cover classes
(level IV), the European Forest Types and the forest categories of the Italian National Forest Inventory (INFC). For fuelbeds 1 to 6, 12
and 19, there was no meaningful correspondence (“na”) with either the European Forest Types or the forest categories of the Ital -
ian National Forest Inventory.

Fuelbed EFFIS fuel map class Corine LC IV level EU Forest Types INFC Categories

1. Sparse and very short 
grasslands

4. Sparse grasslands 3212. Discontinuous grassland na na

2. Continuous short grasslands 5. Mediterranean grasslands 
and steppes; 
6. Temperate, Alpine and 
Northern grasslands

3211. Continuous grassland na na

3. Continuous tall 
Mediterranean grasslands

5. Mediterranean grasslands 
and steppes

3211. Continuous grassland na na

4. Temperate and Alpine 
heathlands

8. Temperate, Alpine and 
Northern moors and 
heathlands

322. Moors and heathlands na na

5. Short Mediterranean 
shrublands and garrigues

9. Mediterranean open 
shrublands (sclerophylous)

3232. Low maquis and 
garrigues

na na

6. Tall Mediterranean 
shrublands and heathlands

10. Mediterranean shrublands 
(sclerophylous)

3231. High maquis na na

7. Montane beech litter 33. Montane beech forest;
38. Mixed beech with conifers 
forest

3115. Beech forests 7.1 South western European 
mountainous beech forest; 
7.3 Apennine-Corsican 
mountainous beech forest

Faggete

8. Compact mesophytic 
broadleaved litter

31. Mesophytic broadleaved 
forest

2241. Young tree plantations 
for wood production; 3112. 
Deciduous oak forests; 3113. 
Mesophilous broad-leaved 
forests; 3117. Non-native 
broadleaved forests

5.1 Pedunculate oak-
hornbeam forest; 5.9 Other 
mesophytic deciduous forests;
8.2 Turkey oak, Hungarian oak
and Sessile oak forest; 14 In-
troduced tree species forest

Boschi a rovere, roverella e 
farnia; Cerrete, boschi di 
farnetto, fragno, vallonea; 
Ostrieti, carpineti

9. Porous thermophilous 
broadleaved litter

30. Thermophilous 
broadleaved forest

3112. Deciduous oak forests 
3113. Mesophilous broad-
leaved forests

8.1 Downy oak forest; 8.2 
Turkey oak, Hungarian oak and
Sessile oak forest; 8.8 Other 
thermophilous deciduous 
forests

Boschi a rovere, roverella e 
farnia; Cerrete, boschi di 
farnetto, fragno, vallonea; 
Ostrieti, carpineti

10. Mediterranean evergreen 
broadleaved litter

29. Mediterranean evergreen 
broadleaved forest

3111. Mediterranean 
evergreen oak forests

9.1 Mediterranean evergreen 
oak forest

Leccete; Sugherete; Altre 
latifoglie sempreverdi

11. Long broadleaved litter 30. Thermophilous 
broadleaved forest

3114. Chestnut forests 8.7 Chestnut forest Castagneti

12. Eucaliptus litter na 3117. Non-native broad-leaved
forests

14.2 Plantations of not-site-
native species and self-sown 
exotic forest

na

13. Alpine and Mediterranean 
short needled conifer litter

23. Mediterranean montane 
short needled conifer forest 
(fir); 
26. Alpine short needled 
conifer forest (fir, alpine 
spruce)

3123. Silver fir and/or Norway
spruce forests

3.2 Subalpine and 
mountainous spruce and 
mountainous mixed spruce-
silver fir forest; 7.9 
Mountainous Silver fir forest

Boschi di abete rosso; Boschi 
di abete bianco

14. Montane long needled 
conifer litter

22. Mediterranean montane 
long needled conifer forest 
(Black and scots pines); 
25. Alpine long needled 
conifer forest (pine)

3122. Mountain and oro-
Mediterranean pine forests;
3124. Larch and/or Arolla pine
forests;
3125. Non-native coniferous 
forests

10.2 Mediterranean and 
Anatolian Black pine forest; 
14.2 Plantations of not-site-
native species and self-sown 
exotic forest; 3.1 Subalpine 
larch-arolla pine and dwarf 
pine forest; 3.3 Alpine Scots 
pine and Black pine

