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Contribution of legume and non-legume trees to litter dynamics and C-
N-P inputs in a secondary seasonally dry tropical forest
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Many studies have investigated nutrient cycling in seasonally dry tropical for-
ests, but few have assessed the contribution of different functional groups to
these processes. Here, we investigated general litter dynamics patterns and
the contribution of legume and non-legume trees to litter dynamics and car-
bon (C), nitrogen (N), and phosphorus (P) inputs in a fragment of secondary
seasonally dry tropical forest after half a century of forest succession in the
Atlantic Forest biome in Brazil. Between 2016 and 2017, we quantified litter-
fall production, canopy cover, forest floor, and soil C and N storage in 11 per-
manent plots distributed in the fragment. Vegetation identity and structure
had been previously assessed. We quantified the seasonal inputs of leaf litter
and C, N, and P separately for each functional group (legume and non-legume
tree species). We also  analyzed the correlations between the variables mea-
sured for each functional group with the variables measured at the plot level.
Litter dynamics and nutrient input were affected by climate and functional
group.  Litterfall  production during  the two driest  months  was  three  times
higher than during the other periods of the year, suggesting that species syn-
chronicity  is  likely  to  minimize  drought-related  damage  on  trees.  Legume
trees  had  twice  the  basal  area  attained  by  non-legume  trees,  but  while
legumes were larger, non-legumes were more abundant and dominant in the
smaller diameter class. Legumes deposited twice as much N during the driest
period of the year as non-legumes. Although leaf litter,  C, and P inputs by
legumes were generally higher than those of non-legumes, these differences
during the dry season were not statistically significant. We also found that the
legume variables correlated better with the plot-level variables, compared to
the non-legume functional group. Our results also indicated potential effects
of the leaf litter and nutrient inputs by the legume functional group on the de-
composition constant and, consequently, on the time of forest floor decompo-
sition. Further studies should assess the role of different functional groups in
litter dynamics and nutrient inputs in seasonally dry tropical forests.
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Introduction
Seasonally dry tropical forests (SDTF) rep-

resent 40% of the world’s  tropical  forests
(Campo & Merino 2016) and are distributed
in regions of Africa, Australia,  central and
southern Latin America,  India,  and South-
east  Asia  (Ceccon  et  al.  2004).  In  Brazil,
SDTFs occur where mean annual precipita-
tion  ranges  between  700  mm  and  2000
mm (Portillo-Quintero & Sánchez-Azofeifa
2010) and decreases below 30 mm during
the  dry  season  (Oliveira  et  al.  2019).  The
several SDTF remnants in Brazil add up to
an area of  27.6  million hectares,  which is
equivalent to 3.2% of the original SDTF oc-
currence  range  (Do  Espírito-Santo  et  al.
2013).  These  fragments  have  different
sizes,  disturbance  histories,  and  succes-
sional stages (Souza et al. 2012,  Oliveira et
al. 2019).

The Fabaceae family, or legume family, is
the  most  diverse  in  Brazil,  with  approxi-
mately  2807  species  (Guerra  et  al.  2019).
Among its subfamilies, Mimosoideae, Fab-
oideae,  and  Caesalpinioideae,  it  is  esti-

mated that  96%,  87%,  and 24% of  species,
respectively, can perform symbiotic biolog-
ical  nitrogen  fixation  in  association  with
bacteria (Binkley & Giardina 1997,  Moreira
&  Siqueira  2006).  Several  species  of  the
legume  family  play  an  important  role  in
tropical  forest  succession,  by  colonizing
abandoned pastures and agricultural areas
in tropical regions (Dan et al. 2010). Biologi-
cal  nitrogen fixation is  an  important  pro-
moter of secondary succession in tropical
rainforests  (Batterman  et  al.  2013)  and
SDTFs (Souza et al. 2012). N2-fixing legumes
can provide more than 50% of the total ni-
trogen  needed  for  forest  growth  in  the
first 12 years of secondary succession and
approximately 8% of such in mature forests
(> 100 years – Batterman et al. 2013). N2-fix-
ing  ability  provides  a  competitive  advan-
tage to trees during forest succession (Tay-
lor et al. 2015), but biological nitrogen fixa-
tion requires more energy from the plant
than mineral N uptake directly from the soil
(Reed et al. 2007).

