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Estimation of forest cover change using Sentinel-2 multi-spectral 
imagery in Georgia (the Caucasus)
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Our objective was to use Sentinel-2A multispectral data in order to cost-effec-
tively detect change in forest cover in Georgia (the Caucasus). Generalized ad-
ditive models (GAMs) were used to fit forest cover measures to Sentinel-2A
spectral band values modified using different topographic correction methods.
Canopy closure (calculated from upward-looking fisheye photographs taken be-
neath forest canopy) was the best forest cover measure accounted for by the
Sentinel-2 spectral  data that  were topographically corrected using the Min-
naert Correction (R2 = 0.882). Spectral bands best explaining canopy closure
were Band 3 (Green), Band 8 (NIR) and Band 12 (SWIR). Our model is able to
reasonably detect  spatial  and temporal  changes in canopy closure, even in
highly rugged terrain and diverse vegetation cover, and it has potential to be
improved to  the extent  that  it  can be applied by managers  of  natural  re-
sources. Based on free open source applications in combination with cheap
gadgets our approach might play an important role in monitoring the forests of
countries with low economic indicators.
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Introduction
Forest  degradation caused by processes

such as illegal logging, forest fires, and dis-
eases is a widespread problem. Deforesta-
tion aggravates soil erosion, which in turn
can  have  an  irreversible  effect  on  forest
structure. Forest losses are due to various
factors,  such  as  forestry  operations,  land
use changes, forest fires, and urbanization
(Curtis  et  al.  2018).  Forest  disturbance  in
the Caucasus is caused by selective logging
rather  than clear-cutting or  other  anthro-
pogenic  factors.  Clear-cutting,  more  so
than  selective  logging,  adversely  affects
the integrity of the forest ecosystem; dam-
age is caused to the remaining trees, soil,

water  balance,  carbon  accumulation  and
biodiversity (Asner et al. 2009a).

Identifying  disturbances  in  forest  cover
for  large  areas  is  an  important  task  not
only to study forest ecosystems but also to
monitor anthropogenic impacts. Today re-
mote sensing is the most practical and ac-
curate tool for determining changes in for-
est cover at the regional level (Asner et al.
2009b). With the development of satellite
technology, the quality of mapping of for-
est canopy cover and the detection of de-
forestation and forest disturbance has sig-
nificantly  improved  (Achard  et  al.  2007).
Free  remote  sensing  data  (e.g.,  Landsat,
MODIS, Sentinel) makes it possible to cre-
ate monitoring systems of regional or plan-
etary scales. At present global forest moni-
toring systems are mainly based on 30-me-
ter resolution data from Landsat satellites
(Asner  et  al.  2009b,  Hansen  et  al.  2010,
2013).

Changes  in  forest  cover  are  not  always
distinguished  by  modern  monitoring  sys-
tems based on remote sensing data.  The
fact is that in global models it is not always
possible to distinguish forest degradation
because the density and structure of trees
are difficult to interpret in satellite images
of  medium  resolution  (Köhl  et  al.  2009).
Difficulties also arise with the use of topo-
graphic image correction in rugged terrain
because  of  topographic  illumination  ef-
fects (Liang 2005, Tan et al. 2013). Because
topographic effects may have dramatic im-
pacts on the outcomes of time series and
change detection studies, topographic cor-
rection  of  remotely  sensed  imagery  over
mountainous  regions  in  these  studies  is

critical (Liang 2005). Also, the limitation in
the interpretation of the forest arises due
to its vertical structure, as it is extremely
complicated  to  detect  degradation  under
the closed canopy cover using optical satel-
lites (Köhl et al. 2009). The accuracy of the
models also depends on the capabilities of
the satellite data.  For example,  Sentinel-2
provides  better  models  of  forest  cover
(CC), effective cover (ECC) and leaf area in-
dex  (LAI)  in  lowland  boreal  forests  than
Landsat 8 (Korhonen et al. 2017).