Pinete di pino silvestre e 
montano; Pinete di pino nero, 
laricio e loricato; Piantagioni 
di conifere

15. Montane long needled 
conifer understory with shrubs

22. Mediterranean montane 
long needled conifer forest 
(Black and scots pines);
25. Alpine long needled 
conifer forest (pine)

3122. Mountain and oro-
Mediterranean pine forests 
3124. Larch and/or Arolla pine
forests

10.2 Mediterranean and 
Anatolian Black pine forest; 
14.2 Plantations of not-site-
native species and self-sown 
exotic forest; 3.1 Subalpine 
larch-arolla pine and dwarf 
pine forest; 3.3 Alpine Scots 
pine and Black pine

Pinete di pino silvestre e 
montano; Pinete di pino nero, 
laricio e loricato; Piantagioni 
di conifere

16. Mediterranean long 
needled conifer litter

20. Mediterranean long 
needled conifer forest (Med. 
pines)

3121. Mediterranean pine 
forests

10.1 Mediterranean pine 
forest

Pinete di pini mediterrane

17. Mediterranean long 
needled conifer understory 
with shrubs

20. Mediterranean long 
needled conifer forest (Med. 
pines)

3121. Mediterranean pine 
forests

10.1 Mediterranean pine 
forest

Pinete di pini mediterrane

18. Riparian vegetation 39. Riparian vegetation 3116. Hygrophilous forests 12.1 Riparian forest Boschi igrofili

19. Aquatic marshes 41. Aquatic marshes na na na
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tistics of mean characteristics and variabil-
ity  of fuel  loads and cover  for grasslands
and  shrublands  fuelbeds  (Tab.  2)  and for
broadleaved  and  coniferous  forests,  and

aquatic fuelbeds (Tab. 3). The fuelbed with
the lowest value in total surface fuel load
(excluding duff)  is  fuelbed  1  “Sparse  and
very short grasslands” with an average of

2.47 Mg ha-1. Fuelbed 19 “Aquatic marshes”
shows the highest  total  surface fuel  load
with  an  average of  80  Mg ha-1.  Although
sharing the same vegetation classes (Tab.

iForest 13: 513-522 517

Fig. 2 - Boxplot of fuel load
(Mg ha-1) by fuel complex
(GR = grass; GS = grass +

shrub; LI = litter only; LS =
litter + grass + shrub; SH =
shrub only) and fuel com-

ponents: (a) Dead fuel with
particle size < 6 mm; (b)

larger dead downed fuels
(size 6-75 mm); (c) live

grass fuels (< 6 mm); (d)
live shrub fuels (<25 mm).

Data excluded: duff fuel
component; fuelbed 19

“Aquatic marshes”.
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Tab. 2 - Number of observations (Count), mean fuel load (Mg ha-1), standard deviation (STD), range (min-max) and interquartile
range (IQR) by vegetation type (grassland, shrubland), fuelbed and fuel component. Variable names: Duff: fuel duff load; Dead 1h:
dead fuels with particle size < 6 mm; Dead (10h, 100h): dead fuels with particle size 6-25 mm, 25-75 mm; Live fuels (grass, shrub): live
grasses < 6 mm and live shrubs < 25 mm; Total load: total fuel load (dead + live fuels, but duff excluded).

