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Remote sensing of selective logging in tropical forests: current state and
future directions
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This paper reviews and discusses the status of remote sensing techniques ap-
plied  in  detecting  and  monitoring  selective  logging  disturbance  in  tropical
forests.  The analyses concentrated on the period 1992-2019. Accurate and
precise detection of selectively logged sites in a forest is crucial for analyzing
the spatial distribution of forest disturbances and degradation. Remote sensing
can be used to monitor selective logging activities and associated forest fires
over tropical forests, which otherwise requires labor-intensive and time-con-
suming field surveys, that are costly and difficult to undertake. The number of
studies on remote sensing for selective logging has grown steadily over the
years, thus, the need for their review so as to guide forest management prac-
tices and current research. A variety of peer reviewed articles are discussed
so as to evaluate the applicability and accuracy of different methods in differ-
ent circumstances. Major challenges with existing approaches are singled out
and future needs are discussed.
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Introduction
Tropical forests are responsible for their

biological  diversity (Da Ponte et al.  2015),
housing more than half of the diversity of
life on Earth and offering several vital bio-
logical  applications  (Solberg  et  al.  2008).
Tropical  forests  regulate  global  weather
patterns, and more importantly, play a key
role in the global carbon cycle (Da Ponte et
al. 2015), keeping large amounts of carbon
and producing great supplies of the Earth’s
oxygen (Solberg et al. 2008). Tropical for-
ests and the land they occupy support nu-
merous  indigenous  cultures  and  peoples
(Solberg et al.  2008). Despite the remark-
able  values  and  functions  of  tropical  for-
ests, many conservation and protection ef-
forts  have not  been effective,  as a  result
those  forests  are  being  cleared  in  many

countries so as to harvest the timber and
exploit the land in various ways (Gibson et
al. 2011). Forest disturbance from selective
logging and associated degradation by for-
est fires may have enduring effects on for-
est dynamics and composition (Asner et al.
2006),  thus  interfering with  forest  health
and the availability of essential ecosystem
functions and services (Gibson et al. 2011).
A study in the Brazilian Amazon showed an
increase in total forested areas affected by
selective logging and forest fires from ap-
proximately  11,800 to  35,600 km2 in  1992
and  1999,  respectively  (Matricardi  et  al.
2013).  Asner et al.  (2005) discovered that
each  year,  selective  logging  can  expand
over as much forested area as does defor-
estation, with logged areas ranging in size
from  12,075  to  19,823  km2 between  1999
and 2002. The study showed that between
1999 and 2004, about 76% of all timber har-
vest practices led in high levels of canopy
damage sufficient to leave forests prone to
drought and fire (Asner  et  al.  2005).  Cur-
rently,  few  truly  undisturbed tropical  for-
ests exist, and arguably the single most im-
portant  cause  of  tropical  forest  degrada-
tion  worldwide  is  unsustainable  selective
logging (Miettinen et al. 2014). More than
400 million hectares of natural tropical for-
ests  have been degraded since 1980 (Ed-
wards  et  al.  2014).  Selective  logging  is  a
form  of  extraction  of  timber  where  a
group of  trees from selected species,  the
high-value tree species, are removed from
the forest (Andersen et al. 2014). Global de-
mand for precious and rare tropical timber,
such as ebony and rosewood, is expected
to continue to grow, and the international
market has approximately 50-90% of tropi-

cal  wood  harvested  illegally  (Nellemann
2012). Thus, there is the need for sustain-
able forest management (SFM). SFM is the
process of managing a forest so as to re-
duce forest degradation and deforestation
by ensuring the sustainability of forest re-
sources,  protection  and  conservation  of
genetic diversity and to ensure the sustain-
able  exploitation  of  the  biological  re-
sources,  and  enhancing the full  valuation
of forest goods and services (Poudyal et al.
2018). However, SFM is suffering from a va-
riety  of  obstacles  related  to:  (1)  gover-
nance  issues  (e.g.,  poorly  defined  tenure
and  resource  rights,  inadequate  trans-
parency  and  accountability,  corruption,
and limited involvement of relevant actors
in the formulation of management plans);
(2) economic issues (e.g., high opportunity
cost  of  maintaining  forests,  high  transac-
tion  cost  for  better  forest  management,
low financial returns from improved forest
management, and unattractive incentives);
(3)  regulatory  and  legislative  issues  (e.g.,
poor regulatory  framework,  lack of  politi-
cal will and incentive to implement regula-
tions,  and  unrealistic  legislation);  and  (4)
knowledge and capacity issues (e.g.,  poor
understanding on the benefits to improve
forest  management,  inadequate  financial
and material resources, and limited human
resources  to enforce and monitor  regula-
tions)  (Chia  et  al.  2020).  However,  re-
searchers and practitioners should not give
up  the  idea,  but  rather  the  effort  to  en-
hance SFM must be redoubled and refined.

Selective logging practices determine the
outcome of SFM (Poudyal et al. 2018), thus
an  important  component  of  SFM  is  the
monitoring  of  the  forest  status.  Reliable

© SISEF https://iforest.sisef.org/ 286 iForest 13: 286-300

School of Geography, Archaeology and En-
vironmental Studies, University of the Witwa-
tersrand, Johannesburg, Private Bag 3 Wits, 
2050 (South Africa)

@@ Colbert M Jackson 
(mutisojackson@yahoo.com)

Received: Nov 25, 2019 - Accepted: May 11, 
2020

Citation: Jackson CM, Adam E (2020). 
Remote sensing of selective logging in 
tropical forests: current state and future 
directions. iForest 13: 286-300. – doi:
10.3832/ifor3301-013 [online 2020-07-10]

Communicated by: Emanuele Lingua

Review ArticleReview Article
doi: doi: 10.3832/ifor3301-01310.3832/ifor3301-013

vol. 13, pp. 286-300vol. 13, pp. 286-300

http://www.sisef.it/iforest/contents/?id=ifor3301-013
http://www.sisef.it/iforest/contents/?id=ifor3301-013
mailto:mutisojackson@yahoo.com


Jackson CM & Adam E - iForest 13: 286-300

and operational systems for monitoring se-
lective logging in tropical  forests have to
be utilized (Hirschmugl et al. 2017). Such a
system should be able to provide an esti-
mate of baseline forest conditions in a spa-
tially  explicit  fashion,  departures  from
which can be used to assess  current  and
previous trends of forest degradation and
deforestation (Verbesselt et  al.  2010).  Re-
mote sensing, due to its synoptic view and
fast coverage,  can be used to assess and
monitor selective logging over tropical for-
ests (Anwar & Stein 2012), in a spatially and
temporally  continuous  manner  (Banskota
et  al.  2014),  which  otherwise  requires  la-
bor-intensive and time-consuming field sur-
veys, that are costly and difficult to under-
take (Andersen et al.  2014).  Accurate and
precise  detection  of  selectively  logged
sites in a forest is crucial for analyzing the
spatial  distribution  of  forest  disturbances
and degradation (Anwar & Stein 2012). The
remote  sensing  methods  that  have  been
developed  to  detect  selective  logging  in
tropical forests only detect more intensive
timber  harvest  (> 20 m3 ha-1),  that  create
large  canopy gaps  and a  variety  of  spec-
trally  distinct  features  (e.g.,  log  landing
decks and large road networks), thus me-
dium spatial resolution datasets like Land-
sat are normally considered too coarse to
detect less intensive selective logging (Het-
hcoat  et  al.  2018).  Pinagé  et  al.  (2016)
shows that the intensity of canopy impacts
may vary according to the selective logging
activity,  ranging  from  skid  trails  to  log
decks which had the lightest and the heavi-
est canopy impacts,  respectively.  High in-
tensity logging causes high forest damage
that is long-lasting, and detectable on sat-
ellite imagery, and  vice versa. Soil fraction
images  obtained  from  spectral  mixture
modeling of multispectral or hyper-spectral
data serves as a suitable approach for the

detection of selective logging (Souza et al.
2005,  Matricardi et al. 2010). While forests
with  obvious  selective  logging  have  well
defined  logging  infrastructure  and  exten-
sive  canopy  degradation,  forests  where
subtle selective logging is taking place nor-
mally show less canopy perforation or visi-
ble  infrastructure,  and  as  such  remote
sensing techniques may not easily differen-
tiate them from undisturbed forest (Asner
et al. 2004). Methods required in monitor-
ing selective logging at high temporal reso-
lution are not available. Some of the exist-
ing methods for mapping selective logging
mostly  come with  numerous  false  detec-
tions, and existing techniques for minimiz-
ing them either impairs the temporal accu-
racy or increases the omission error for the
forest disturbance (Hamunyela et al. 2016).
The  amount  of  degradation  by  selective
logging  overlooked  using  currently  avail-
able techniques  is  unknown (Hethcoat  et
al.  2018).  New  change  detection  ap-
proaches will definitely improve the detec-
tion of selective logging in order to achieve
accurate  mapping  and  quantification  of
forest loss (Hamunyela et al. 2016).