Mapping  of  forest  cover  using  remote
sensing is usually performed by land classi-
fication  into  forest  and  non-forest.  How-
ever, the maps derived from satellite data
depend  on  the  definition  of  the  forest,
mainly on the threshold of tree cover pa-
rameters, above which the territory is iden-
tified as a forest (Sexton et al. 2015). An al-
ternative  approach  is  continuous  surface
that can represent areas of heterogeneous
tree  cover  better  than  models  based
on  discrete  interpretation  (Hansen  et  al.
2002). To assess the ecological characteris-
tics of the forest, canopy closure is one of
the most useful determinants of its struc-
ture and biophysical attributes such as tree
density and health (Chopping et al.  2012).
Canopy closure is  also an important mea-
sure to  estimate the distribution of  trees
on  a  global  scale  (Crowther  et  al.  2015).
Hemispherical  photography  is  one  of  the
many ways to measure canopy closure and
obtain  various  biophysical  parameters
(Fournier  et  al.  2003,  Chianucci  &  Cutini
2012).  Models  of  solar  radiation  transmit-
tance through the canopy are widely used
in  remote  sensing  (Schleppi  &  Paquette
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2017) as the canopy structure provides im-
portant  information on the functions and
dynamics of the forest ecosystem (Brusa &
Bunker  2014).  Although  there  have  been
many studies of calibrating forest cover pa-
rameters  (including  canopy  closure,  LAI)
against  remotely  sensed  spectral  bands
and vegetation indices derived from these
bands, a set of spectral predictors for each
of  the  forest  cover  parameters  substan-
tially  varies with sensors,  forest  structure
and geography (Meyer et al. 2019).

In this study we used digital hemispheri-
cal  photography  in  combination  with  re-
mote sensing for the first time in the Cau-
casus. The main goal of this study was to
evaluate the possibility of creating a forest
monitoring  system  based  on  freely  avail-
able  software  and  satellite  multispectral
images  of  Sentinel-2  for  heterogeneous
and rugged areas of Georgia and Caucasus.
More  specifically  we  attempt  to  find  a
quantitative indicator of forest cover that
can be best explained temporally and spa-
tially by the Sentinel-2 multispectral bands
through  testing  various  topographic  cor-
rection  methods.  Maps  derived  from  our
model will help efficiently monitor land sur-
face change, especially that of forest cov-
er.

Materials and methods

Study area and sampling
Our objective was to use Sentinel-2A mul-

tispectral data in order to detect change in
forest cover. To maximize statistical repre-
sentativeness of our sample (i.e., variability
of response and explanatory variables) we
sampled old-growth forests,  the  tree line
(i.e., the elevation above which trees fail to
grow), forests with logging operations and

ecological  succession  processes.  We  con-
ducted our fieldwork in 2018 between July
7  and  August  15  in  two  regions:  Central
Georgia  including  coniferous  and  mixed
forests  and Eastern  Georgia  including de-
ciduous  forests  (Fig.  1).  Forest  cover  pa-
rameters (Tab. S1 in Supplementary mate-
rial) were measured within 20 × 20 m plots
whose sides were oriented parallel  to the
true north-south axis.  The plots were dis-
tributed evenly across 4 categories of tree
cover  percentage:  0-25%,  25-50%,  50-75%,
75-100%. The tree cover percentage was es-
timated  visually  by  two  foresters  on  the
field.

During the most stable vegetation period
from  July  to  early  September,  we  were
able to process a total of 80 plots: 45 plots
in Central Georgia and 35 plots in Eastern
Georgia (Fig. 1). More specifically, 20 plots
at Otskhora,  5  plots at  Kurtskhana (tribu-
taries  of  Abastumani  River),  5  plots  at
Tsveruknis Ghele, 15 plots at Bagebis Ghele
(tributaries of Mtkvari  River) and 35 plots
at Kabali  River (a tributary of Alazani Riv-
er).  The plots  were dominated by  any of
the following species:  Abies nordmaniana,
Picea orientalis, Pinus kochiana, Carpinus be-
tulus, Fagus orientalis, Quercus iberica, Dry-
opteris filix mas, Festuca sp., Rubus caucasi-
cus,  and  a  plant  community  of  subalpine
meadows (a mixture of grassland,  Rhodo-
dendron  caucasicum and  stunted  Betula
spp.).  The  species  dominance  in  the  plot
was assigned by either the tree basal area
or the percent vegetation cover: the tree
species, whose basal area was the largest
in  a  plot,  was  considered as  dominant in
the plot, while in a tree-less plot the plant
species or community that had the largest
percent  cover,  was  considered  as  domi-
nant.