Legume  abundance  and  dominance  are
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generally higher in secondary forests at ad-
vanced successional stages (> 50 years)  in
a seasonally dry tropical forest (Souza et al.
2012) than in wet tropical regions (Batter-
man et al.  2013). Thus, forest productivity
and  nutrient  inputs  in  SDTFs  should  be
highly  influenced  by  the  performance  of
the  legume  functional  group  after  long-
term forest succession. Canopy cover varia-
tions in forest ecosystems are expected to
influence understory productivity and solar
radiation  availability.  Canopy  cover  could
also be influenced by the spatial variability
in abundance and dominance of different
functional groups, such as legume and non-
legume species, and evergreen and decidu-
ous  trees  (Magalhães  et  al.  2018).  How-
ever, N and P inputs by legume species are
better  understood  in  forest  plantations
and  agroforestry  systems  (Cizungu  et  al.
2014, Voigtlaender et al. 2019) than in biodi-
verse forests, both wet and dry (Siddique
et al. 2008, Souza et al. 2012, Batterman et
al.  2013). For example, plantations of pio-
neer  legume  trees,  such  as  Acacia,  Leu-
caena, and Albizia, may add to the soil over
130 kg ha-1 year-1 of N via leaf litter (Binkley
& Giardina 1997). The amounts of litterfall
and nutrients deposited annually on SDTF

soils are relatively well known; for litterfall,
these  values  range  between  4500  and
8000 kg ha-1 year-1 (Cao et al. 2016, Rai et al.
2016); for N, between 102 and 300 kg ha -1

year-1; and for P, between 4 and 12 kg ha-1

year-1 (Cipriani et al. 2015).
Leaf litter production is an important indi-

cator of primary production in SDTFs (Cam-
po & Merino 2016, Moonen et al. 2019). Ac-
cumulated leaf litter, mainly during the dry
season,  represents a  nutrient  reserve
which favors tree growth in the next grow-
ing season (Araújo et al. 2019,  Souza et al.
2019). Studies have shown a positive rela-
tionship  between  soil  nutrient  availability
and the deposition of biomass, carbon, and
nutrients on the forest floor (Heineman et
al. 2016, Voigtlaender et al. 2019). Leaf litter
decomposition rates are influenced by leaf
litter quality (e.g., N content, C/N ratio, N/P
ratio,  lignin  content,  and polyphenol  con-
tent – Hobbie 2015, Campo & Merino 2016),
which  varies  spatially  depending  on  the
abundance  and  dominance  of  different
tree species. In addition, seasonal and local
changes  in  water  availability  affect  tree
phenology, leaf litter input, and decompo-
sition rates,  the latter  due to  impacts  on
soil  microbial activity (Ceccon et al.  2004,

Malhi et al. 2015). As far as we know, few
studies have assessed the influence of leg-
ume trees  on  litter  decomposition (Siddi-
que et al. 2008).

Here, we investigate general litter dynam-
ics processes and the contribution of differ-
ent  functional  groups  to  litter  dynamics
and C, N, and P inputs in a 50-year-old sec-
ondary seasonally dry tropical forest of the
Atlantic Forest biome in Brazil. We also as-
sessed the correlations between the vari-
ables  measured  in  the  two  functional
groups and the variables measured at the
plot  level.  We  assessed  the  following:  (i)
general  patterns  of  litterfall  production
and decomposition, canopy cover, and soil
C  and  N  storage  in  the  forest  fragment;
and  (ii)  the  influence  of  two  functional
groups (legumes and non-legumes) on lit-
ter dynamics and C, N, and P inputs in the
forest fragment. We hypothesize that the
legume functional  group  affects  litter  dy-
namics and nutrient inputs even after half
a  century  of  secondary  succession  in  the
studied SDTF.

Material and methods

Characterization of the study site
The study was carried out in a secondary

SDTF fragment located in the Environmen-
tal  Education  Center  at  the  Federal  Insti-
tute of Espírito Santo, in the municipality of
Alegre, Espírito Santo state, Brazil (Fig. 1).
The study region has a mean annual precip-
itation (MAP) of 1305 mm and a mean an-
nual temperature (MAT) of 23.7 °C (INMET
2019).  The  driest  period  is  comprised  be-
tween  June  and  August,  when  precipita-
tion is below 30 mm, though the dry sea-
son extends between May and September
when it  is  overall  lower  than 50 mm (IN-
MET 2019). These climatic conditions favor
the occurrence of seasonally dry forest for-
mations in the Atlantic Forest biome, which
are officially classified in Brazil  as  semide-
ciduous seasonal forests (“Floresta Estacio-
nal Semidecidual”  – Vieira & Scariot 2006,
Oliveira et al. 2019). The fragment has a to-
tal area of approximately 109 ha with vary-
ing  disturbance histories,  including coffee
plantations,  pasture for  livestock,  and se-
lective harvesting. These disturbances have
barely influenced the basal area of the for-
est after 50 years of natural regeneration
(Lorenzoni-Paschoa  et  al.  2019).  The  alti-
tude  at the  site  varies  between  120  and
660 m a.s.l., with an undulating relief rang-
ing between  3%  and  45%  in  slope  (Loren-
zoni-Paschoa et al. 2019). Latosol predomi-
nates  in  the  study  site  with  an  average
sand content of 56%, an average clay con-
tent of 34%, a pH of 5.2, 2.5 mg dm -3 of P,
and 9.1  cmolc dm-3 of total  soil  exchange
capacity (Lorenzoni-Paschoa 2016).