Over the last decades, there has been a
rapid growth in the number of studies that
investigated the use of remote sensing for
selective  logging  (Hethcoat  et  al.  2018).
Providing an overview of the remote sens-
ing  data  and  techniques  that  have  been
used  in  selective  logging  to  identify  the
challenges  and  opportunities  is  essential.
Such overview would be useful practically
in  forest  management  and  scientifically
through highlighting the priorities and re-
maining research gaps for further investi-
gation.  Several  review  studies  have  been
done to analyze the application of remote
sensing in mapping deforestation and for-
est degradation in tropical forests. Solberg
et al. (2008) gives an overview of the state

of  the  art  of  remote  sensing  techniques,
detailing  the  relevant  sensors  and  algo-
rithms, usable datasets and information on
the  leading  institutions  for  research  and
development  on  techniques  that  might
lead to operational monitoring of tropical
forests. Miettinen et al. (2014) critically dis-
cussed available approaches for large area
forest  degradation  monitoring  with  satel-
lite remote sensing data at high to medium
spatial  resolution,  in  Southeast  Asia.  Da
Ponte et al. (2015) provided an overview of
the remote-sensing-based studies of tropi-
cal forest dynamics in Latin America, cate-
gorizing the existing studies based on se-
lected sensors  and data  analysis  method-
ologies.  The  review  has  considered  both
large-scale  as  well  as  small-scale  forest
changes solely induced by anthropological
activities.  Mitchard  (2016) provides  a  re-
view  of  earth  observation  (EO)  methods
for detecting and measuring forest change
in the Tropics. The study basically describes
current  and  emerging  EO  technologies,
and how these can be used to map forests
and  forest  changes.  Hirschmugl  et  al.
(2017) reviews the current state of the art
in remote sensing based monitoring of for-
est  disturbances  and  forest  degradation.
This  review  article’s  focus  is  in  Europe’s
temperate forests and Africa’s tropical ev-
ergreen  forests,  using  optical  EO  data.
Mitchell et al. (2017) overview is about cur-
rent remote sensing approaches to moni-
toring  forest  degradation  in  support  of
countries measurement, reporting and ver-
ification (MRV) systems for reducing emis-
sions from deforestation and forest degra-
dation, conservation of existing forest car-
bon  stocks,  sustainable  forest  manage-
ment  and  enhancement  of  forest  carbon
stocks (REDD+). The paper reviews forest
degradation  that  leads  to  canopy  gaps
which  are  detectable  using  remote  sens-
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Tab. 1 - Information extracted from the literature on the remote sensing techniques applied in detecting and monitoring selective
logging in tropical forests.

Attribute Description

Publication details The year of publication, journal type and national affiliation of the authors and co-authors.

Reference data How reference data used for model calibration and validation was collected.

Geographical location Location of the study area. If no location was given in the paper, Google Maps was used to determine the 
approximate location, or Landsat WRS2 reference was used to identify the center location of the Landsat 
footprint used in the analysis.

Sensor The sensor type used in the study.

Platform The platform of the sensor, i.e., space-borne, air-borne, or un-manned aerial vehicle.

Spatial properties The sensor resolution used: coarse resolution (>100 m), medium resolution (10-100 m), high resolution (5-10 m) 
and very high resolution (<5 m); spatial scale of the studies.

Temporal properties The temporal resolution of the sensor, and temporal scale of the remote sensing data (single date, bi-temporal, 
multi-temporal, or time series analysis), and sensor archive.

Spectral properties The spectral properties used in the analysis: Vegetation Index (if a single vegetation index or band was used, 
then the index name was noted), Multi (if multi-spectral bands or multiple spectral indices were used), Hyper (if
hyper-spectral bands or multiple narrow-band indices were used), Lidar, and SAR.

Techniques The techniques employing satellite data used to detect and quantify selective logging.

Accuracy measure The measure of accuracy reported in the study. If more than one measure was used, this review preferred 
overall accuracy over producer’s and user’s accuracies, and the coefficient of determination (R2) over the root 
mean square error (RMSE), respectively.

Accuracy Level of accuracy, according to accuracy measure.
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ing, taking into consideration both forests
within and outside the tropics. Therefore, a
comprehensive  overview  of  the  methods
used in detecting and monitoring selective
logging in the tropical forests is lacking. In
addressing the shortfall, this review paper
will  have the main focus laid on types of
sensors and methodologies of data analy-
sis,  and the major  challenges and further
research needed to explore the use of re-
mote sensing in monitoring small scale for-
est disturbance due to selective logging in
tropical  forests.  The analyses will  concen-
trate on the period 1992-2019.

Review framework and 
methodology

Database search
The peer-reviewed articles published be-

tween 1992 and 2019 were searched in the
web-based databases  ScienceDirect®,  Web
of Science®, and  Scopus®. They contain the
largest abstract and citation databases of
peer-reviewed  literature,  and  the  Univer-
sity of  Wisconsin-Madison rates  ScienceDi-
rect®, Web of Science®, and Scopus® among
the  top  ten  web-based  databases  (UW
Madison  Labraries  2019).  The  two  most
well-established databases  that  cover  the
widest  scope  of  English-language  litera-
ture, while focusing on peer-reviewed pub-
lications  are  Scopus® and  Web  of  Knowl-
edge® (Kleinschroth  et  al.  2016).  Neither
database  is  inclusive,  but  complements
each other. 

We used the key terms (“Selective Log-
ging”  OR  “Canopy  Gap”  OR  “Canopy
Opening” OR “Deforestation” OR “Forest
Degradation”  OR  “Forest  Disturbance”)
AND  “Tropical  Forests”  AND  “Remote
Sensing”  in  title,  abstracts  and  the  key
words in the search.  We found 5546 arti-
cles  in  ScienceDirect,  and  2395  in  Web  of
Science,  and 888 articles  in  Scopus (as  of
June 20,  2019).  Bibliographies  of  the arti-
cles were iteratively scanned until no new
relevant  articles  were  identified.  All  ab-
stracts were scrutinized to filter out irrele-
vant  articles.  The remaining articles  were
read and  retained only  if  they were  rele-
vant. Articles with irrelevant titles were ex-
cluded. After bringing the relevant articles
together, the abstracts of 328 articles were
read through. Finally,  information was ex-
tracted from 110 relevant articles that ex-
plicitly discussed the remote sensing of se-
lective logging in tropical forests.

Content analysis
For the selected 110 articles, the same set

of  attributes  for  analysis  was  extracted
(Tab. 1). In particular, noted were publica-
tion details, reference data availability, and
the geographical location of the study area
(i.e., if the study was conducted within the
tropics). To characterize the sensor applied
in  each  study,  the  name  of  the  sensor,
properties,  and  also  the  platform  were
recorded.  The  image  processing  tech-
niques used to detect and quantify the ar-

eas under selective logging have been dis-
cussed.  The auxiliary data used,  the mea-
sure of accuracy and the level of accuracy
achieved were also investigated.

Results of literature review

Publication details
Watrin & Rocha (1992) provided some of

the first  remote sensing estimates  of  the
area affected by  selective logging (Souza
et  al.  2005).  After  the  publication  of  the
second article by Stone & Lefebvre (1998),
the application of remote sensing in selec-
tive logging analyses of tropical forests has
been rising (Fig.  1).  However,  no relevant
articles were published in 1993-1997, 1999,
2001, and 2011. The first increase in publica-
tion activity took place between 2002 and
2010,  with an average of  four papers per
year,  while  the  second  considerable  in-
crease in publication activity occurred be-
tween 2012 and 2019,  with an average of
nine articles per year. This shows that pub-
lication activity has more than double be-
tween 2012 and 2019. This could be related
to  availability  of  information,  awareness
about  remote  sensing  technology  and
growing  attention  around  monitoring  of
selective  logging  and  related  activities  in

tropical forests.
The  results  from  the  content  analysis

have shown that using remote sensing to
examine  selective  logging  in  tropical  for-
ests is being accepted by a rising number
of scientific disciplines; the articles are pub-
lished in about fifty different scientific jour-
nals. About half of publications are appear-
ing in  journals  specifically  focusing on re-
mote  sensing  applications  (Souza  &  Bar-
reto 2000, Souza et al. 2003, 2005, Asner et
al. 2005, Koltunov et al. 2009, Matricardi et
al. 2010, 2013, Heiskanen et al. 2015, Dalag-
nol et al. 2019), while the other half is dis-
tributed  among  other  journal  categories
(Asner  et  al.  2004,  Furusawa  et  al.  2004,
Burivalova et al. 2015, Ellis et al. 2016, Sofan
et al.  2016).  The distribution between the
journal categories has articles published in
information  and  communication  technol-
ogy,  ecological,  cartography,  interdiscipli-
nary and natural hazards oriented journals.

The majority of the articles’ first authors
have  been  affiliated  with  institutions  lo-
cated in Europe (De Wasseige & Defourny
2004,  Rahm et al. 2013,  Wang et al. 2018),
North  America  (Stone  &  Lefebvre  1998,
Wang et al.  2005,  Ellis  et  al.  2016),  South
America  (Souza  et  al.  2003,  Graça  et  al.
2015,  Condé  et  al.  2019),  and  Asia  (Furu-
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Fig. 1 -  Temporal  distribution of published articles where remote sensing has been
used to analyze selective logging in tropical forests.

Fig. 2 - Affiliation of lead authors in pub-
lished articles where remote sensing has
been used to analyze selective logging 
in tropical forests.
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sawa et al. 2004, Sofan et al. 2016, Qu et al.
2018). Institutions in Africa do not have any
representation (Fig. 2). Only 0.7% of the ar-
ticles  have  African  co-authorship (Burival-
ova et al. 2015,  Descals et al. 2017,  Kankeu
et al. 2016).