Forest cover parameters
The ratio of the area of canopy to the sky

was  measured  using  a  mobile  phone
(Huawei P9®, 12MP) with AMIR photo 180°
Fisheye Lens  and the software Gap Light
Analyzer 2.0 (Frazer et al. 1999). The hemi-
spherical images were taken in the center
of the study plot, normal to the horizontal
(i.e.,  photographs oriented parallel  to the
horizontal)  at  a  height  of  30  cm  above
ground under the diffuse sky (i.e., uniform-
ly overcast sky, or sky near sunrise or sun-
set).  All  images containing such obstruct-
ing objects as boulders, cliffs,  fallen trees
or hills and peaks were excluded from fur-
ther processing. The field of view of each
image was reduced to 90o in order to (i) re-
duce distortions and noise near the edge
and  (ii)  remove  shaded  fractions  intro-
duced  by  the  steepest  (i.e.,  38o)  of  the
slopes in our data set. The blue channel of
each image, which maximizes the contrast
between  sky  and  canopy,  was  chosen.
Then the separation of pixels within each
image  into  sky  and  non-sky  classes  was
performed by visually (i.e., subjectively) se-
lecting  a  threshold  value  for  each  hemi-
spherical image, which best separated the
sky pixel from canopy. Lastly, the propor-
tion  of  canopy  pixels  was  computed  for
each image (hereafter the canopy closure).
This entire procedure was performed sepa-
rately by three image interpreters, and the
mean of  the  three canopy  closure values
was used for each of the images.

The  tree  diameter  and  basal  area  was
measured  at  1.3  m above ground,  at  the
breast height (DBH), using forestry caliper
(Nestle forestry caliper Waldmeister, Dorn-
stetten,  Germany).  Individual  basal  areas
were  summarized  to  calculate  the  total
basal area of a study plot. The tree height
was measured using Suunto PM5/SPC® Cli-
nometer (Vantaa, Finland) and averaged in
a study plot.

Satellite imagery
For  remotely  sensed  spectral  data  we

used the already orthorectified Sentinel-2A
imagery (available at  https://scihub.copern
icus.eu/dhus/#/home), which consists of 13
bands with three different resolutions (10,
20 and 60 m). Because of extensive cloudi-
ness in the sentinel imagery for our entire
study  period  we had  to  use  two  scenes:
one  acquired  on  July  1,  2018  for  Eastern
Georgia and the other one acquired on Au-
gust  28, 2018 for Central  Georgia.  Due to
the  limited  availability  of  cloud-free  im-
agery difference in time between sampling
forest  cover  parameters  and  Sentinel  im-
age  acquisition  varied  between  6  and  45
days  (mean  ±  SD  =  25.225  ±  13.153).  The
sampled and spectral data (Tab. S1 in Sup-
plementary material) were mapped and or-
ganized into a data frame using QGIS Desk-
top 3.4.5-Madeira software package (QGIS
Development Team 2019).

Most of the territory of Georgia, including
our  study  area,  is  substantially  rugged,
which greatly affects the interpretability of
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Fig. 1 - Sampling plots for forest cover parameters and the extents of two Sentinel
images intersecting Central  Georgia (at left)  and Eastern Georgia.  The map is pro-
jected to UTM Zone 38N; WGS: 1984.
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satellite  images.  Therefore,  in  addition to
atmospheric correction, we also applied to-
pographic correction.  Sen2Cor,  which is  a
processor  for  Sentinel-2  Level  2A product
generation  and  formatting,  was  used  to
perform atmospheric and cirrus correction
of Top-Of-Atmosphere Level 1C input data.
Bottom-Of-Atmosphere  Level  2A  reflect-
ance  images  were  created  using  the  fol-
lowing parameters: solar zenith angle, sen-
sor  view  angle,  relative  azimuth  angle,
ground  elevation,  visibility  and  water  va-
por.  All  parameter  values  were  derived
from  image  metadata.  Four  topographic
correction methods were tested: (i) topo-
graphic effect correction through the Sen2-
cor radiometric correction processor (here-
after,  Sen2cor-corrected  Sentinel  bands);
(ii)  the Cosine Correction (hereafter C-cor-
rected Sentinel bands – Teillet et al. 1982);
(iii) the Minnaert Correction (hereafter M-
corrected  Sentinel  bands  – Smith  et  al.
1980, Gao & Zhang 2009); and (iv) the Nor-
malization Method (hereafter N-corrected
Sentinel bands – Civco 1989). For data pro-
cessing  we  used  SAGA-System  for  Auto-
mated Geoscientific Analyses. The most ac-
curate effect of  topographic correction is
reached when using DEM and multispectral
imagery at the same resolution (Kawata et
al. 1988, Goyal et al. 1998), we used SRTM
with 30 m grid  size,  available from USGS
data  portals.  Unfortunately,  a  more  de-
tailed DEM was not available in our study
to match with 10-m and 20-m spatial resolu-
tions  of  our  spectral  data.  The  selected
SRTM30 DEM for the study area was down-
loaded  from  free  data  portals  (source:
United States Geological Surveys – https://
earthexplorer.usgs.gov).  The  DEM  con-
tained  errors  in  the  form  of  spikes  and
gaps (elevation data outliers).  For correc-
tion, we applied a 3 × 3 median filter using
SAGA tools.