The  data  were  collected  for  one  year,
from September 2016 to September 2017,
in 11 permanent plots of 400 m² (20 × 20 m)
that  were  distanced  200  m  from  each
other (Fig. 1). These plots were originally in-
stalled by Lorenzoni-Paschoa (2016) to con-
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Fig. 1 - Plot distribution throughout the study site. (a): Map of Brazil; (b): map of the
Espírito Santo state; (c) orthophoto of the forest fragment.
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Legume and non-legume litter dynamics

duct a phytosociological study in the site.
In 2014 and 2015, all trees with a diameter
at breast height equal to or higher than 5
cm  in  the  plot  had  their  diameters  mea-
sured and most were identified to the spe-
cies level  (Lorenzoni-Paschoa et  al.  2019).
Tree abundance, defined as the number of
trees  identified  in  the  plots  standardized
per  hectare,  was  higher  among  non-leg-
umes  than  among  the  legume  functional
group in the diameter classes below 15 cm
(Fig.  2a).  Tree dominance was defined as
the sum of basal areas (in m²) of trees iden-
tified in the plots standardized per hectare.
Non-legumes were dominant in the smaller
diameter  class  and  legumes  were  domi-
nant  in  the  largest  diameter  classes  (Fig.
2a).  The  basal  area  of  unidentified  trees
represented less than 1% of the total basal
area of the plots.

Most legume trees identified in the plots
were  deciduous  and  about  50%  of  them
were capable of biological N2 fixation (Tab.
1). Among the 11 species with the greatest
abundance  and  dominance  values  in  the
plots, six belong to the legume functional
group  and  five  to  the  non-legume  func-
tional  group  (Fig.  2b).  These  non-legume
species were Alseis pickelli Pilg. & Schmale,
Erythroxylum  pulchrum A.  St.  Hill.,  Carini-
ana ianeirensis R. Knuth, Trichilia casareti C.
DC., and Astronium concinnum Schott.
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Fig. 2 - Abundance and 
dominance of func-
tional groups in the 
study site. (a): Abun-
dance (circles) and 
dominance (bars) of 
legume (black) and 
non-legume trees 
(grey) by diameter 
class with an ampli-
tude of 2 cm. (b) Abun-
dance (triangle) and 
dominance (bars) per-
centage of the species 
of major importance 
value. The legume 
species are indicated 
by arrows.
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Tab. 1 - Legume trees recorded in the study site along with their subfamilies and information on leaf deciduousness and N 2-fixing
capacity based on the literature. (F): N2-fixing; (NF): non-N2-fixing. Source: Lorenzoni-Paschoa et al. 2019 (adapted).

Species Subfamily Deciduous N2-fixing

Pseudopiptadenia contorta (DC.) Mimosoideae Y -

Parapiptadenia pterosperma (Benth.) Mimosoideae Y F

Apuleia leiocarpa (Vogel) Caesalpinioideae Y NF

Dalbergia nigra (Vell) Faboideae Y F

Senegalia sp. Mimosoideae Y F

Peltophorum dubium (Spreng.) Taub. Caesalpinioideae Y NF

Amburana cearensis (Allemão) A.C.Sm. Faboideae Y F

Myrocarpus frondosus Allemão Faboideae Y -

Lonchocarpus sericeus (Poir.) Kunthex DC. Faboideae Y F

Copaifera lucens Dwyer. Caesalpinioideae Y F

Adenanthera colubrina (Vell.) Brenan Mimosoideae Y F

Machaerium inincorruptibile Vogel Faboideae Y F

Machaerium paraguariense Hassl. Faboideae Y F

Acosmium lentiscifolium Schott Faboideae N -

Machaerium nyctitan (Vell.) Benth. Faboideae Y -

Platymiscium floribundum Vogel Faboideae N F

Bauhinia forficata Link Caesalpinioideae Y F

Poeppigia procera C. Presl Caesalpinioideae N NF

Machaerium pedicelatum Vogel Faboideae Y F

Platypodium elegans var. major Benth. Faboideae Y F

Pseudopiptadenia sp. Mimosoideae Y -

Swartzia acutifolia Vogel Faboideae N F

Inga hirsuta G. Don Mimosoideae N F

Barnebydendron riedelii (Tul.) J. H. Kirkbr Caesalpinioideae Y -

Senegalia kallunkiae (J. W. Grimes & Barneby) Seigler & Ebinger Mimosoideae Y F
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Soil carbon and nitrogen storage
We obtained a composite topsoil sample

(0-20  cm)  for  N  and  C  analysis  collected
with the aid of an auger at five points in
each plot. We measured soil bulk density of
three soil layers (0-5, 5-10, and 10-20 cm) at
two points per plot, using a metal cylinder
with a diameter of 5.3 cm and a volume of
106.7 cm³. The soil samples used to assess
bulk density were weighed on a precision
balance after being dried at 105 °C for 72 h.
The soil samples used to determine N and
C contents were air-dried for 15 days, mac-
erated in a  mortar,  and sieved (0.5  mm).
Total soil N was determined using the Kjel-
dahl methodology, and total soil C was de-
termined following Barrie & Prosser (1996)
using  a  20-20  Hydra  mass  spectrometer
(ANCA-GSL, SERCON Co., Crewe, UK).