Overall, 510 researchers from Universities
and research institutions around the World
appear  in  the  110  articles  (Tab.  2).  The
United  States  of  America  has  146  re-
searchers who are from American universi-
ties  and  research  institutions.  The  most
featured  institutions  are  Michigan  State
University  (Matricardi  et  al.  2005,  2007,
2010), Carnegie Institution of Washington,
Stanford  University  (Asner  et  al.  2004,
Broadbent  et  al.  2008),  Woods  Hole  Re-
search  Center  (Laporte  &  Lin  2003,  De
Grandi  et  al.  2015)  and United States  De-
partment of Agriculture (USDA) Forest Ser-
vice (Andersen et al. 2014). Brazil has con-
tributed 111 researchers. Universities or re-
search  institutions  hosting  researchers  at
the  time  a  study  was  being  conducted
and/or published, determined which coun-
tries those researchers were listed under.
Eraldo A.T. Matricardi, for example, is listed
under USA because he published an article
(Matricardi et al. 2007) on selective logging
while at Department of Geography, Michi-
gan  State  University.  In  Matricardi  et  al.
(2013),  the  same  author  is  listed  under
Brazil  because at the time of the publica-

tion of the article he was at Department of
Forestry, University of Brasilia.

Geographical information
We tried to establish location of the study

areas within the tropical region, where lati-
tude and longitude coordinates were indi-
cated. In case there were no latitude and
longitude coordinates provided in the pa-
per,  Google Maps™ was used to find  out
the  approximate  location,  or  Landsat
World  Reference  System  2  (WRS2)  was
used  to  spot  the  center  location  of  the
Landsat scene used in the analysis. As seen
in Fig. 3, the scientific activities’ geographic
distribution  is  uneven  in  the  tropical  for-
ests. Significantly more research has been
done in South America, and about eighty-
nine per cent has occurred in the Brazilian
Amazon, specifically in Pará, Rondônia and
Mato Grosso states, where most of the dis-
turbance has taken place. In Asia, majority
of the research has been done in Kaliman-
tan (Borneo), while in Africa research has
been conducted in Cameroon, the African
country  with  the  highest  percentage  of
previously  logged  forests  than  its  Congo
Basin neighbors since it has a higher popu-
lation density (De Grandi et al. 2015).

Sensors used to assess selective logging 
in tropical forests

Overall, twenty-six different sensors were

used  by  the  studies  reviewed.  Optical,
radar (radio detection and raging), and li-
dar (light detection and raging) are identi-
fied  as  the  three types  of  EO data,  each
with different characteristics. A significant
number of articles utilized optical sensors
(Fig. 4a), such as the Landsat sensor (Costa
et al. 2019), while others used the RapidEye
(Franke et al. 2012,  Deutscher et al. 2013),
IKONOS (Read et al. 2003,  Furusawa et al.
2004),  Satellite  Pour  l’Observation  de  la
Terre (SPOT)-4 (Guitet et al. 2012, Sofan et
al.  2016),  and SPOT-5 (Pithon et  al.  2013).
Very  high  resolution  and  high  resolution
data were usually utilized as a single data-
set or in conjunction with Landsat imagery
as reference data. GeoEye-1 (Dalagnol et al.
2019),  QuickBird  (Hirschmugl  et  al.  2014),
Pleiades (Langner et al. 2018), and the Chi-
nese-Brazil  Earth  Resources  Satellite  2B
(CBERS-2B) High Resolution Camera (HRC)
(panchromatic, 2.5 m resolution – Anwar &
Stein  2012)  were  basically  used  as  refer-
ence data. Wang et al. (2005) used IKONOS
1-m pansharpened imagery to validate ca-
nopy fractional cover maps resulting from
Landsat  Enhanced  Thematic  Mapper  Plus
(ETM+) data. In the published articles, the
most  recent Sentinel-2  (Lima et  al.  2019),
Advanced  Spaceborne  Thermal  Emission
and  Reflection  Radiometer  (ASTER  –
Broadbent et al. 2006), the MODerate Res-
olution  Imaging  Spectroradiometer
(MODIS  – Neba et al.  2014), and SmallSat
(Descals et al. 2017) were also used to de-
tect  selective  logging  in  tropical  forests.
Lima et al. (2019) used Sentinel-2 and Land-
sat-8  Operational  Land  Imager  (OLI)  im-
ages  for  Monitoring  Selective  Logging  in
the Brazilian Amazon. Landsat 8 detected
36.9% more area of selective logging than
Sentinel-2 data. Logging infrastructure was
better  mapped  from  Sentinel-2  (43.2%)
than  Landsat  8  (35.5%)  data.  Neba  et  al.
(2014) reports  that  selective  logging  re-
duces aboveground biomass (AGB) stock,
and  through  linear  regression  modeling
discovered that logging roads and normal-
ized  difference  vegetation  index  (NDVI)
values derived from MODIS 250 m can indi-
rectly  determine  AGB  logged.  Unmanned
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Tab. 2 - Distribution of researchers in remote sensing of selective logging in tropical forests.

Country Lead
author

Co-author Country Lead
author

Co-author Country Lead
author

Co-author

USA 26 120 France 2 16 PNG 0 2

Brazil 26 85 Austria 2 7 Norway 0 1

Italy 7 35 Netherlands 2 7 Laos 0 1

UK 6 30 F. Guiana 2 5 Cameroon 0 1

Germany 6 18 Mexico 1 5 Laos 0 1

Finland 6 9 Switzerland 1 2 Brunei 0 1

Japan 5 14 China 1 0 Bolivia 0 1

Australia 4 9 Malaysia 1 1 Argentina 0 1

Indonesia 4 9 Puerto Rico 0 3 Madagascar 0 1

Canada 3 6 Singapore 0 3 S. Africa 0 1

Belgium 3 1 Peru 0 2 Nepal 0 1

Fig. 3 - Spatial distribution of studies
where remote sensing has been used to

analyze selective logging in tropical
forests.
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aerial vehicles (UAV) were used to acquire
digital  aerial  photographs (DAPs  – Ota et
al.  2019),  and  lidar  data  (Englhart  et  al.
2013, Kent et al. 2015, Melendy et al. 2018).
Qu et al.  (2018) estimated leaf area index
(LAI)  from  lidar  height  percentile  metrics
and compared it with MODIS product in a
selectively  logged  tropical  forest  area  in
Eastern  Amazonia.  Wedeux  &  Coomes
(2015) employed  airborne  laser  scanning
(ALS) data to measure the canopy of old-
growth and selectively logged peat swamp
forest across a peat dome in Central Kali-
mantan,  Indonesia.  The tropical  areas are
usually characterized by high cloud cover,
thus radar sensors that can infiltrate clouds
have been favored in many cases (Fig. 4b).
Rauste et al. (2013) developed a technique
to  map  selective  logging  in  northern  Re-
public  of  Congo  using  ALOS  PALSAR  im-
agery  acquired  before  and  after  the  log-
ging activities, and attained an overall  ac-
curacy of  70.4%. The same technique was
applied  for  TerrSAR-X  data,  and  achieved
an  overall  accuracy  of  53.6%.  Lei  et  al.
(2018) developed  a  new  approach  using
TanDEM-X data to detect and quantify se-
lective logging events in Tapajos National
Forest,  south  of  Santarem,  Pará  in  the
Brazilian Amazon region. A comparison of
TanDEM-X results with ALOS-2 data qualita-
tively match, confirming both the location
and the epoch of the disturbance event. In
the assessment of selective logging in trop-
ical forests, a majority of the studies used
medium spatial resolution sensors (52.2%),
followed  by  very  high  resolution  sensors
(28%),  high  resolution  sensors  (18%),  and
coarse resolution (1.8%).

In relation to the sensors and area cov-
ered by each study,  Monteiro et al. (2003)
used Landsat  Thematic  Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) to
detect  area  affected  by  logging  in  three
study  areas  covering  900 km2,  located  in
Sinop, Cláudia and Marcelndia in the state
of Mato Grosso, Brazil. Field data was used
to test the accuracy of the spectral mixture
models to estimate the total area affected
by logging (recent, old and repeated). Mar-
celndia  reported  the  greatest  accuracy
(80%), followed by Cláudia (73%) and Sinop
(69%). The lowest area affected by logging
was reported in Sinop (10,731 ha), followed
by Marcelndia (19,391 ha) and Cláudia (25
276 ha). Souza et al. (2003) mapped forest
canopy  damage  associated  with  logging
and burning in a study site approximately
1600  km2 in  Paragominas,  northeast  of
Pará,  and achieved an overall  accuracy of
86% of  the forest  degradation map (non-
forest,  degraded  forest,  and  logged  for-
est).  As  well,  high correlation (R2 =  0.97)
was observed between the total live AGB
of  degraded  forest  classes  and  the  non-
photosynthetic  vegetation  (NPV)  fraction
image. The NPV fraction improved the abil-
ity  to  map old  selectively  logged  forests.
Matricardi  et  al.  (2007) used  Landsat  TM
and ETM+ and applied visual interpretation
and  a  textural  algorithm  to  identify  and