Model development
Generalized  additive  models  (GAMs)

were used to fit forest cover parameters to
Sentinel-2A spectral band values using the
“mgcv” package (Wood 2011) in R version
3.5.2 (R Core Team 2018). The possible ef-
fects  of  difference in  time between sam-
pling forest cover parameters and Sentinel
image acquisition were also estimated. We
used GAMs because without any assump-
tions  they are  able  to  find  nonlinear  and
non-monotonic  relationships,  and  have
been  successfully  used  in  satellite-based

canopy  cover  estimation  (Halperin  et  al.
2016).  GAMs  were  fitted  using  a  Gamma
family with a log link function, a Gaussian
family with an identity link function and a
binomial  family  with  a  logit  link  function.
The binomial  family was used for propor-
tion  response  variables.  Penalized  thin
plate regression splines were used to rep-
resent all the smooth terms. The restricted
maximum  likelihood  (REML)  estimation
method was implemented to estimate the
smoothing  parameter  because  it  is  the
most robust of the available GAM methods
(Wood 2011).

Model  and  variable  selection  were  per-
formed by exploring all possible subsets of
predictor variables, where pairwise correla-
tions between variables were less than 0.9.
To get subsets of predictor variables, thou-
sands of variable combinations were gen-
erated  using  the  “gtools”  package  for  R
(Warnes et al. 2015). The predictive power
of  the  models  was  evaluated  through  a
leave-one-out  cross-validation.  The  cross-
validation of thousands of models was han-
dled through R’s parallelization capabilities
(Weston 2017, 2018). The best models were
selected  by  the  mean  squared  error.  We
also  checked  concurvity  between  model
terms and between each term and the rest
of  the model  using the “mgcv” package.
Akaike’s Information Criterion (AIC) is gen-
erally used as a means for model selection.
However, we preferred cross-validation for
model  selection  because  AIC  a  priori as-
sumes that  simpler  models  with the high
goodness of fit are more likely to have the
higher predictive power, while cross-valida-
tion without any a priori assumptions mea-
sures  the  predictive  performance  of  a
model by efficiently running model training
and testing on the available data.

All gridded predictor layers (raster layers)
were resampled to a resolution of 10 m us-
ing the nearest-neighbor assignment tech-
nique of QGIS Desktop 3.4.5-Madeira. The
best forest cover model was predicted to
the raster layers using the raster package
(Hijmans 2016)  in R version 3.5.2.  To pro-
duce the final maps, the gridded estimates
of  the  best  forest  cover  parameter  and
their  standard  errors  were  masked  with
the  forest  cover  developed  for  National
Forest Agency (NFA) in 2015-2016. The NFA
forest cover is defined as a grid of 0.5 ha
cells where crown cover is > 20%.

From gridded estimates and standard er-
rors, we derived statistically significant dif-

ferences in forest cover (p-value < 0.05) be-
tween July 1, 2018 and August 5, 2016 and
between  August  28,  2018  and  August  14,
2015 for the Sentinel-2A scenes of Eastern
Georgia and Central Georgia, respectively.
Appendix 1 in Supplementary material con-
tains  the  main  R  codes  and the  data  set
used in this study.