Litterfall collection
In each plot, we installed four round col-

lectors with an area of 0.196 m2 at 50 cm
high, totaling 44 collectors over the entire
site. We arranged the collectors systemati-
cally in a zigzag fashion within each plot,
ensuring  a  minimum  distance  of  5  m  be-
tween each collector and the plot’s edges.
The  litterfall  was  collected  monthly  be-
tween  October  25,  2016,  and  September
25, 2017. After each collection, the material
was dried and separated into leaf and mis-
cellaneous  fractions.  We  then  separated
the leaf fraction between legume trees (by
mixing the leaves of trees belonging to the
Fabaceae family) and non-legume trees (by
mixing  the  leaves  of  trees  belonging  to
other plant families). We were able to vis-
ually separate the leaves (aided by herbar-

ium exsiccates of the recorded species) be-
cause  of  distinguishable  leaf  size  differ-
ences between the two functional groups.
After  separation,  the  different  fractions
were dried at 60 °C for three days and then
weighed in an analytical  balance.  The dry
litter mass contained in each collector was
converted to a hectare basis.

Leaf litter carbon, nitrogen, and 
phosphorus contents

We separately determined the concentra-
tions of C, N, and P in the leaves of legume
and  non-legume  trees.  In  each  plot,  the
leaves  of  each  functional  group  were
mixed every three months and ground in a
Wiley mill (1-mm mesh). To quantify leaf lit-
ter C, we used the dry mass loss on ignition
method,  as  described  by  Kiehl  (1985).  To
quantify  leaf  litter  N  and  P,  we followed
Tedesco et al.  (1995) and  Malavolta et al.
(1997). N was determined through the Kjel-
dahl method, using sulphuric acid for wet
digestion and sodium hydroxide for distilla-
tion. P was determined using nitro-perchlo-
ric digestion and optical spectrophotome-
try.  The C,  N,  and P concentrations  were
then multiplied  by  the  leaf  litter  mass  of
each  functional  group  (legume  and  non-
legume) in each plot to estimate C, N, and
P inputs  in each season:  spring (October-
December),  summer  (January-March),  au-
tumn  (April-June),  and  winter  (July-Sep-
tember).

Forest floor and decomposition 
constant

We sampled forest floor litter in two sep-
arate occasions, at the end of the rainy sea-
son (April 2017) and at the end of the dry
season  (September  2017),  using  a  square
frame (25 × 25 cm) set up beside the collec-
tors at  four  points per  plot.  The material
was  sieved  (2  mm  mesh)  to  remove  the
soil, dried at 60 °C for five days, and weigh-
ed on an analytical balance. The dry matter
accumulated on the forest floor was con-
verted to a hectare basis. For each plot, we
estimated the decomposition rates during
the  rainy  season,  during  the  dry  season,
and  over the  entire  year  of  observation.
This was achieved by dividing litterfall mass
by forest floor mass, through the instanta-
neous  rate  of  decomposition  (k – Olson
1963).  We  then  calculated  the  time  re-
quired for 50% of the material to be decom-
posed using a factor of 0.693 divided by k
(Shanks & Olson 1961).

Canopy cover
The canopy cover index (Tichy 2016) was

measured  in  four  points  in  each  plot  on
one occasion at the end of each season us-
ing a hemispheric fisheye lens attached to
a smartphone. On cloudy days, canopy cov-
er was preferably assessed during the early
morning.  The  photographs  were  taken
next to the litterfall collectors and pointed
towards  the  direction  of  the  magnetic
north,  respecting  the  zenith  angle  (Tichy
2016).  The images  were processed in  the
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Fig. 3 - Intra-annual variation of litterfall, canopy cover, and climate in the study site.
The monthly litterfall production (black squares), daily precipitation (grey bars), and
daily mean air temperature (grey circles) are shown with the seasons highlighted on
top (a). The relationship between leaf litter and canopy cover index throughout the
seasons in the experimental plots are shown along with their respective values of
accumulated precipitation (mm) and mean air temperature (°C) in the top table (b).
The study period began after installing the litterfall collectors at the end of Septem-
ber. Error bars indicate the standard deviation (n=11).
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GLAMA application (Gap Light Analysis Mo-
bile App).