Type Fuelbed Fuel component Count Mean STD Range IQR

G
ra

ss
la

nd
s

1. Sparse and very short 
grasslands

Duff na na na na na

Dead 1h 41 0.08 0.31 0-1.7 0

Dead (10h, 100h) 41 0.08 0.37 0-2.2 0

Live fuels (grass, shrub) 41 2.32 1.48 0.3-7.2 1.4

Total load 41 2.47 1.66 0.3-8.9 1.5

2. Continuous short 
grasslands

Duff 4 23.7 24.78 4.6-60.1 15.6

Dead 1h 43 0.28 0.9 0-4.8 0

Dead (10h, 100h) 43 0.03 0.18 0-1.1 0

Live fuels (grass, shrub) 43 3.77 2.03 0.5-10.3 2.6

Total load 43 4.08 2.27 0.5-10.8 3

3. Continuous tall 
Mediterranean grasslands

Duff 25 na na na na

Dead 1h 25 3.96 4.54 0-15.7 4.3

Dead (10h, 100h) 25 0 0 0-0 0

Live fuels (grass, shrub) 25 12.26 7.25 3.5-29.5 7.8

Total load 25 16.17 10.44 3.5-40.7 10.2

Sh
ru

bl
an

ds

4. Temperate and Alpine 
heathlands

Duff 11 3.18 2.36 0.1-6.9 3.8

Dead 1h 11 2.35 2.38 0.03-6.2 3

Dead (10h, 100h) 11 0 0 0-0 0

Live fuels (grass, shrub) 11 6.15 2.37 3.3-10.6 3.4

Total load 11 8.5 4.33 3.6-16.2 5.6

5. Short Mediterranean 
shrublands and garrigues

Duff 25 6.89 4.36 0.2-16.7 5.5

Dead 1h 51 2.26 2.19 0-12.9 1.9

Dead (10h, 100h) 51 2.92 5.5 0-32 2.7

Live fuels (grass, shrub) 51 10.35 7.69 1.8-37.5 6.6

Total load 51 15.52 11.03 2.5-54.5 10.5

6. Tall Mediterranean 
shrublands and heathlands

Duff 11 11.65 4.24 6.5-20.1 5.4

Dead 1h 39 5.33 4.34 0.7-12.3 8.4

Dead (10h, 100h) 39 3.55 3.2 0-17.8 3.8

Live fuels (grass, shrub) 39 25.53 8.67 10.4-47.3 15.7

Total load 39 34.42 12.59 16.8-53.3 25.3
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Tab. 3 - Number of observations (Count) and fuel load (Mg ha-1) by vegetation type (broadleaved forests, conifer forests, aquatic
vegetation),  fuelbed and fuel  component.  Mean,  standard deviation (STD),  range (min-max) and interquartile range (IQR) are
reported. Variable names: Duff: duff fuel load; Dead 1h: dead fuels with particle size < 6 mm; Dead (10h, 100h): dead fuels with parti-
cle size 6-25 mm and 25-75 mm, respectively; Live fuels (grass, shrub): live grasses < 6 mm and live shrubs < 25 mm; Total load: total
fuel load (dead + live fuels, excluding duff).

Type Fuelbeds Fuel component Count Mean STD Range IQR

Br
oa

dl
ea

ve
d 

fo
re

st
s

7. Montane beech litter Duff 7 35.06 26.75 9.3-90.1 16.5
Dead 1h 17 1.88 2.37 0.1-6.74 3.1
Dead (10h, 100h) 17 4.09 3.91 0.3-14.8 3.3
Live fuels (grass, shrub) 17 0.24 0.55 0-2.2 0.2
Total load 17 6.2 4.26 0.5-14.9 7.1

8. Compact mesophitic 
broadleaved litter

Duff 68 33.07 25.84 2.3-92.4 40.1
Dead 1h 95 2.18 1.87 0.1-8 3.1
Dead (10h, 100h) 95 6.83 6.1 0-28.4 7.5
Live fuels (grass, shrub) 95 1.61 2.54 0-16.5 1.9
Total load 95 10.63 7.14 0.6-37.6 9.4

9. Porous thermophilous 
broadleaved litter

Duff 9 39.87 31.65 3-97 36.6
Dead 1h 66 1.73 2.35 0.1-10.6 3
Dead (10h, 100h) 66 3.01 3.33 0-13.3 4.2
Live fuels (grass, shrub) 66 1.58 1.83 0-9.8 2.1
Total load 66 6.32 3.84 1-21 4.4

10. Mediterranean 
evergreen broadleaved litter

Duff na na na na na
Dead 1h 19 2.25 1.15 0.1-3.8 1.5
Dead (10h, 100h) 19 4.69 4.82 0.2-15.9 7.1
Live fuels (grass, shrub) 19 3.76 6.52 0-27.3 2.7
Total load 19 10.71 7.74 2.3-31.7 9.5