map selectively  logged forests  in  a  study
site, approximately 1,300,550 km2 in Brazil’s
Legal  Amazon.  The  results  indicated  that
by 1992 about 5980 km2 of forest had been
logged, and during the 1992-1996 and 1996-
1999 periods the logged area expanded by
10,064 and 26,085 km2, respectively. Visual
interpretation  and  semi-automated  tech-
niques showed almost the same overall ac-
curacy of 92.8% and 90.2%, respectively. Vis-
ual  interpretation  and  semi-automated
techniques combined produced an overall
classification accuracy of 92.9%. In a study
site covering about 4700 km2 in a remote
area of tropical peat swamp forest in Cen-
tral  Kalimantan,  Indonesia,  Franke  et  al.
(2012) detected logging activities and the
impact of fire by a pixel-based spectral mix-
ture  analysis.  Forest,  non-forest  and  log-
ging trails could be differentiated with an
overall classification accuracy of 91.5%. Bal-
dauf (2013) using TerraSAR-X detected the
locations of extracted trees in a study site
covering about 300 km2 in Caracaraí munic-
ipality,  federal  state  Roraima,  Northern
Brazil,  with an overall  accuracy of 98.25%.
Sofan et al. (2016) applied a spectral index
derived  from  Landsat  ETM+  and  SPOT-4,
the  Normalized  Difference Fraction Index
(NDFI), then compared it with the Normal-
ized Burn Ratio (NBR) and NDVI, in order
to  have  an  enhanced  detection  of  forest
canopy  damage  caused  by  selective  log-
ging activities and associated forest fires in
West Kalimantan, especially in Kapuas Hulu
and Sintang districts The study site covered
about 100,000 km2. The authors found that

NDFI has higher accuracy (95%) to classify
the degradation forest due to logging and
burning activities.

Other studies used the coefficient of de-
termination (R2)  as an overall  measure of
accuracy. Asner et al. (2004) in a study site
covering about 450 km2 in Fazenda Cauaxi
and  Paragominas  Municipality  of  Pará
State, Brazil used Landsat ETM+ to assess
landscape and regional dynamics of canopy
damage following selective logging (forest
canopies,  exposed  non-photosynthetic
vegetation,  and  soils).  Spectral  mixture
analyses  of  the Landsat  ETM+ data show
that the spectral mixture model applied in
this study, together with a combination of
field- and image-derived spectral end mem-
ber bundles (0.74 ≤ R2  ≥ 0.96), provides a
lot  of  information  about  forest  canopy
damage due to selective logging. Souza et
al. (2009) in a study covering 62 Transects
(each  0.5  ha)  within  five  regions  of  the
Brazilian Amazon, used Landsat ETM+ and
SPOT-4  to  detect  and  map  the  extent  of
forest degradation based on canopy dam-
age and small clearings. A high correlation
(R2 =  0.7134)  showed the relationship be-
tween AGB and NDFI values for degraded
forest  of  Paragominas  (Pará)  and  Sinop
(Mato Grosso). Matricardi et al. (2013) used
Landsat  TM  and  ETM+  to  survey  forest
degradation due to selective logging activi-
ties and forest fires in Acre, Amapá, Rondó-
nia, and Roraima states, plus parts of Mato
Grosso, Maranháo, and Tocantins. The en-
tire  study  site  covered  approximately
1,574,350 km2. Empirical linear relationship
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Fig. 4 - Sensors 
used to assess 
selective logging
in tropical 
forests. (a) Fre-
quency of opti-
cal sensors; (b) 
frequency of 
radar sensors.
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between  fractional  coverage  values  de-
rived  from  each  vegetation  index  and
those calculated  from  hemispherical  pho-
tographs acquired in the field showed that
the modified soil-adjusted vegetation index
(MSAVI) presented the highest value of the
coefficient of  determination (R2)  for Ron-
dônia and Acre study sites (0.74 and 0.81,
respectively).  MSAVI and MSAVIaf showed
the best overall  performance under clear-
sky conditions for the Mato Grosso, Rondô-
nia, and Acre study sites. However, MSAVIaf

showed  the  best  performance  under
smoky  conditions  for  the  Mato  Grosso
study site (Matricardi et al. 2010). Based on
these  results,  the  authors  also  selected
MSAVIaf as the optimum vegetation index
to be used in this basin-wide analysis.

Spatial scale
Throughout the articles reviewed, only lo-

cal  and  regional  spatial  scales  have  been
utilized  to  examine  selective  logging  in
tropical forests. Local scale defines a study
covering a relatively small area in a region
or country. Regional studies differ in scale,
considering not only broader areas such as
part of or the entire Amazon in Brazil, but
also  a  study  covering  an  entire  country.
The local scale studies were more frequent
and constituted eighty-five per cent of the
articles published (Wang et al. 2005, D’Oliv-
eira et al. 2012,  Antropov et al. 2015,  Grec-
chi et al. 2017,  Ota et al. 2019), while only
fifteen per cent  of  the studies monitored
selective logging at a regional scale (Asner
et  al.  2005,  Broadbent et  al.  2008,  Matri-
cardi et al. 2013, Langner et al. 2018).

Temporal scale
As far as the temporal scale of the studies

is concerned, it can be concluded that de-
tecting selective logging in tropical forests
is  achieved  through  use  of  single  date
(composite image), bi-temporal, multi-tem-
poral  and  time  series  data  analyses.  Our
analysis shows that about ten per cent of
the  studies  utilized  single  date  analysis.
Read et al. (2003) merged 1-m and 4-m res-
olution IKONOS data to evaluate and moni-
tor logging impacts, north of the Rio Ama-
zon near Itacoatiara,  Amazonas.  Wang et
al.  (2005) acquired one scene of  Landsat
ETM+ on June 18, 2000 to measure forest
degradation caused by selective logging in
the Amazonian state of Mato Grosso, Bra-
zil.  A linear mixture model was applied in
the optimal vegetation index domain, the
MSAVI  to  derive  tropical  forest  fractional
cover, and to study the capability to detect
selective  logging  in  an  area  which  con-
sisted of  clear-cut  areas,  undisturbed for-
ests,  and  degraded  forests  (Wang  et  al.
2005).  The  canopy  fractional  cover  maps
derived from ETM+ imagery were validated
with 1-m pan-sharpened IKONOS imagery.
Tangki & Chappell (2008) used a Landsat 5
TM acquired in March 1997 so as to quan-
tify  mean  tree  biomass  across  selectively
logged forest in the Ulu Segama Forest Re-
serve, Borneo. The results indicated a ma-

jor  difference  in  the  stand  biomass  from
172 t ha-1 in a forest area that had high-lead
logging to 506 t ha-1 in a similarly sized area
of undisturbed forest. Anwar & Stein (2012)
used a Landsat-5 TM image acquired on 21
July,  2008  to  detect  changes  in  forest
canopy due to selective logging in south-
western Brazilian Amazon. 

Thirty-one per cent of the studies used bi-
temporal data analysis.  Asner et al. (2002)
used two Landsat-7 ETM+ scenes acquired
on July 13, 1999 and July 31, 2000 to quan-
tify  the  extent  and  intensity  of  selective
logging and the canopy closure, years after
logging operations in Fazenda Cauaxi, Pará
State. Andersen et al. (2014) applied a sim-
ple  differencing  of  2010  and  2011  lidar
canopy  height  models  to  identify  areas
where canopy over 30 m tall had been re-
moved  in  natural  tropical  forests  in  the
Western  Brazilian  Amazon.  Pinagé  et  al.
(2019) used airborne lidar in 2012 and 2014
to determine the areas with canopy gaps
caused  by  reduced-impact  selective  log-
ging  (RIL)  in  a  forest  in  Eastern Brazilian
Amazon.  Bi-temporal  analysis  detects  se-
lective logging in forests by comparing two
remote sensing datasets obtained at differ-
ent points in time (Da Ponte et al. 2015).

About thirty-four per cent of studies ap-
plied  multi-temporal  analysis.  Qi  et  al.
(2002) made use of Landsat ETM+ images
which  were  acquired  in  1992,  1996,  and
2000 to map and quantify selective logging
in the Amazon State of Mato Grosso, Bra-
zil.  The  results  were  validated  using  an
IKONOS  image  acquired  on  the  June  13,
2000. Souza et al. (2003) used a one multi-
spectral  SPOT-4 scene acquired in August
of 1999,  and four  Landsat  TM images ac-
quired in 1988, 1991, 1995 and 1996, to as-
sist in the identification of forest degrada-
tion age in mapping forest canopy damage
associated with logging and burning in the
Paragominas  study.  The  resultant  forest
degradation map, with an overall accuracy
of 86%, showed 35% of the forest area as in-
tact forest, 56% as logged forest and 9% of
the forest area was classified as degraded
forest.  In  order  to  assess  old  selectively
logged  forests  and  old  burned  forests  at
“Fazenda  Agrosete”  in  the  Paragominas
logging  center,  north-east  of  Pará state,
Souza & Roberts (2005) applied four Land-
sat TM images acquired in 1984, 1988, 1991
and 1996 and one SPOT-4 image acquired
in 1999.  Matricardi  et  al.  (2013) estimates
showed that about 5467, 7618, and 17,437
km2 were  new  areas  of  selective  logging
and/or forest fires in 1992, 1996, and 1999,
respectively, and 2.4% and 1.3% of the total
detected  selectively  logged  and  burned
forests, respectively, took place within pro-
tected  areas.  Sofan  et  al.  (2016) applied
spectral indices analysis on Landsat-7 ETM+
data  acquired  on  July  23,  2006,  May  7,
2007,  August  5,  2008,  July  31,  2009,  and
SPOT-4 data dated July 31,  2009,  May 16,
2012, and October 15, 2012 to enhance de-
tection of forest canopy gaps due to selec-
tive logging activities and associated forest