Data analysis
The data used in our analyses were col-

lected in multiple plots established in a nat-
ural forest with intrinsically variable struc-
ture and heterogeneous resource availabil-
ity.  Our main goal in analyzing these data
was to find significant differences in leaf lit-
ter  and nutrient  inputs  between  the two
functional groups (legume and non-legume
trees).  Thus,  we used the non-parametric
Mann-Whitney  rank-sum  test  to  compare
leaf  litter  and  nutrient  inputs  between
legumes and non-legumes.  We also calcu-
lated Spearman’s correlations between the
variables  measured  in  each  functional
group  and  the  plot-level  variables.  The
analyses  were  performed  with  the  soft-
ware SigmaPlot® v. 13.0 (Systat 2014) using
a statistical threshold value of 0.05.

Results

General patterns
During the entire year of collection, 8611

kg ha-1 of litterfall  were produced.  During
the wet season (six months between Octo-
ber  and  March),  litterfall  production  was
3202 kg ha-1, and during the dry season (six
months  between  April  and  September)
5409 kg ha-1 of litterfall were produced. Lit-
terfall  production  varied  little  during  the
rainy months, with an average of approxi-
mately 500 kg ha-1 month-1  (Fig. 3a). In con-
trast,  the  litterfall  production  was  higher
than  1500  kg  ha-1 month-1 in  the  driest
months (August and September). Also, the
highest litterfall production coincided with
drought events during the autumn and the
winter,  in  which  the  temperatures  varied
between 15 and 25 °C and the accumulated
precipitation was lower  than 10  mm.  The
contribution of miscellaneous fractions to
the litterfall  produced was 1344 kg ha-1 in
the rainy season and 593 kg ha-1 in the dry
season. On average, the leaf litter made up

77% of  the  total  litterfall  collected during
the year of observation.

The seasonal production of leaf litter was
inversely related to changes in the canopy
cover  and  the  precipitation  regime  over
the  year  (Fig.  3b).  Canopy  cover  during
spring, summer, and autumn was, on aver-
age, 78%, 73%, and 68%, respectively. During
these seasons, the site received a total of
1186 mm of precipitation and produced a
total of 1659 kg ha-1 of litterfall. In contrast,
during the winter, canopy cover in the site
decreased  to  45%,  accumulated  precipita-
tion was 43 mm, and a total of 2057 kg ha -1

of litterfall were produced. Therefore, the
leaf litter produced during the three winter
months  coincided  with  the  observed  re-
duction in canopy cover, which was about
30% on average.

The amount of litter deposited on the for-
est floor was higher during the dry season,
compared to the rainy season, with an an-
nual average of 8314 kg ha-1 (Tab. 2). The lit-
terfall  and forest floor mass were statisti-
cally  indistinguishable  in  the  study  area.
The decomposition constant during the dry
season  was  higher  than  during  the  rainy
season.  The  k value  calculated  over  the
year of observations ranged between 0.8
and 2.3 in the plots, with a mean value of
1.0. The annual decomposition rate implied
that  244  days  are  needed  to  decompose
half of the litter accumulated on the forest
floor (Tab. 2).

C storage at 0-20 cm of soil depth ranged

between  30,806  to  88,996  kg  ha-1 in  the
plots, with a mean value of 57,029 kg ha-1.
The mean value of soil N storage was 5172
kg ha-1, with minimum and maximum values
of 3241 and 9493 kg ha-1, respectively. Soil C
and N storage correlated significantly with
one another, with a correlation coefficient
(r) of 0.864. Soil C (r = 0.591, p=0.051) and
soil  N  (r  =  0.773)  were also positively  re-
lated to forest floor mass in the plots. Fur-
thermore,  the  decomposition  rate  con-
stant  k correlated significantly with soil  N
storage (r = 0.673), but not to soil C stor-
age (r = 0.509, p=0.102).

Contribution of the functional groups 
to litter dynamics and C, N, and P inputs

The seasonal and annual leaf litter inputs
were  not  statistically  different  between
functional  groups  (Tab.  3).  However,  leg-
ume species contributed, on average, 25%
more to  the  annual  leaf  litter  production
than non-legumes.  In addition,  during the
winter,  the  leaf  litter  input  from  legume
species was about 50% higher than that of
non-legumes.

The  concentrations  of  C,  N,  and  P
throughout the seasons were often higher
among  legume  leaves  compared  to  non-
legume leaves (Tab. 3). However, the only
statistically significant difference in this re-
gard was found for N concentration over
the autumn and the winter and for P con-
centration during the spring.

The seasonal  and annual  inputs of C,  N,
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Tab. 2 - Mean values (± standard error, n=11) of litterfall and forest floor mass, decom-
position constant, and time of half-life of litter in the forest fragment.