Model validation
Finally,  we tested and compared the ac-

curacy of detecting tree loss between our
model  and the  maps produced by  Global
Forest Watch (GFW – http://www.globalfor
estwatch.org/map).  To  do  so,  we  used  a
1.38  ×  2.44 km grid of 10  × 10 meter plots
that were classified into those where per-
centage  of  tree  loss  from  2016  through
2017  was  ≥ 5%  and  those  where  the  loss
percentage  was  less  (source:  Agency  of
protected  area).  There  were  6032  plots
with ≥ 5% tree loss (hereafter test plots) in
this  grid  that  covered  an  area  located  in
Borjom-Kharagauli  National  Park  (Central
Georgia).  Based  on loss  of  tree  cover  on
the GFW maps and statistically  significant
loss  in  forest  cover  of  our  model,  we
checked what portion of the test plots was
detected by our and GFW models. We used
this  qualitative  approach  because  a  rele-
vant quantitative measure of forest cover
in the test  area was not available to test
our model. The altitudinal range of the test
plots were from 1256 to 2113 m a.s.l. (mean
± SD = 1613 ± 162), while their slope range in
degrees varied from 0 to 67.1 (mean ± SD =
28.2 ± 8.0). Tree density in these plots var-
ied from 0 to 0.8 (mean ± SD = 0.44 ± 0.32).
Canopy structure, vegetation types and di-
versity were much the same as in the train-
ing plots.

Results
Based on the exhaustive cross-validation

procedure GAMs fitted to the canopy clo-
sure performed much better than those fit-
ted to the other  forest cover  parameters
(i.e., tree cover percentage defined by for-
esters  on  the  field,  total  basal  area,  and
tree average height). No more than 70% in
the variation of the other forest cover mea-
sures could be explained by GAMs (Tab. S2
in Supplementary material). The best mod-
el of the canopy closure was the one that
was  fitted  to  M-corrected  three  spectral
bands using a binomial family with a logit
link  function  for  proportion  data  (Tab.  1,
Tab. 2,  Fig. 2,  Fig. 3 – see also Fig. S1 and
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Tab. 1 - The diagnostics of the canopy closure models derived through different topographic corrections of Sentinel-2 bands. (MSE):
Mean squared error; (Dev. Expl.): explained deviance; (AIC): Akaike’s Information Criterion; (df): degrees of freedom.

Topographic 
correction

Cross-validation
MSE

100% range limits
of residuals

95% range limits
of residuals R2

adj
Dev. Expl.

(%) AIC df

Sen2cor 279.332 -35.676 – 17.838 -20.073 – 13.533 0.864 88.6 4119.893 26.078

Cosine 258.328 -35.274 – 36.425 -15.830 – 22.141 0.819 84.7 5366.458 26.133

Minnaert 178.620 -24.894 – 14.952 -16.973 – 14.358 0.882 89.8 3736.264 25.351

Normalization Method 232.788 -33.086 – 38.060 -23.560 – 16.510 0.815 83.5 5734.853 25.935
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Fig. S2 in Supplementary material). In addi-
tion  to  the  lowest  cross-validation  error,
the relationship between the  canopy clo-
sure  and  the  M-corrected  three  spectral

bands had the greatest goodness of fit, the
least complexity and the shortest residual
range.

Each of  the four topographic correction

methods suggested the same set of three
bands best  explaining variation in the ca-
nopy closure. These were Band 3 (Green),
Band 8 (NIR) and Band 12 (SWIR). Band 8
was  generally  positively  correlated  with
the  canopy  closure,  while  Band  3  and  12
were generally  negatively  correlated (Fig.
2).  The  magnitude of  model  fit  for  topo-
graphic correction in decreasing order was
as follows.

Absolute difference in time between sam-
pling forest cover parameters and Sentinel
image acquisition did not have a consider-
able effect on absolute values of residuals
(R2 = 0.0022, adjusted R2 = -0.01061, p-value
= 0.68).  Difference in location and timing
between the two scenes also did not have
effect  on  the  model.  Some  land  surface
features such as high cornfields, deep wa-
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Tab. 2 - Summary of the generalized additive model (GAM) analysis for modeling the
canopy closure (FEYE) as forest cover measure fit to Sentinel-2A spectral band values.
(n): sample size; (s()): spline smooth function; (edf): estimated degrees of freedom;
(P): significance of terms. See Tab. S1 in Supplementary material for the description of
variables.

n Variable term edf P
Goodness 
of fit (R2

adj)
Deviance
explained

80

s(B03) 8.106 <2e-16

0.882 89.8 %
s(B08) 7.845 <2e-16

s(B12) 8.033 <2e-16

Intercept = -16.477 - 0.00106

Fig. 2 -  GAM-fitted relationships of  the canopy closure (FEYE) in fractions and Sentinel-2A spectral  bands in reflectance values
×10,000. Band suffix M18 stands for M-corrected band acquired in 2018.