fires in West Kalimantan, Indonesia. Unlike
bi-temporal  analysis,  multi-temporal  as-
sessments  constitute  longer  time periods
which  allow  quantification  of  selectively
logged areas, as well  as  offering informa-
tion concerning the status of the forest (Da
Ponte et  al.  2015).  The remaining twenty-
five per cent comprise the time series ana-
lysis.  De Wasseige & Defourny (2004) de-
veloped an operational system in order to
detect and monitor selective logging activi-
ties  in  a  study  which  took  place  in  the
Ngoto  forest,  south-western  part  of  the
Central African Republic, using time series
of six SPOT multi-spectral (from December
95  to  July  96)  and  two  Landsat-TM  (No-
vember  1990  and  January  1995)  images.
The study concluded that despite rapid ca-
nopy closure, more than 50% of the logging
roads  and  skid  trail  surface  network  was
still  visible five years after the last timber
extraction, and the spatial resolution of the
images played a major role as soon as the
contrast between trails and the forest dis-
appeared. Asner et al. (2005) applied an au-
tomated remote sensing technique to map
selective logging in the Brazilian Amazon,
using Landsat ETM+ imagery from 1999 to
2002. Matricardi et al. (2005) estimated the
area  affected by  logging  in  the  Sinop  re-
gion, State of Mato Grosso, Brazil by apply-
ing annual time-series analysis based on 11-
year series of  Landsat imagery from 1992
to  2002.  The  study  showed  that,  due  to
rapid  regrowth  and  deforestation,  evi-
dence  of  logging  activities  normally  van-
ished in a period of 1 to 3 years. Koltunov et
al. (2009) present a large-scale study of the
relationships  between  selective  logging
and  forest  phenology  using  a  time-series
analysis  of  MODIS  satellite  data  of  selec-
tively logged forests in Mato Grosso, Brazil.
The time series analysis shows that selec-
tive logging leading to about 5-10% canopy
damage contributed  a  remarkable  54%  of
all year 2000 logging observations. Gener-
ally,  low level  of  logging intensity  causes
low forest damage and, therefore, it con-
tributes  to  short-lived  forest  phenology
changes,  while  high  intensity  logging
causes high forest damage that is long-last-
ing  and  detectable  on  satellite  imagery
(Pinagé et al. 2016).  Souza et al. (2013) us-
ing annual Landsat imagery from 2000 to
2010,  quantified  degradation  and  defor-
estation rates in the Brazilian Amazon over
a period of 10 years. The results showed a
major decline of annual deforestation rates
by 46% at the end of 2005 and a 20% incre-
ment of annual forest degradation. Based
on  radar  sensors,  Antropov  et  al.  (2015)
evaluated the use of  bi-temporal  mosaics
of ALOS PALSAR data collected in 2007 and
2010 in order to detect and monitor selec-
tive  logging  activities  in  northern  part  of
the  Republic  of  the  Congo.  In  a  second
study,  a  time  series  of  strip-map  C-band
SAR data was assessed. The technique in-
volved the analysis of textural features of
SAR backscatter temporal log-ratio image.
This  is  the  first  demonstration  of  C-band
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Remote sensing of selective logging in tropical forests

SAR based mapping of  selectively logged
areas.  Verhegghen  et  al.  (2015) utilized  a
time series  analysis  of  SPOT-4 and Rapid-
Eye images covering the North of the Re-
public  of  Congo,  acquired  in  the  period
from February to June 2013 to assess forest
degradation  from  selective  logging.  The
analysis  highlights  very  rapid  changes  in
the forest cover, as most logging gaps var-
nished a span of a few months. Different
from bi-temporal  analysis,  time series can
provide a quasi-continuous history of selec-
tive  logging  and  regeneration  processes
(Da Ponte et al. 2015). The detection of se-
lective logging signals  using remote sens-
ing  is  difficult  and  they  are  rapidly  lost
within a very short time due to vegetation
regrowth,  and  this  is  why  time  factor  is
very crucial  in  detecting selective logging
in tropical forests (Hirschmugl et al. 2014).

Methods employed to map and 
characterize selective logging in tropical
forests

A  variety  of  mapping  techniques  have
been tried and utilized in studies of selec-
tive logging in tropical forests (Souza et al.
2013). These techniques differ in their map-
ping  goals,  approach,  geographic  extent,
and  map  accuracies.  Visual  interpretation
of satellite imagery has been widely used in
mapping  selective  logging  in  tropical  for-
ests  (Read  et  al.  2003,  Furusawa  et  al.
2004).  Furusawa  et  al.  (2004) evaluated
the effects of a selective logging operation
in New Georgia Island, Solomon Islands by
means of supervised classification and on-
screen visual interpretation, in association
with detailed field observation. The selec-
tively  logged  area  accounted  for  7.4%  of
the  original  forest  and  thus  causing  sub-
stantial  damage.  Read  et  al.  (2003) con-
cluded that use of a combination of high-
resolution satellite  images,  taken immedi-
ately  after  logging,  and detailed  field  ob-
servations  may  serve  as  the  most  useful
way  of  analyzing  selection  logging.  How-
ever, visual interpretation is considered to
entail more workload and the skills of the
interpreter determine the precision of the
final product (Da Ponte et al. 2015). A tech-
nique often applied in detecting selective
logging  is  the  Spectral  Mixture  Analysis
(SMA). In order to map selective logging in
the state of  Pará,  Souza et  al.  (2003) ap-
plied spectral mixture models to calculate
fraction images from SPOT-4 imagery, and
concluded  that  more  field  studies  are
needed for selective logging assessment in
other  regions  with different  types  of  for-
ests. Soil fraction images acquired through
spectral  mixture models  assist  to identify
small  forest  perforations with spatial  pat-
terns showing at the sub-pixel scale in re-
mote-sensing imagery (Souza et al. 2003).
Selective logging increases fire susceptibil-
ity, owing to the large amount of available
fuel in the form of slash piles and collateral
damage caused by the logging operations
(Souza & Barreto 2000). An index based on
SMA known as Normalized Difference Frac-

tion Index (NDFI) was proposed by  Souza
et al. (2005) to enhance detection of forest
canopy  damage  due  to  selective  logging
activities and associated forest fires. Analy-
sis of the NDFI data is enabled by a contex-
tual classification algorithm (CCA) that fa-
cilitates accurate detection of logging and
fire-derived  canopy  gaps  (Souza  et  al.
2005).  Others  have  used  SMA  together
with geographic information system (GIS)
techniques  (Souza  &  Barreto  2000,  Mon-
teiro et al.  2003).  Asner et al.  (2006) cre-
ated a measure, Area-Integrated Gap Frac-
tion (AIGF) of canopy damage by convert-
ing  remotely  sensed  subpixel  fractional
changes in canopy cover  into spatial  esti-
mates of forest canopy gap fraction. Asner
et al.  (2005) advanced the computational
analysis of Landsat ETM+ satellite data us-
ing the Carnegie Landsat Analysis  System
(CLAS) to map degraded forests by selec-
tive logging in the Brazilian Amazon with
86%  overall  accuracy.  This  approach  pro-
vides  automated  image analysis  using  at-
mospheric  modeling  (entails  detection  of
forest  canopy  openings,  surface  debris,
and  bare  soil  exposed  by  forest  distur-
bances)  and  pattern-recognition  tech-
niques. A wide range of spectral variables
(Tab.  1)  have been used in enhancing de-
tection of  selective  logging because  they
are sensitive to vegetation greenness (Sou-
za  et  al.  2005).  Broadbent  et  al.  (2006)
used a probabilistic spectral mixture mod-
el, i.e., Monte-Carlo spectral unmixing tech-
nique  (AutoMCU)  to  generate  per-pixel
fractional  cover  estimates  of  photosyn-
thetic vegetation (PV), non-photosynthetic
vegetation  (NPV),  and  soil.  Results  were
compared with the NDVI. NDVI, and the PV
and NPV fractions in felling gaps >400 m2

were distinguishable from unlogged forest
values for up to six months after logging,
and those <400 m2 were distinguishable for
up to three months after harvest. Matricar-
di et al. (2013) applied visual interpretation
and semi-automated techniques to detect
and  quantify  basin-wide  forest  canopy
damage due to selective logging in the Bra-
zilian  Amazon.  The  semi-automated  tech-
nique involved an application of a textural
algorithm in order to detect patios. A buf-
fer was applied around the patios so as to
estimate the amount of forest affected by
logging. The authors also used a semi-auto-
mated remote sensing technique based on
NPV fraction images derived from SMA, to
detect burned forest in the Amazon state
of Mato Grosso. The results based on Land-
sat  imagery  showed  a  significant  rise
(~300%) of forest degradation by selective
logging and burning in the Brazilian Ama-
zon between 1992 and 1999.  Souza et  al.
(2013) used  SMA,  NDFI  and  knowledge-
based decision tree classification (DTC) to
quantify  deforestation  and  degradation
(logged and burned forests) in the Brazil-
ian  Amazon.  Very  high  spatial  resolution
SPOT 2.5 m pixel imagery was used to gen-
erate geolocated points to assess the accu-
racy  of  the  classified  images.  The  study