Variable Dry season Rain season Annual average

Litterfall (kg ha-1) 5408.9 ± 729.0 3201.8 ± 404.4 8610.7 ± 1560.6

Litter on the forest floor (kg ha-1) 9180.7 ± 5108.9 7446.7 ± 3430.8 8313.7 ± 1226.1

Decomposition constant (k) 0.6 0.4 1.0

T50% 1.2 1.6 0.7

Half-life (in days) 429 588 244

Tab. 3 - Mean values (± standard error,  n=11) of leaf litter mass and contents of carbon (C), nitrogen (N), and phosphorus (P) in
legume and non-legume leaf litters collected in the study site. Different letters indicate significant differences (p<0.05).

Season Group Leaf litter
(kg ha-1)

N
(%)

C
(%)

P
(%)

N
(kg ha-1)

C
(kg ha-1)

P
(kg ha-1)

Spring Leg 493.3 ± 298.5 a 2.8 ± 0.2 a 48.1 ± 3.2 a 0.15 ± 0.01 a 14.0 ± 8.8 a 227.3 ± 142.9 a 0.7 ± 0.4 a

Non-Leg 511.5 ± 454.9 a 2.5 ± 0.6 a 47.3 ± 5.1 a 0.12 ± 0.03 b 12.6 ± 9.1 a 241.9 ± 224.7 a 0.6 ± 0.4 a

Summer Leg 469.4 ± 269.4 a 2.7 ± 0.3 a 52.7 ± 4.8 a 0.11 ± 0.02 a 12.9 ± 7.1 a 247.5 ± 143.1 a 0.5 ± 0.5 a

Non-Leg 383.3 ± 176.5 a 2.4 ± 0.5 a 51.6 ± 13.0 a 0.11 ± 0.01 a 9.0 ± 3.9 a 198.0 ± 106.3 a 0.4 ± 0.2 a

Autumn Leg 696.5 ± 403.9 a 2.2 ± 0.5 a 49.9 ± 1.6 a 0.10 ± 0.07 a 15.6 ± 11.5 a 347.4 ± 207.2 a 0.7 ± 0.3 a

Non-Leg 664.2 ± 383.7 a 1.6 ± 0.5 b 47.8 ± 5.4 a 0.08 ± 0.01 a 10.9 ± 9.9 a 317.6 ± 198.2 a 0.5 ± 0.3 a

Winter Leg 2056.6 ± 924.8 a 1.9 ± 0.2 a 51.7 ± 1.2 a 0.05 ± 0.01 a 40.1 ± 20.0 a 1064.3 ± 487.5 a 1.0 ± 0.5 a

Non-Leg 1398.1 ± 554.7 a 1.5 ± 0.2 b 50.3 ± 1.1 a 0.06 ± 0.01 a 21.2 ± 7.8 b 703.6 ± 278.4 a 0.8 ± 0.4 a

Annual Leg 3715.9 ± 500.9 a - - - 83.4 ± 12.4 a 1905.3 ± 256.7 a 2.8 ± 0.4 a

Non-Leg 2955.2 ± 342.5 a - - - 53.5 ± 5.8 a 1476.3 ± 170.3 a 2.3 ± 0.3 a
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and P  via leaf litter were generally higher
among  legume  trees  compared  to  non-
legume trees (Tab. 3). However, statistical
differences between the groups were only
found for  N input  over  the winter,  when
legumes provided  90% more  N than  non-
legumes. The C/N ratio for legume and non-
legume  leaf  litters  showed  no  significant
differences,  varying  between  17  and  22
(spring),  22  and  24  (summer),  24  and  35
(autumn), and 27 and 34 (winter), respec-
tively.

The legume trees had a higher basal area
than  non-legume  trees  in  the  assessed
plots (15.4  vs. 10.1 m2 ha-1). In general, the
variables  measured  in  the  legume  func-
tional group correlated with the variables
measured  at  the  plot  level  (Tab.  4).  The
variables  measured  in  the  non-legume
functional group, such as leaf litter and leaf
litter C, N, and P contents tended to posi-
tively correlate with canopy cover and leaf
P input. Legume basal area correlated posi-
tively and significantly with plot-level basal
area, leaf litter, and leaf litter C and N. Also,
legume inputs of leaf litter C, N, and P cor-
related  positively  and  significantly  with
plot-level leaf litter, C, N, and P. Moreover,
the  two  functional  groups  often  showed
antagonistic patterns, although not signifi-
cant  in  most cases.  Antagonistic  patterns
were found between litterfall  production,
leaf  litter,  forest  floor  leaf  nutrients,  can-
opy  cover,  decomposition  rate  constant
(k), and soil C and N storage. Also, leaf lit-
ter C, N, and P inputs from legumes corre-
lated negatively and significantly with the
decomposition rate constant k.