11. Long broadleaved litter Duff 33 35.69 27.5 5.8-104 41.5
Dead 1h 46 2.52 2.65 0.1-11.4 1.9
Dead (10h, 100h) 46 6.47 4.84 0.7-17.1 7.3
Live fuels (grass, shrub) 46 2.08 2.83 0-13.7 2
Total load 46 11.06 6.05 2-22.5 10.6

12. Eucaliptus litter Duff na na na na na
Dead 1h 9 9.08 4 0.1-13.9 4.2
Dead (10h, 100h) 9 4.41 1.39 2.5-6.4 1.8
Live fuels (grass, shrub) 9 0.26 0.31 0-0.9 0.4
Total load 9 13.74 4.63 4.6-20.7 4

C
on

if
er

 f
or

es
ts

13. Alpine and 
Mediterranean short needled
conifer litter

Duff 10 39.36 16.73 19.8-63.8 25.6
Dead 1h 15 2.36 2.02 0.1-5.9 3.8
Dead (10h, 100h) 15 4.11 2.44 1-9.1 3.3
Live fuels (grass, shrub) 15 0.44 0.54 0-1.6 0.8
Total load 15 6.91 2.29 3-11.7 2.9

14. Montane long needled 
conifer litter

Duff 13 39.58 30.17 1.1-93.1 49.9
Dead 1h 36 3.32 2.63 0.1-8.7 4.2
Dead (10h, 100h) 36 3.96 3.75 0-14.4 4.9
Live fuels (grass, shrub) 36 0.79 1.02 0-4.7 0.8
Total load 36 8.07 5.29 0.7-22.9 7.5

15. Montane long needled 
conifer understory with 
shrubs

Duff 24 23.92 20.1 2.7-74.1 11.7
Dead 1h 24 1.11 0.94 0.1-3.2 0.8
Dead (10h, 100h) 24 11.61 11.88 0-36.5 17.2
Live fuels (grass, shrub) 24 4.5 3.26 0.5-12.9 3.8
Total load 24 17.23 12.96 2.7-45.3 19.9

16. Mediterranean long 
needled conifer litter

Duff 12 31.81 25.73 3.4-96.6 25.6
Dead 1h 29 2.43 1.52 0.1-5.6 2.2
Dead (10h, 100h) 29 3.3 3.78 0.2-16.9 2.6
Live fuels (grass, shrub) 29 0.89 0.99 0-4.3 1.1
Total load 29 6.61 4.23 0.8-19.7 2.9

17. Mediterranean long 
needled conifer understory 
with shrubs

Duff 18 32.83 25.06 22.7-91.4 18.9
Dead 1h 44 4.31 2.77 0.5-12 3.1
Dead (10h, 100h) 44 3.42 3.28 0-14.2 3.7
Live fuels (grass, shrub) 44 11.3 8.78 1.1-29.3 11.9
Total load 44 20.13 11.11 4.7-42 16.4

A
qu

at
ic

 v
eg

et
at

io
n

18. Riparian vegetation Duff na na na na na
Dead 1h - 0.49 0.54 0.1-1.2 0.9
Dead (10h, 100h) 8 3.6 4.2 0.7-10.7 3.7
Live fuels (grass, shrub) 8 3.11 4.04 0.9-13 0.8
Total load 8 7.2 4.94 2.6-14.6 8.5

19. Aquatic 
marshes

Duff na na na na na
Dead 1h 10 15.22 5.43 9-26.5 7.2
Dead (10h, 100h) 10 17.73 5.54 8.1-25.1 7.9
Live fuels (grass, shrub) 10 47.1 20.58 24.7-76 36.8
Total load 10 80.05 20.69 53.4-112.7 32.4
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), long-needle conifer forests of both mon-
tane  and  Mediterranean  areas  showed
marked differences between fuelbed with
litter fuels only (fuelbeds 14 and 16) and lit-
ter  mixed  with  grasses  and  shrubs  (fu-
elbeds 15 and 17). For example, shrub live
loads  (particle  size  <25  mm),  cover  and
depth  in  fuelbeds  16  and  17  was  0.87  vs.
11.30 Mg ha-1, 12% vs. 45%, and 47 cm vs. 157
cm,  respectively,  highlighting  the  marked
difference  among  these fuelbeds,  though
associations  to  vegetation  classifications
are the same (Tab. 3).