Fig. 3 - Scatter plot of fitted and observed FEYE values: the canopy closure (FEYE) GAM-fitted to M-corrected reflectance values of
Sentinel-2A,  using the REML smoothing parameter  estimation (adjusted R2=0.882).  Graph points,  labeled with dominant plant
species, represent study plots whose color, size and shape indicate dominant vegetation cover, absolute residuals and Sentinel
image acquisition place-date, respectively. The tree species, whose basal area is the largest in a plot, is considered as dominant in
the plot, while in a tree-less plot the plant species or community, that has the largest percent cover, is considered as dominant.

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Estimation of forest cover change using Sentinel-2

ter  bodies,  some  wetlands  and  orchards
showed  FEYE  as  high  as  forests  (up  to
80%). However, these features were mask-
ed out by the NFA forest cover. Our model
detected true changes where forest dam-
age was caused by selective cutting, clear-
cutting,  pest  outbreak,  and  forest  fires
while canopy closure gain was caused by
some  agricultural  operations  such  as  the
cultivation of hazelnuts and orchards (Fig.
S3,  Fig.  S4).  Our  model  detected 61.3% of
the test plots, while that of GFW detected
14.8% of the test points (Fig. 4). Tab. S3 in
Supplementary  material  contains  gridded
estimates  of  and  changes  in  canopy  clo-
sure  during  the  study  period  throughout
the country of Georgia.

Discussion
In  our  study,  the  magnitude  of  the  ca-

nopy  closure  was  the  best  forest  cover
measure  accounted  for  by  the  Sentinel-2
spectral  data  that  were  topographically
corrected  using  the  Minnaert  Correction.
Spectral bands best explaining the canopy
closure were Band 3 (Green), Band 8 (NIR)
and Band 12 (SWIR).

The best performance of the canopy clo-
sure  in  relation  to  satellite  spectral  data
was  expected  because  fisheye  photo-
graphs rather than the other tree stand pa-
rameters show how much light per area is
reflected  and  absorbed  by  vegetation
cover. We tested 67 spectral predictors (10
Sentinel  bands  and  57  vegetation  indices
derived from these bands – Tab. S1 in Sup-
plementary material). Out of these 67 pre-
dictors our cross-validation procedure sug-
gested that only the three were sufficient
to account quite accurately for changes in
canopy closure. The importance of NIR and
SWIR was not surprising because NIR and

SWIR  are  widely  used  to  estimate  green
biomass and detect changes in vegetation
density.  In  agreement  with  our  findings
SWIR,  in  contrast  to  NIR,  was  shown  to
have  lower  values  for  larger  canopy  clo-
sure and greater  vegetation density (Gao
1996,  Kennedy et al. 2010,  Lehmann et al.
2013, Pickell et al. 2016). As for the negative
response of the canopy closure to Band 3
(Green)  other  studies  also  showed  that
green biomass had the strongest negative
correlation  with  reflectance  in  the  green
band of all visible wavebands (Lorenzen &
Jensen 1988).  Umarhadi  et  al.  (2018) also
found  the  negative  correlation  between
Sentinel B3 and canopy closure measured
using  hemispherical  photography.  The
green  band  might  also  act  as  a  variable
that best minimizes shade fraction or satu-
ration effects on NIR and SWIR. The vege-
tation indices,  especially  NDVI, performed
poorly  probably  because  they  asymptoti-
cally approach the saturation in dense veg-
etation  or  high  canopy  regions  (Tucker
1977,  Gitelson  et  al.  2003).  Sentinel-2  im-
agery  topographically  processed  through
the Minnaert  Correction resulted in more
accurate models than those based on the
Cosine Correction, the Normalization meth-
od  and  the  Sen2cor-correction.  This  is  in
agreement with some other studies (Fan et
al. 2018).

Our  GAM-fitted  canopy  closure  model
predicts much higher values than the ob-
served ones for some areas,  where there
are few or no trees. This is probably due to
the fact that we underestimated the light-
absorbing  power  of  some  non-tree  low
vegetation  such  as  Rubus  caucasicus  and
subalpine  meadows  sparsely  scattered
with low birch trees. Most of our model er-
rors  are  probably  accounted  for  by  the

coarser DEM being used to minimize topo-
graphic  effects  on  Sentinel-2  spectral  re-
flectance values.