Discussion
The  studied  SDTF  is  highly  productive

compared to other neotropical dry forests
(Cao et al. 2016, Rai et al. 2016). The mean
annual  precipitation and the way it is dis-
tributed along the year in the study region
favor primary production at the site, more
so than in other dry forests, such as those
located in the Caatinga biome (Souza et al.
2012).  Litter production, which can consti-
tute up to 50% of dry forest primary pro-

duction, is tightly linked to seasonal water
availability in dry forests (Campo & Merino
2016, Souza et al. 2019). The inter-plot vari-
ability in canopy cover and leaf litter pro-
duction  observed  in  the  study  site  in-
creased between autumn and winter. This
result  may  be  explained  by  the  natural
changes in resource availability that occur
across seasons,  which shape forest struc-
ture and functional group composition. In
our study site, most of the primary produc-
tion  was  returned  via leaf  litter  over  the
three winter months, when tree growth is
limited. This result reveals the synchronism
incorporated  by  the  different  functional
groups in the study site, likely to minimize
drought-related  damage  in  trees.  Similar
results were observed in other tropical dry
forests with different dry season intensities
(Araújo et al. 2019, Souza et al. 2019).

The occurrence of a nearly 5-month long
dry season in the study region implies the
prevalence  of  functional  groups  adapted
to water scarcity during forest succession
(Araújo  et  al.  2019).  The  most  abundant
and dominant tree species in the site have
a set of functional traits that reinforce this
prevalence, including high wood density (>
0.6 g cm-3) and leaf senescence during the
dry  season (Zhang et  al.  2014,  Lorenzoni-
Paschoa  et  al.  2019,  Oliveira  et  al.  2019).
Legume trees had twice the average basal
area attained by  non-legume trees  in  the
plots.  Moreover,  the  ability  to  engage  in
symbiotic interactions with N2-fixing bacte-
ria,  as is  the case for 50% of the legumes
identified on the site, suggests a competi-
tive advantage of legume trees over non-
legumes. The legume species, which were
dominant in the larger diameter class, were
probably the first  functional  group to oc-
cupy  the  area  following  the  disturbances
that  occurred more  than 50 years  ago in
the  fragment  (Lorenzoni-Paschoa  et  al.
2019).  Non-legume  trees,  on  the  other
hand, were abundant and dominant in the
smaller  diameter  class,  as  well  as  among
regenerating  trees  in  the  understory
(Neves  NM,  unpublished  data).  These  re-
sults  suggest that the occupation of non-

legume species throughout forest  succes-
sion is facilitated by changes in the forest’s
microclimatic  and soil  conditions.  Further-
more,  the  prevalence  of  non-legumes  in
the smaller diameter class could affect for-
est canopy cover, as suggested by the posi-
tive  and  significant  correlation  observed
between  annual  canopy  cover  and  non-
legume  contributions  to  leaf  litter,  C,  N,
and P.

Overall,  the leaf litter from legumes dis-
played higher levels of C, N, and P than the
leaf litter from non-legumes. We presume
that the small differences in N and P con-
tents  found  between  the  two  functional
groups were caused by the mix of N2-fixing
and non-N2-fixing trees in the legume func-
tional group. Furthermore, the presence of
N2-fixing trees contributes to an increase in
C, N, and P fluxes among the legume group
(Reed  et  al.  2007,  Siddique  et  al.  2008,
Heineman et al. 2016). Slightly higher levels
of carbon in legume tree leaves may be re-
lated to  the  presence of  secondary  com-
pounds widely abundant in legumes (Saar
et al. 2016). The higher P content found in
the  legume  leaf  litter,  compared  to  non-
legumes  during  the  spring,  may  be  ex-
plained by the role of P in the N2-fixation
process during regrowth following the dry
season (Reed et al.  2007,  Heineman et al.
2016). The higher N content found among
the  legume  leaf  litter  during  the  driest
months  may  be  explained  by  the  domi-
nance of deciduous legume trees and the
abundance of N2-fixing species in this func-
tional group. The small amounts of leaf lit-
ter produced, regardless of legume domi-
nance,  may  be  due  to  the  small  sizes  of
leaves that dominate the overstory, which
often  belong  to  Pseudopiptadenia  contor-
ta,  Parapiptadenia  pterosperma,  Dalbergia
nigra,  and  Peltophorum  dubium trees.
Therefore, the N inputs from legume trees
could help to reduce fertilization costs dur-
ing SDTF restoration. The total amounts of
N returned to the soil  via leaf  litter  after
half  a  century  of  secondary  succession
could  reach  4100  kg  ha-1,  assuming  con-
stant annual N inputs of 83 kg ha-1. Future
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Tab. 4 - Spearman’s correlation between plot-level variables, and the variables measured in the legume (leg) and the non-legume
(non-leg) functional groups. (*): p<0.05; (†): p<0.10.