mapped  and  assessed  the  accuracy  to
quantify  forest  (97%),  deforestation (85%)
and forest degradation (82%) with an over-
all accuracy of 92%. The authors concluded
that  the total  forest  area  that  was  being
degraded  by  selective  logging  and  fires
each year was equal or exceeded the area
being  deforested,  leading  to  more  frag-
mented landscapes.  Sofan et al. (2016) de-
tected forest canopy damage due to selec-
tive logging and forest fires in Kapuas Hulu
and Sintang districts  of  West  Kalimantan,
Indonesia by applying SMA approach and
Spectral  indices  analysis.  Landsat-based
monitoring  is  inadequate  due  to  its  low
spatial  resolution  (Da  Ponte  et  al.  2015),
and in solving this  problem other  studies
have used object-based change detection
techniques (Burivalova et al. 2015,  Grecchi
et al. 2017),  trajectory based analysis (Shi-
mizu et al. 2017), and the use of an airborne
laser scanner (ALS) which determines the
three-dimensional (3D) structure of forest
vegetation, and are thus used to estimate
AGB or forest structure changes (Englhart
et  al.  2013,  Kent et  al.  2015,  Pinagé et  al.
2019).

Accuracy Assessment
The  selected  articles  varied  so  much  in

the level of detail about the map validation
process, as well as on the metrics used to
report accuracy. The study area size ranged
from about one km2 to analysis done on a
regional  scale,  covering  about  4,000,000
km2, but ~34% of cases (n = 37) dealt areas
covering  less  than  or  equal  to  1000  km2.
Only 80% of the papers reviewed reported
the measure of accuracy. All four standard
accuracy assessment metrics (overall accu-
racy,  kappa,  user’s,  and  producer’s  accu-
racy)  were  reported  in  28.2%  cases.  An-
other ~5% of the cases included only overall
accuracy. The accuracies attained when de-
tecting and monitoring selective logging in
tropical  forests  were  explored,  and  the
lowest  overall  accuracy  was  recorded  by
Hernández-Gómez et al. (2019), distributed
as 13.9% in Petcacab and Caobas,  14.5% in
Felipe Carrillo Puerto, and 19.1% in Noh Bec
(Yucatan, Mexico). The study site was ap-
proximately  1600  km2,  and  used  Landsat
ETM+/OLI.  Over  68% of  the  observed  dis-
turbed areas were mis-classified as unlog-
ged pixels in all  ejidos, but the CLAS algo-
rithms worked well in detecting forest de-
gradation from logging in other countries
of the tropics, such as Brazil  (Asner et al.
2005, 2006, Broadbent et al. 2008). Among
the  highest  overall  accuracies  are  96.7%
and 95.7% for Sentinel-2 and Landsat 8, re-
spectively in a study by  Lima et al.  (2019)
while  mapping  forest  disturbance  caused
by selective logging in south of the Brazil-
ian State of Amazonas. The study site was
approximately 5625 km2. An assessment on
the impacted area by selective logging led
to a discovery of 1143 ha and 1197 ha of dis-
turbed forest on Sentinel-2 and Landsat 8
data, respectively. Despite its coarser spa-
tial resolution, Landsat 8 has a good poten-
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tial  to identify logging features.  These re-
sults agree with a recent study carried out
by  Hethcoat  et  al.  (2018) in  the  State  of
Rondônia,  Brazil.  However,  the  area
mapped as logged with Landsat 8 data is
larger in comparison with Sentinel-2-based
results.  Sentinel-2 leads to a more precise
pixel-based  mapping  of  selective  logging
due to its higher spatial resolution, making
it possible to map smaller disturbances and
to map larger disturbances more precisely.
In a study site covering about 30,000 km2,
Matricardi et al. (2010) in the analysis of se-
lective logging and forest fire impacts on
natural  forests,  attained  an  overall  accu-
racy of 95.8% for burned forests detection
based  on  non-photosynthetic  vegetation
fraction  image.  Selective  logging  was
found to be responsible for disturbing the
largest proportion (31%)  of  natural  forest,
followed by deforestation (29%). Altogeth-
er,  selective  logging  and  forest  fires  af-
fected approximately 40% of the study site
area. Rahm et al. (2013) recorded an overall
classification  accuracy  of  91.5%,  89.7%,
88.9% on RapidEye data at 5, 10, and 20 m,
respectively, while detecting forest degra-
dation in  a study site  (15,000 km2)  in the
province  of  Bandundu  in  Democratic  Re-
public  of  Congo.  From a forest  extent  of
34,233 ha on the RapidEye image of 2011,
approximately 388 ha were deforested and
267  ha  were  degraded  in  August  2012.
Costa et al. (2019) applied semi-automatic
technique based on texture algorithm and
visual  interpretation  to  map  selectively
logged forests, in portions of the states of
Mato Grosso,  Pará,  and  Rondônia.  Based
on results obtained, it was estimated that
the overall accuracies are greater than 91%.
The study discovered that forests affected
by  selective  logging  increased  in  Mato
Grosso and Rondônia, while a decrease in
forests  affected  by  logging  activities  was
observed in Pará.

Qi  et  al.  (2002) used Landsat  images to
detect selective logging the Amazon State
of  Mato  Grosso,  Brazil.  Since  extensive
field measurements are limited due to la-
bor intensity in the tropical areas, the au-
thors used IKONOS image to validate the
fractional  forest  cover  estimates.  Frac-
tional covers from ETM+ image were plot-
ted against those from IKONOS. The ETM+

and IKONOS fractional cover values fitted
well, with R2 = 0.96. D’Oliveira et al. (2012)
mapped forest biomass in areas of low-in-
tensity logging using airborne scanning li-
dar  in  Antimary  State  Forest,  Acre  State,
Western  Brazilian  Amazon.  A  systematic
random  sample  of  fifty  0.25-ha  ground
plots  were  measured  and  used  to  con-
struct  lidar-based  regression  models  for
AGB (R2 = 0.72).  The total and mean AGB
estimates obtained using the synthetic es-
timator (total 231,694 Mg; mean 231.7 Mg
ha-1) nearly matched those obtained using
the model-assisted estimator (total 231,589
Mg ± 5.477 SE; mean 231.6 Mg ha -1 ± 5.5 SE;
± 2.4%). They were more precise than plot-
only simple random sample estimator (to-
tal 230,872 Mg ± 10,477 SE; mean 230.9 Mg
ha-1  ± 10.5 SE; ± 4.5%). Englhart et al. (2013)
analyzed multi-temporal  lidar and field in-
ventory measurements to study forest dy-
namics  and  AGB  changes  in  undisturbed,
selective logged and burned peat  swamp
forests in Borneo. AGB regression models
were developed on the basis of field inven-
tory  measurements  and  lidar  derived
height histograms for 2007 (R2 = 0.77) and
2011 (R2 = 0.81) were quantified, as well as
changes in canopy height and AGB. Intact
forests had on average 20 t ha -1 AGB with a
canopy height increase of  2.3 m over  the
four  years.  Selective  logged  forests
showed  an  average AGB loss  of  55  t  ha -1

within 30 m and 42 t ha -1 within 50 m of de-
tected  logging  trails,  although  the  mean
canopy height increased by 0.5 m and 1.0
m, respectively. Burned forests lost 92% of
the initial  biomass.  In  quantify  landscape-
scale  changes  in  canopy structure due to
logging,  Wedeux  &  Coomes  (2015) using
airborne laser scanning (ALS) data, applied
gap size frequency distributions (GSFDs) in
a selectively logged peat, Mawas Conserva-
tion  Area,  Central  Kalimantan,  Indonesia.
This technique was validated, as it yielded a
fit going through the origin and with an R2

=  0:88  between  predicted  and  measured
peat  values  in  33  plots  where  peat  data
were available.

The validation methods used in selective
logging studies in tropical forests are field
data,  remote sensing data,  a combination
of field data and remote sensing data, and
data from model simulations (Fig. 5).

Discussion
The following section discusses the main

findings  of  this  review  as  well  as  the
emerging  needs of  further  studies  on re-
mote sensing techniques applied in detect-
ing  and  monitoring  selective  logging  in
tropical  forests.  The  resultant  needs  of
studies are addressed so as to offer appro-
priate  solutions  to  guide  tropical  forest
management  practices  and  current  re-
search.

Application of remote sensing
Our analysis shows that that the number

of  journals  publishing  remote  sensing  re-
search has broadened with time in their sci-
entific disciplines, meaning that the remote
sensing users have diversified. The publica-
tions  have  shifted  from  strictly  remote
sensing oriented journals into journals spe-
cialized in forest research, geography, bio-
logical conservation, geophysical research,
and interdisciplinary science. This suggests
that remote sensing is most likely being ac-
cepted as dependable information source
by a larger group of scientific researchers
(Karlson & Ostwald 2015), who are actively
participating in studying tropical forest dis-
turbances.  More  integration  of  remote
sensing  into  scientific  disciplines  dealing
with  other  types  of  research  questions
about  forest  disturbances  is  required  to
further promote the scientific involvement
of this rapidly developing technology. The
need of having improved quality and acces-
sibility of remote sensing data applicable at
different  spatial  scales  will  possibly  facili-
tate  this  trend.  Improved  access  to  rele-
vant satellite data and best available meth-
ods are key to operational forest degrada-
tion monitoring (Da Ponte et al. 2015).