Comparison with international dataset
To verify the congruence of fuel load val-

ues  devised from the  present  study with
those of similar fuelbeds, the fuel dataset
was compared to the Fuel  Characteristics
Classification System (FCCS – Ottmar et al.
2007). The FCCS stores and classifies fuels
data as fuelbeds across the United States,
and provides a description of fuel charac-
teristics  and  properties  for  6  horizontal
strata  including  the  duff,  litter,  downed
woody material, grasses, and tree canopy,
obtained  from  literature  and  field  data
sets.  It represents a helpful  way for cata-
loging fuelbeds  consumed during the fire
(Ottmar  et  al.  2007,  Ottmar  2014).  Al-
though the FCCS has been created for the
United States, it can be used as reference
for different ecosystems, thanks to its ac-
curate description of the horizontal strata
of each fuel.  When comparing the Italian
fuel dataset and FCCS for both total fine fu-
els  (size  <  6  mm),  larger  fuels  (size  6-75
mm) and duff fuels  (Fig.  3),  fuel  loads  in
each size class did not differ markedly be-
tween the two (except for a higher load of
fine fuels in FCCS), which suggests that the
Italian  inventory  explores  the  fuel  data
space in a fairly complete way.

Multivariate relationship in the dataset
To  test  for  relationships  between  fuel

loads and topographical and climatic driv-
ers, we carried out a Redundancy Analysis
(RDA).  Response  variables  were  1h,  10h
and 100h dead fuel loads, live grasses and
live shrubs fuel loads; predictors were ele-
vation, slope, southness (calculated as neg-
ative cosine of aspect), canopy cover, om-
brotype,  thermotype  and  continentality
type according to Pesaresi et al. (2017). Ob-
servations were scaled to unit variance; the
model was chosen by forward model selec-
tion  based  on  adjusted  R2 using  the  “or-
diR2step” function in the “vegan” package
for R (R Core Team 2019). The final model
was  checked  for  collinearity  by  making
sure that variance Inflation factors for each
predictors were <10. The significance of the
model,  predictors,  and  RDA  axes  was
checked  by  an  ANOVA-like  permutation
test with 999 iterations (α =0.05).

The  final  model  had  an  adjusted  R2 of
0.16. The first four RDA axes were signifi-
cant, and explained 62.3%, 25.8%, 5.3% and
3.5%  of  the  model  variance,  respectively.
Axis  1  was  strongly  correlated  to  canopy

cover (standardized loading = 0.83) and cli-
mate  indices  (thermotype loading  =  0.77,
ombrotype =  -0.68),  while  axis  2  was  ex-
plained by a combination of all  predictors

(Fig. 4). Fine dead fuel loadings responded
to increasing slope, southness and temper-
ature,  while live grass and shrub loadings
increased  in  wetter  ombrotypes  and  de-
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Fig. 3 - Comparison between total load (Mg ha-1) of fine fuels (size < 6 mm), larger
fuels (size 6-75 mm) and duff loads in both the Italian fuel survey (red) and in the Fine
Fuel Classification System database (blue).

Fig. 4 - Biplot relationships between fuel load and site predictors. Red dots: individual
sites; black arrow: response variables (W1h: fine dead fuel with particle size < 6 mm;
W10h: fine dead fuel with particle size 6-25 mm;  W100h: fine dead fuel with particle
size 25-75 mm;  WGr: grass and grass live fuel < 6mm; WSh: shrub live fuel <25 mm);
blue  arrows:  predictors  (CanCov:  canopy  cover;  Elev:  elevation;  Southness:  -cos
[aspect];  tt: thermotype in the bioclimate map of Italy according to  Pesaresi  et al.
2017, where increasing values correspond to decreasing temperatures; ot: ombrotype
in the bioclimate map of Italy according to Pesaresi et al. 2017, where increasing val-
ues correspond to increasing aridity).  Predictors were scaled to improve graphical
representation.
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creasing elevation and canopy cover.  The
latter was true also for live grass depth and
cover;  dead  fuel  depth  and  cover  were
more  strongly  associated  to  thermotype/
slope and canopy cover/elevation, respec-
tively, while live shrub depth and cover re-
sponded  mostly  to  increasing  southness
(Fig. 4).