Functional
group level

Basal area
(BA) Litterfall

Leaf
litter Leaf C Leaf N Leaf P

Canopy
cover

Forest
floor

k
constant Soil C Soil N

BA leg 0.609* 0.482 0.591† 0.636 * 0.673* 0.164 -0.100 -0.327 -0.473 -0.400 -0.227

BA non-leg 0.345 -0.109 -0.236 -0.227 -0.409 -0.009 0.264 0.245 0.373 0.455 0.355

Leaf litter leg 0.245 0.445 0.718* 0.718* 0.809* 0.264 -0.018 -0.209 -0.609* -0.345 -0.282

Leaf litter non-leg 0.118 0.245 -0.09 -0.127 -0.218 0.282 0.518* 0.255 0.273 0.345 0.327

C leg 0.245 0.445 0.718* 0.718* 0.809* 0.264 -0.018 -0.209 -0.609* -0.345 -0.282

C non-leg 0.273 0.509 0.264 0.273 0.164 0.527† 0.627* 0.336 0.036 0.164 0.173

N leg 0.245 0.445 0.718* 0.718* 0.809* 0.264 -0.018 -0.209 -0.609* -0.345 -0.282

N non-leg 0.336 0.645* 0.373 0.310 0.255 0.609* 0.682* 0.409 -0.009 0.318 0.327

P leg -0.009 0.345 0.591† 0.555† 0.718* 0.373 -0.109 -0.291 -0.664* -0.391 -0.382

P non-leg 0.436 0.600 0.400 0.345 0.264 0.791* 0.609* 0.318 -0.036 0.391 0.418
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studies could be carried out to assess the
contribution of biological N2-fixation to sus-
tain the primary productivity of this forest
fragment.

The forest floor functions as a reserve of
nutrients that are slowly released into the
soil by the action of water and organisms
(Silva & Mendonca 2007, Hobbie 2015, Por-
tillo-Quintero et al. 2015). The mean annual
decomposition  constant  values  observed
in  our  study  were  lower  than  those  esti-
mated for tropical dry forests (1.2-1.7 – Ara-
to et al. 2003), although it ranged between
0.8 and 2.3 in the plots. These results sug-
gest  that,  other  than  water  seasonality,
other  factors  influence  litter  decomposi-
tion,  such as quality of  the litter material
and decomposers (Campo & Merino 2016,
Medina-Sauza et al. 2019). Litter decompo-
sition  is  likely  influenced  by  the  mix  of
species and functional groups in the plots.
Moreover,  the  higher  N  inputs  from  the
legume leaf litter during the winter could
affect  decomposition at  the  beginning of
the growing season and, consequently, nu-
trient availability for other plants (Hobbie
2015, Zhu et al. 2015). However, N-rich leaf
litter  may  decrease decomposition  in  the
long  term,  since  N  inhibits  oxidative
enzymes  involved  in  lignin  degradation
(Agren et al. 2013, Lewis et al. 2014, Hobbie
2015).  Moreover,  the  phenols,  greases,
lignin, cellulose, and hemicellulose present
in the plant tissue change according to the
proportion  of  species  and  functional
groups in the litter mixture, affecting litter
decomposition  (Nommik  &  Vahtras  1982,
Kaspari & Yanoviak 2009, Lewis et al. 2014).
Also,  these  secondary  compounds,  which
often  show  allelopathic  effects,  are  com-
mon  among  legumes  and  other  drought-
adapted families (Agren et al. 2013). Our re-
sults also suggested that legume leaf litter,
C, N, and P inputs may have potential  ef-
fects on the decomposition constant k. In-
creases  in  leaf  litter  and  nutrient  inputs
from legume trees tended to decrease the
value of  k and,  consequently, forest floor
decomposition.

Conclusion
We showed that litter dynamics and nutri-

ent  inputs  in  a  secondary  seasonally  dry
tropical forest are affected by the season
and the dominance of different functional
groups.  The  substantially  higher  litterfall
production during the two driest  months
of observation suggests phenological syn-
chronicity  among  different  functional
groups.  Legume  trees,  which  attained
twice the  basal  area  attained by  non-leg-
umes, dominated among the largest diam-
eter  class.  Legume trees  deposited  twice
the  amount  of  N  deposited  by  non-leg-
umes during the winter. Although legumes
contributed higher quantities of leaf litter,
C, and P mainly during the winter, the dif-
ferences  between  legumes  and  non-leg-
umes  were  statistically  indistinguishable.
We  also  found  that,  compared  to  non-
legumes,  the  variables  measured  among

the  legume  functional  group  correlated
better with the plot-level variables. For ex-
ample, legume basal area correlated posi-
tively with plot-level basal area, leaf litter,
and  leaf  litter  C  and  N  contents.  At  the
same time, non-legume basal area showed
no  significant  correlation  with  any  plot-
level variable. Our results indicate potential
effects  of  leaf  litter  and  nutrient  inputs
from the legume functional group on the
decomposition constant and,  consequent-
ly, on the time of forest floor decomposi-
tion.  Finally,  we would encourage further
studies to assess the role of different func-
tional  groups in litter dynamics and nutri-
ent  cycling  in  seasonally  dry  tropical  for-
ests.
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