Despite steady progress in  remote-sens-
ing  technologies,  the spatial  extent,  tem-
poral resolution, and availability of data ac-
quired is inadequate to meet the growing
demand for information, thus there is need
for more accessible, fast, and precise infor-
mation  on  the  world’s  tropical  forest  dy-
namics.  Production  of  forest  disturbance
maps is only useful if the stakeholders can
access and query the data (Mitchard 2016).
An improved availability and accessibility of
high-  and  very-high  spatial  resolution  im-
agery and development of algorithms able
to handle complex data structures will po-
tentially detect and monitor selective log-
ging in tropical  forests (Kuemmerle et  al.
2013). Deforestation and degradation pro-
cesses  take  place  daily  and  on  different
scales,  yet  several  countries  do not  have
the  economical  means  or  governmental
support  to  establish  monitoring  pro-
grammes meant to monitor  forest distur-
bance (Da Ponte et al. 2015). Examples of
already implemented programmes are the
Brazilian governmental project “Basin Res-
toration  Program”  (PRODES),  carried  out
through INPE, monitoring the forests over
the  Legal  Amazon  region  (Solberg  et  al.
2008).  Complementary  to  PRODES,  since
May  2005,  is  a  near  real-time  monitoring
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system called  Detecção de  Desmatamento
em Tempo Real (DETER), able to detect for-
est disturbances larger than 25 ha (Solberg
et al. 2008) in a 15-day interval using MOD-
IS and CBERS satellite data. In 2008, a new
programme,  Mapeamento  da  Degradação
Florestal na Amazônia Brasileira (DEGRAD),
was introduced to assess degradation es-
pecially  from  selectively  logged  activities
by  using  Landsat  images  and  CBERS  (Da
Ponte  et  al.  2015).  Started  in  July  2015,
MapBiomas is an initiative involving univer-
sities,  non-governmental  organizations
(NGOs), and technology companies, includ-
ing  Google,  working  together  to  under-
stand  Brazilian  territory  transformations
from 1985 to present, based on the annual
mapping of land cover land use (Wang et
al.  2018).  MapBiomass  uses  Google  Earth
Engine® to process and distribute satellite
images  quickly.  The  platform  is  open-ac-
cess, and provides data, codes and meth-
odologies to users, allowing researchers to
use MapBiomas’s maps and other products
(Wang et al.  2018). Such programmes are
needed  elsewhere  within  the  tropical
forests. Ideally, all data, including forest in-
ventory datasets would be made available
as open data. This often maximizes the use
of the product, leading to innovative users
who could not have been envisaged in ad-
vance  (Mitchard  2016).  Thus,  open  data
policies  will  go  a  long  way  in  supporting
routine monitoring efforts.

Geographic distribution of the scientific
activity

The scientific  activities  related  to  forest
disturbance due to selective logging in the
tropical  forests  is  not  evenly  distributed.
This trend is considerably set by research
preferences and investments put  in place
by  institutions  within  a  country,  further
heightened by the way large international
research projects are allocated, and the bi-
lateral  associations  among  national  gov-
ernments and universities (Da Ponte et al.
2015,  Karlson  &  Ostwald  2015).  It  can  as
well  be inferred that the shortage of  the
studies in some tropical regions is due to a
lack  of  expertise  in  the  area.  Data  gaps
mainly exist in developing countries due to
inconsistent  data acquisition and distribu-
tion frameworks, yet it is where deforesta-
tion  and  forest  degradation  is  extensive
(Kuemmerle et al.  2013). The areas within
the  Congo Basin  have  been  experiencing
armed conflict, hence researchers are con-
cerned about their security. The low num-
ber of authorship with African affiliations is
a proof that the research carried out in the
tropics  has  majorly  been  initiated,  con-
ducted and funded by foreign institutions,
usually located in Europe (Deutscher et al.
2013,  Hirschmugl  et  al.  2014,  Neba  et  al.
2014)  and  North  America  (Laporte  &  Lin
2003). Research funding institutions in the
United  States  of  America  have  a  very
strong  presence  in  the  Brazilian  Amazon
(Souza  &  Barreto  2000,  Broadbent  et  al.
2006,  Koltunov et al. 2009,  Qu et al. 2018,

Dalagnol  et  al.  2019).  Brazilian  research
funding institutions have also funded sev-
eral studies in the Brazilian Amazon (Souza
&  Barreto  2000,  Souza  &  Roberts  2005,
Condé et al. 2019, Costa et al. 2019, Pinagé
et  al.  2019).  The  Brazilian  Amazon,  being
the world’s largest contiguous rain forest
(Anwar & Stein  2012),  and endowed with
high  levels  of  biodiversity  and  its  impor-
tance in terms of ecological resources (Da
Ponte et al. 2015), has obviously attracted
more research.  This is due to:  (i)  the fact
that the Brazilian Amazon has remarkable
rates  of  forest  disturbances,  especially
Rondônia and Mato Grosso states; (ii) avail-
ability of expertise in remote sensing and
related technologies;  (iii)  the influence of
government  support  and  awareness;  (iv)
international  interest  from  the  scientific
community; and (v) availability of financial
support to conduct research (Da Ponte et
al. 2015).

At present, there is need to increase the
study  to  other  regions  within  tropical  ar-
eas, such as tropical Africa, which are dis-
advantaged in remote sensing technology
and  knowledge.  This  can  be  achieved
through  multilateral  research  collabora-
tions, readily available  in situ  data and re-
search infrastructure, and political stability.
In  areas  experiencing  social  unrest,  high
resolution imagery may complement in situ
data, thus reducing the costs and risks as-
sociated  with  field  campaigns.  Improved
support  for  capacity  building  of  local  re-
search institutions and universities will ob-
viously  initiate  an  increased  usage  of  re-
mote  sensing.  Remote  sensing  capacity
majorly  depends  on  remote  sensing  data
availability.  Currently,  a  variety  of  high
quality remote sensing data, such as data
archive of the Landsat sensor or the high-
spatial and temporal resolution of the Sen-
tinel satellites, is freely available and in the
future it is expected there will be free data
of even higher spatial and temporal resolu-
tions.

Sensors used to assess selective logging 
in tropical forests

The detection of canopy gaps using mod-
erate  resolution  remote  sensing  imagery,
e.g., SPOT 4 or Landsat TM present spec-
tral confusion of canopy gaps due to natu-
ral disturbance (e.g., windfall) with canopy
gaps caused by selective harvesting (Asner
et  al.  2002),  since  selective  harvest  gaps
are  often  sub-pixel  in  scale  (Souza  et  al.
2005).  The spatial  resolution of  data rela-
tive  to  selective  harvest  sites  creates  a
scene  dominated  by  mixed  (harvest/non-
harvest)  pixels  and  the  broad  spectral
range covered by Landsat wavelengths can
limit  the  detection  of  spectrally  subtle
changes  (Asner  et  al.  2002).  Fusion  tech-
niques  of  panchromatic  and multispectral
images are commonly applied to enhance
the imagery (Read et al. 2003). As well, up-
scaling  of  spatial  resolution  must  be  per-
formed in some cases of using vegetation
indices (Arroyo-Mora et al. 2009).

High spatial resolutions (i.e., 5-10 m pixel
size) images are viable for selective logging
analysis, since most of the features found
in  logging  environments  such  as  logging
roads, log landings, and tree fall gaps can
be easily recognized (Antropov et al. 2015).
There are satellites (or UAVs or manned air-
craft) now collecting data at very high spa-
tial  resolutions,  up  to  31  cm  pixels  for
Worldview-3,  but  finer  resolution  images
are  expensive  and  contain  computational
constraints.  As  well,  locating  the  bound-
aries of logged areas by applying visual in-
terpretation on finer  resolution images  is
not easy. Wulder et al. (2008) reports that
automated  detection  of  selective  logging
using very high resolution satellite data has
technical  challenges,  since  differences  in
view-illumination geometries between the
pairs  of  images causes a problem of tree
crown geo-location, and the appearance of
artifacts due to canopy shadowing can in-
duce misclassification of disturbance. Syn-
thetic  aperture  radar  (SAR),  operating  at
microwave frequencies, is one of the most
promising remote sensing methods for the
mapping  of  forest  disturbances  (Mermoz
et al. 2015). The amount of radiation back-
scattered to the sensor keeps on increas-
ing as the number and/or size of trees pres-
ent  in  an area increases,  therefore,  radar
satellites  have  been  used  to  map  above-
ground biomass,  and degradation (Mitch-
ard  2016).  SAR  enables  imaging  in  all
weather conditions, at any time of day or
night,  and  long-wavelength  radar  signals
can penetrate canopies and have been re-
lated  to  forest  structure  and  woody  bio-
mass  up  to  a  saturation  limit,  higher  for
longer wavelengths (Mermoz et al.  2015).
However, despite these advantages, radar
has various constraints limiting its applica-
tion in studying selective logging, for sev-
eral reasons: the limited SAR data availabil-
ity, the low data dimensionality for classifi-
cation  algorithms,  sensitivity  of  the  SAR
signal to surface moisture, and the absence
of easy-to-use tools and methods for data
interpretation (Whittle et al. 2012).