Discussion
The fuel dataset deriving from this study

provides quantitative characteristics of fuel
beds  in  grasslands,  shrublands,  broad-
leaved  and  coniferous  forests  of  the
Alpine,  temperate  and  Mediterranean  re-
gions of Italy. It includes information useful
for estimates on fuel biomass, surface fire
behavior and effects. Although the sample
size was limited and unevenly spatially dis-
tributed  across  the  Italian  peninsula,  the
survey  covered  a  broad  range  of  biocli-
matic regions and vegetation types. This is
apparent from the associations established
between the 19 fuelbeds and the European
Forest Types (Barbati et al. 2014), and the
forest  categories  of  the  Italian  National
Forest Inventory (INFC 2005). Although re-
sulting from an a posteriori compilation of
fuel  observations  from  different  surveys,
the  fuel  dataset  covers  all  the  classes  of
forest, grassland and shrubland mapped in
Italy by Corine Land Cover IV level (ISPRA
2010).

In  this  Italian  fuel  dataset,  the  fuelbed
with the lowest total surface fuel load was
“Sparse and very short grasslands” with an
average of  2.47  Mg ha-1.  This  was  due to
the dominance of very short grasses with a
relatively low cover, which is typical of nu-
trient-poor  and  climatically  limited  sites
such as those at high elevation or on very
dry sites (fuelbed 1,  Fig. S1 in Supplemen-
tary material). On the contrary, the fuelbed
with  the  highest  total  surface  fuel  load
(duff  excluded)  is  “Aquatic  marshes”.
These are very flammable fuel complexes
with high spatial continuity, a deep fuelbed
(326 ± 19 cm on average), and dead fuels
<25 mm representing 40% of total surface
fuel load (fuelbed 19, Fig. S1 in Supplemen-
tary material).

Fuel  characteristics  of  Italian  vegetation
fuels are within the range of values in the
Fuel  Characteristics  Classification  System
(FCCS),  one  of  the  most  extensive  data-
bases on fuel load and structure (Ottmar et
al.  2007).  Only  fine  fuel  loads  (<6  mm)
were markedly lower than FCCS loads. This
could be related to the higher variability of
vegetation  types  included  in  FCCS  (from
tropical to boreal ecosystems), specific fu-
elbeds with very high biomass levels such
as “White fir-giant sequoia-sugar pine for-
est”, and an older stage of development of
North  American  forests  (Cheyette  et  al.
2008), leading to higher productivity when
compared to Italian forests.  Fuel  invento-
ries  carried  out  in  similar  fuelbeds  dis-
played  comparable  fuel  loads  for  both
Alpine and Mediterranean shrublands. For
example,  Fréjaville et al. (2018) reported a

total  fuel  load (excluding duff) of  7.7-12.3
Mg ha-1 in Alpine mountainous forest cate-
gories, which falls within the range of 6.2
to 17.2 Mg ha-1 for fuelbeds 7 to 15 (Tab. 3),
i.e.,  mountain  forests  under  Alpine  and
temperate  conditions.  For  Mediterranean
shrublands, Dimitrakopoulos (2002) report-
ed a total fuel load in Kermes oak and tall
evergreen  sclerophylous  shrubland  (ex-
cluding  duff  and  diameters  >  7.5  cm)  of
34.7 and 46.9 Mg ha-1, respectively, which
falls  within  the  range  of  fuelbed  6  “Tall
Mediterranean  shrublands  and  heath-
lands”  of  16.8-53.3  Mg ha-1 (Tab.  2).  Simi-
larly, fuel load in Mediterranean grasslands
according  to  Dimitrakopoulos  (2002) was
4.85  Mg  ha-1,  which  approximates  the
mean total fuel load of 4.08 Mg ha -1 of fu-
elbed 2 “Continuous short grasslands”. To-
tal fuel load in long-needled Mediterranean
pine forests with sparse understory in Fer-
nandes (2009) ranged from 5.25 to 14.09
Mg  ha-1,  which  is  within  the  range of  fu-
elbed  16  “Mediterranean  long  needled
conifer litter” of 0.8-19.7 Mg ha-1. Further-
more,  fuel  loads  in  forest  fuelbeds  were
similar  to  understory  dry  weight  biomass
values  published  by  the  Italian  National
Forest  Inventory  (INFC  2005).  Indeed,
mean litter biomass in the INFC (i.e., leaves
and twigs up to 25 mm) is 6.4 Mg ha -1 while
in  this  fuel  dataset  the  sum  of  W1h  and
W10h loads of forest fuelbeds (mean of fu-
elbeds 7 to 18) is 5.6 ± 0.21 Mg ha -1.  Simi-
larly, load of W100h downed woody mate-
rial (25-75 mm) was 2.1 ± 0.19 Mg ha -1, which
is close to INFC mean values for fine dead-
wood (25-94 mm), i.e., 1.8 Mg ha-1.

