Supplementary Material

Appendix 1 - Equations used for calculation of leaf biochemical traits and photosynthetic pigments.

Amino
$$acids(\mu g/g) = \frac{(Measure - Blank)}{(Standard - Blank)} *50 \mu \frac{g}{ml} * Soluble protein content$$
 (1)

$$Total Soluble Protein(g/lit) = \frac{(Measure - Blank)}{(Standard - Blank)} * 0.563 g Pro/lit$$
(2)

Ascorbic Acid
$$\left(\mu \frac{g}{g} \text{ wet weight}\right) = \frac{(Measure - Blank)}{(Standard - Blank)} * 6\mu \frac{g}{ml} * 4 * Soluble protein content$$
 (3)

Soluble Sugar Content ($\mu g/g$ wet weight) = $\frac{(Measure - Blank)}{(Standard - Blank)} * 1000 \ \mu g/ml/sample weight/(10 * volume of distilled water) * Multiple of sample Dilution (4)$

Chlorophyll B content (mg•g⁻¹) =
$$(20.13*D645-5.03*D663*V/(1000*W))$$
 (6)

Total chlorophyll content (mg•g⁻¹) =
$$(20.2*D645+8.02*D663*V/(1000*W))$$
 (7)

Carotenoids
$$(mg \cdot g^{-1}) = (1000 * D470 - 3.27 * Ca - 104 * Cb)/229 * V/(1000 * W)$$
 (8)

Tarin MWK, Fan L, Cai Y, Tayyab M, Chen L, He T, Rong J, Zheng Y (2020). Biochar amendment regulated growth, physiological, and biochemical responses of conifer in red soil iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3416-013

Appendix 2- Light-response curves of photosynthesis fitting.

The light-response curves of photosynthesis were fitted following the modified model of a rectangular Hyperbola as follows;

$$Pn = \frac{(1 - \beta PPFD)}{(1 + \gamma PPFD)} (\alpha PPFD + Rd)$$
⁽⁹⁾

where Pn is net photosynthetic rate at the light (PPFD), Rd is the rate of dark respiration, and a is initial slope and also α , β and Υ are the coefficients which are independent of PPFD (Light). At low PPFD, α also shows the increasing rate of Pn.

Light use efficiency (LUE)

γ

$$LUE = \alpha \frac{1 - \beta PPFD}{1 + \gamma PPFD} - \frac{Rd}{PPFD}$$
(10)

According to eqn. 9 and eqn. 10, light use efficiency = Pn/PPFD can be calculated, so maximum light use efficiency is equal to a. Hence, a also indicates the maximum LUE of leaves at very low PPFD. Light compensation point (LCP), light saturation point (LSP) and maximum photosynthetic rate (Pn-Max) were calculated as follows:

$$LCP = \frac{-Rd}{\alpha} \tag{11}$$

$$LSP = \frac{\sqrt{\frac{\beta + \gamma}{\beta}}}{2\beta} - 1$$
(12)

$$Pn - max = \alpha \frac{\sqrt{\beta + \gamma} - \sqrt{\beta}}{\gamma} - Rd$$
(13)

Tab. S1 - Physiochemical properties of soil and hardwood biochar. (EC): electrical conductivity; (TN): total nitrogen; (TC): total carbon; (TP): total phosphorous; (AP): available phosphorous; (OM): organic matter; (AK): available potassium; (C/N): carbon nitrogen ratio.

Characteristics	Hardwood Biochar	Soil
pH	5.70	4.69
EC (mScm ⁻¹)	6.34	106.67
$TN (g kg^{-1})$	8.29	0.49
TC (g kg ^{-1})	330.53	3.36
$TP(g kg^{-1})$	0.30	0.25
$AP (mg kg^{-1})$	24.31	10.24
$OM (g kg^{-1})$	569.83	5.79
$AK (g kg^{-1})$	0.32	0.36
C/N Ratio	39.846	6.864

Fig. S1 - Seasonal comparison in conductance to H_2O (µmol H_2O m⁻²s⁻¹) of seedling at different photosynthetic photon flux density levels (PPFD) under different hardwood biochar (BH) levels. B0: control soil without hardwood biochar amendment; BH5: hardwood biochar-amended soil at 5 g.kg⁻¹; BH20: hardwood biochar-amended soil at 20 g.kg⁻¹; and BH80: hardwood biochar-amended soil at 80g.kg⁻¹, respectively. June 2017: 1st season; September 17: 2nd season; December 17: 3rd season; and March-18: 4th season, respectively indicate four different seasons. Error bars represent the standard error of the mean (n=3)

Tarin MWK, Fan L, Cai Y, Tayyab M, Chen L, He T, Rong J, Zheng Y (2020). **Biochar amendment regulated growth, physiological, and biochemical responses of conifer in red soil** iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3416-013

Fig. S2 - Seasonal comparison in intercellular CO₂ concentration (μmol CO₂ mol⁻¹) of seedling at different photosynthetic photon flux density levels (PPFD) under different hardwood biochar (BH) levels. B0: control soil without hardwood biochar amendment; BH5: hardwood biochar-amended soil at 5 g.kg⁻¹; BH20: hardwood biochar-amended soil at 20 g.kg⁻¹; and BH80: hardwood biochar-amended soil at 80g.kg⁻¹, respectively. June 2017: 1st season; September 17: 2nd season; December 17: 3rd season; and March-18: 4th season, respectively indicate four different seasons. Error bars represent the standard error of the mean (n=3).

Fig. S3 - Seasonal comparison in transpiration rate (μ mol H₂O.m⁻².s⁻¹) of seedling at different photosynthetic photon flux density levels (PPFD) treated with different hardwood biochar (BH) levels. B0: control soil without hardwood biochar amendment; BH5: hardwood biochar-amended soil at 5 g.kg⁻¹; BH20: hardwood biochar-amended soil at 20 g.kg⁻¹; and BH80: hardwood biochar-amended soil at 80 g.kg⁻¹, respectively. June 2017: 1st season; September 17: 2nd season; December 17: 3rd season; and March-18: 4th season, respectively indicate four different seasons. Error bars represent the standard error of the mean (n=3).

Tarin MWK, Fan L, Cai Y, Tayyab M, Chen L, He T, Rong J, Zheng Y (2020). **Biochar amendment regulated growth, physiological, and biochemical responses of conifer in red soil** iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3416-013

Fig. S4 – Metrological information of study area, during the entire experiment period (source: <u>https://</u><u>www.worldweatheronline.com</u>)

s7