Some  land  surface  features  (e.g.,  high
corn fields, deep water bodies, some wet-
lands mostly dominated by  Carex spp. and
orchards) showed fisheye values as high as
forests (up to 80%). This error is especially
noticeable on the northern slopes of alpine
meadows  where  Rhododendron  caucasi-
cum  and  stunted  birch  trees  are  distrib-
uted.  This  is  because  (i)  some  of  these
cover types are dense and tall  enough to
have  a  large  shade  fraction  or  (ii)  their
spectral  signatures  were  not  covered  in
our  sample.  However,  these  problematic
features were masked out by the NFA for-
est cover. We also noticed that the models
of  topographic  correction  tested  have  a
different impact on forest types, for exam-
ple, in more rugged areas the canopy clo-
sure  of  deciduous  trees  was  better  ex-
plained than that of coniferous trees. Per-
haps,  steep  slopes  with  dark  coniferous
trees darken the area on the image, which,
in turn, distorts the process of topographic
normalization.  Sentinel-2  acquisition  date
and place, as well as difference in time be-
tween sampling tree stand parameters and
Sentinel image acquisition, did not have a
considerable  effect  on  model  accuracy;
that  makes  our  model  reasonably  robust.
Although our model of loss/gain of canopy
closure in the forest has reasonable predic-
tive power, this study raises questions re-
lated to the improvement of methods for
topographic  correction  for  highly  rugged
terrain with regard to classifying and quan-
tifying vegetation cover.

Our model performed much better on the
test  points than that  of  GFW.  Our  model
detected 61.3% of  the test  plots,  which is
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Fig. 4 - Testing the model
accuracy of detecting tree

loss from 2016 through
2017 in Borjom-Kharagauli

National Park (Central
Georgia). The map is pro-
jected to UTM Zone 38N;

WGS: 1984.
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not as high as we expected. However, this
can be explained by the fact that the test
plots were identified using the number of
trees removed from the plot whereas our
model is actually designed to measure ca-
nopy closure that is a function of not only
the  number  of  trees,  but  also  their  sizes
and taxonomic identity.  GFW is  an online
near real-time monitoring and alert system,
which uses Landsat imagery and powerful
computational resources to detect annual
changes  in  forest  cover  at  the  planetary
scale. However, despite the impressive re-
sults  of  the  determination  of  annual
changes in forests,  the GFW has a  limita-
tion associated with the spatial resolution
of  the  Landsat  imagery.  The  loss  of  tree
cover on GFW maps shows the complete
removal of a canopy of tree cover at a res-
olution of 30  × 30 meters (GFW  – Hansen
et al. 2013) which is not enough to monitor
forests where degradation is mainly caused
by selective logging or other changes at a
finer scale.

Conclusion
As far as we know, this is the only model

of  tree  loss  and gain  obtained through a
cost-effective approach to the exhaustive
analysis  of  reflectances  and many indices
that  were  derived  from  Sentinel-2  data.
Cost-effective  approaches  in  the  future
should play an important role in monitor-
ing the forests of countries with low eco-
nomic  indicators.  There  are  quite  a  few
models specifically designed to assess the
loss of trees and forest degradation. There
are also many instruments and methodolo-
gies  for  measuring  forest  structures  and
parameters, but they are not always cost-
effective since the development of a moni-
toring system can be costly. Our main goal
was to test the possibility of creating a sys-
tem for detecting the loss of forest cover
in highly rugged terrain and diverse vegeta-
tion cover of the Caucasus based on free
Sentinel-2 satellite data and free software
applications.  For  field  work,  we used the
simplest  devices,  including  non-profes-
sional “fisheye” lenses for mobile phones.
The sample size was also minimal. We be-
lieve  that  models  created  using  open
source  applications  in  combination  with
cheap gadgets in the future will change the
rules of the game and greatly facilitate the
assessment and management of natural re-
sources. We think our model is able to rea-
sonably  detect  spatial  and  temporal
changes in forest cover, and it has poten-
tial to be improved to the extent that it can
be  applied  by  managers  of  natural  re-
sources in particular by wildlife managing
and forestry agencies.
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corrected using four different methods. 

Fig. S2 - The histogram of residuals of the
canopy  closure  (FEYE)  fitted  to  Sentinel
reflectance  values  topographically  cor-
rected using Minnaert Correction. 

Fig. S3 - Modeled canopy closure (FEYE) in
eastern  Georgia  (at  left)  and  statistically
significant  differences  in  the  canopy  clo-
sure  in  percentage at  two sites  between
July 1, 2018 and August 5, 2016. 
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central Georgia (at left) and statistically sig-
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percentage at two sites between Aug 28,
2018 and Aug 14, 2015. 
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