Conclusions
This study developed the first Italian veg-

etation fuel dataset based on 634 surface
fuel complex observations collected within
337  study  sites  and  covering  the  major
types of ecosystems found in Italy. Overall,
19  fuelbeds  were  established,  character-
ized by  a  set  of  fuel  variables  (41 fields),
ranging from fuel component loads to the
fuel type cover and depth. Although lack-
ing the a priori sampling design needed for
robust  statistical  inference,  the  fuelbed
dataset presented in this study includes a
broad set of fuel features that can be used
for several modeling applications and deci-
sion  support  systems.  For  example,  the
range of fuel loadings can be used to cali-
brate Rothermel’s fire behavior fuel  mod-
els by genetic algorithms (Ascoli et al. 2015)
against observed rate of spread in a given
fire  environment  to  achieve  realistic  fire
simulations by Rothermel’s based software
and  DSS  (Vacchiano  &  Ascoli  2015).  The
available fuelbed data can be also used to
estimate  fuel  consumption and emissions
of  greenhouse  gases  and  particulate
through  the  application  of  tools  such  as
FOFEM  (Reinhardt  et  al.  1997)  or  CON-
SUME (Prichard 2007). Moreover, the fuel
dataset  provides  ranges  of  carbon  pools
not yet available in the Italian National For-
est  Inventory  such  as  grass  and  shrub

biomass, despite their relevance for carbon
inventories (Didion 2020). Further analysis
of this data could allow to calibrate allome-
try  relationships  between  above  ground
and  dead  biomass  pools  (Federici  et  al.
2008) to broad the carbon stock estimates
in  forest  inventories.  Additional  field  sur-
veys  and national  sampling  efforts,  along
with  a  standardization  of  the  sampling
scheme/approach, are certainly needed to
enhance  reliability  and  accuracy  of  esti-
mates in fuelbeds/fuel complexes currently
less represented (i.e., fuelbed 12  – Eucalip-
tus litter; fuelbed 18 – Riparian vegetation)
or affected by high variability due to the in-
trinsic heterogeneity of the vegetation and
site  conditions.  Future  research  will  also
foresee  the  association  of  the  fuelbed
characteristics to specific non spatial (e.g.,
forest  typologies) and spatial  (e.g.,  forest
types  maps)  products  commonly  used  in
natural  resource  management  at  the  re-
gional scale in Italy. This approach will pro-
vide cost-effective fuel related information
and maps providing many advantages for
land  and  resource  management  analysis,
e.g.,  fuel  hazard  assessment,  preventive
fire  management  measures,  strategic  fire
management planning, through the priori-
tization  of  areas  and  resource  allocation
for fuel treatment to mitigate potential fire
danger,  risk,  and fire emission and model
carbon-cycle  and  air  quality.  Finally,  spa-
tially-explicit  information coupled with fu-
ture climate (Caddeo et al. 2019) and land
use  change  scenarios  (Martellozzo  et  al.
2018)  would  offer  a  valuable  support  to-
wards  more  comprehensive  landscape
planning able to minimize risk related dis-
turbances  such  as  wildfires  (Marchetti  et
al.  2014),  as  well  as  maximize  ecosystem
services provisioning and their trade-offs at
the landscape level (Vizzarri et al. 2017).
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