Lidar  data  utilizes  laser  light  looking  di-
rectly  down  to  estimate  tree  height  and
structure (Mitchard 2016). Repeat surveys
can thus detect  the removal  of  individual
trees, and therefore, it is the only remote
sensing method that can guarantee to map
selective  logging  with  high  accuracy,  but
the  applications  of  present  lidar  remote
sensing sensors for the detection of selec-
tive  logging,  fall  short  in  cost-efficiency,
timing,  and logistics  (Ellis  et  al.  2016).  As
well, lidar sensor and mission specifications
remain dissimilar, and this affects the level
of confidence that is observable about se-
lective  logging from the  same forest  and
therefore  the  assumption  behind  model-
based inference does not remain valid (An-
dersen et al. 2014). No lidar satellite is cur-
rently collecting data, so lidar can only be
obtained through aircraft or UAVs, at high
cost (Mitchard 2016).

This review has shown that optical data is

iForest 13: 286-300 294

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Jackson CM & Adam E - iForest 13: 286-300

the  most  widely  used,  followed  by  radar
and lidar.  This  is  actually  the  opposite  of
their  data  content,  with  lidar  being  the
richest source of data since it provides full
cross  sectional  information  on  forests,
while  radar  provides  part  of  these  data,
and optical  remote sensing systems view
only the top of the tree canopy (Mitchard
2016). Data availability, cost, and the com-
plexity  of  the  analysis  determine  which
type of  data to use far  more than which
system  would  provide  the  most  compre-
hensive  information  about  a  forest.  The
best  method  chosen  to  detect  selective
logging must strike a balance between ac-
curacy, cost of data and analysis, and opti-
mal monitoring frequency.

Fusing  multiple  remote  sensing  sensor
platforms  is  helpful  in  addressing  limita-
tions of some sensors (Mitchell et al. 2017).
The  combination  of  optical/SAR  can  be
used  for  the  detection  of  canopy  cover
change, while that of SAR/lidar can be used
in detecting sub-canopy structural change
(Mitchell et al. 2017). This can promote ex-
traction of detailed information. High spa-
tial resolution sensors offer detailed textu-
ral  information,  but  have  the  problem  of
small area coverage. Moderate spatial res-
olution sensors have daily or near-daily re-
peat intervals,  but they have less spectral
and  spatial  information  (Mitchell  et  al.
2017).  The integration of remotely sensed
data  from several  sensors  at  a  variety  of
spatial and temporal scales is very useful in
estimating forest  structure  and structural
change (Asner  et  al.  2008).  Thus,  we ex-
pect more sophisticated data fusion tech-
niques  in  the near  future,  that  can aid in
mapping forest disturbance such as selec-
tive  logging.  Obtaining  near-coincident
data is an uphill task due to little or com-
plete  lack  of  coordination  of  optical  and
SAR satellite observations by space agen-
cies.  Commitment  by  space agencies  is  a
key requirement for systematic and coordi-
nated observation of tropical forests on a
sustainable  basis  and  with  an  open  data
policy (Mitchell et al. 2017). In the near fu-
ture,  there  is  the  need  to  have  techno-
logical  developments  associated  with  un-
manned aerial vehicles to collect and share
UAV  data  at  broader  scales  and  minimal
costs,  with  caution to current  constraints
such as space for taking off,  landing, and
piloting in thick forest environments. Also
the possibility of building and deploying a
fleet  of  high-altitude  imaging  drones
should be explored. Due to the challenges
that hamper  acquisition of  lidar data,  the
application of ground-based GPS for map-
ping wall-to-wall infrastructure in similar re-
mote tropical landscapes, is recommended
because it can be well integrated into the
ground-based monitoring plan required for
other impact parameters (e.g., felling inef-
ficiencies), is less vulnerable to time lag er-
rors  (old  skid  trails  can be detect  on the
ground), and remains considerably cheaper
(Ellis  et  al.  2016).  Thus,  while  agreement
with  GPS-based  logging  infrastructure

maps  is  promising,  more  research  is  re-
quired to assess the uncertainties of lidar
based logging infrastructure mapping. The
integration of lidar remote sensing and for-
est inventory schemes will reduce the total
costs  and  need  for  extensive  field-based
sampling. The innovation of accurate auto-
mated  methods  for  processing  lidar  data
could  be  of  critical  help  because  they
would lower the data processing costs, al-
lowing for data acquisition of extensive ar-
eas while providing repeatable and consis-
tent  estimates  of  vital  forest  attributes
(Melendy et al. 2018).

Multi-temporal monitoring of selective 
logging

The  majority  of  the  articles  reviewed
monitored  selective  logging using  bi-tem-
poral  and  multi-temporal  analysis.  Rela-
tively,  fewer  studies  utilized  the  continu-
ous  spectral-temporal  trajectories  for  the
detection and analyses of selective logging
in  tropical  forests.  Mapping and monitor-
ing selective logging requires data with ad-
equate temporal and spatial resolution. As
a result of insignificant seasonal changes in
dense tropical  forests,  and the persistent
cloud cover for most of the year, the po-
tential benefits of time series analysis plays
a  key  role  in  the  multi-temporal  studies
(Miettinen et al.  2014). The initial  signs of
logging activity  visible  from  satellite  data
vanish in the humid tropics quickly as a re-
sult of fast regrowth of secondary vegeta-
tion (Langner et al. 2018). Harvest intensity
is  more directly related to the number of
felling  gaps,  although  that  relationship
may be affected by overlying felling gaps
(Broadbent et al. 2006). Canopy openness
defines the ability of remote sensors to de-
tect  many of  the ground disturbances in-
dicative of logging activities (Broadbent et
al.  2006).  Selective logging at moderately
high  intensities  poses  large-scale  impacts
on the canopy and an abundance of spec-
trally  distinct  features  like  log  landing
decks or large road networks (Hethcoat et
al. 2018). Selective logging at lower logging
intensities,  e.g., a single tree fall or an un-
der-canopy skid  trail,  have small-scale  im-
pacts on the canopy and can be impossible
to detect with moderate spatial resolution
imagery where only a small proportion of
an imaged pixel  is  affected by the target
feature (Read et al. 2003). Also, some log-
ging  impacts  such  as  the  loss  of  green
cover  associated  with  a  felled  tree  are
ephemeral, and infrequent repeat observa-
tion opportunities over cloudy tropical ar-
eas make it challenging to detect selective
logging (Melendy et al. 2018). Over the last
two decades, large-region evaluation of se-
lective  logging  has  been  demonstrated
with moderate resolution optical  imagery
(Souza et al. 2005), but with uncertainty re-
sulting  from  sensor  limitations.  This  pro-
motes the significance of regular data ac-
quisition so as to monitor keenly the tem-
poral  changes  of  reflectance  signatures
(Miettinen et al.  2014). The fast regrowth

vegetation that covers the scars in the ca-
nopy  is  also  detectable  in  satellite  data,
prolonging the available time for degrada-
tion  monitoring,  but  due  to  the  atmo-
spheric  conditions  within the tropical  for-
ests, it has been impossible to obtain con-
tinuous  time  series  with  high  to  medium
resolution data until  very recently (Mietti-
nen et al. 2014).

Fused  satellite  observations  can  be  uti-
lized  in  creating  a  dense  time-series  to
track forest disturbances such as selective
logging (Mitchell et al. 2017). This offers a
great  opportunity  to  explore  the  full  po-
tential of time series analysis for forest dis-
turbance  mapping.  Therefore,  monitoring
logging activities might be enhanced by in-
creasing  intra-annual  data  availability  for
both  medium-  and  high-spatial  resolution
sensors (Da Ponte et al. 2015). Dense time
series provides a high possibility for moni-
toring selective  logging but  requires  con-
siderable investment in data processing for
it  needs  extensive  computing  resources.
Methods are required for analyzing dense
time  series  of  satellite  image  time  series
that  provide  high  spatial  details.  The  op-
portunity has several challenges and needs
new  methods  that  can  efficiently  handle
dense satellite  image time series that  en-
able temporal analysis while accounting for
a  spatial  context.  This  would  enable  the
monitoring of selective logging in tropical
forests with unprecedented detail.

Remote  sensing  can  be  utilized  to  de-
velop  an  early-warning  system  for  immi-
nent forest disturbance events (Verbesselt
et al. 2010, Senf et al. 2016) to know wheth-
er they are planned or not. Without near-
real time monitoring it means that tempo-
rary disturbances occurring between dates
remain  undetected.  Some  of  the  hurdles
impeding implementation of near-real time
monitoring of tropical forest disturbances
might be the often complex pre-processing
steps  of  remote  sensing  data,  lack  of
ground-truth data, and the often low data
availability with high spatial- and medium-
spatial  resolution  sensors  (Wulder  et  al.
2008).  However,  the  recent  increase  in
ready-to-use medium spatial resolution sat-
ellite  data  (i.e.,  the  Landsat  surface  re-
flectance  higher-level  data  products),  the
ability to combine several sensors into one
data  stream,  and  the  rise  in  cloud-based
processing  environments  that  have  many
standard  disturbance  monitoring  algo-
rithms  already  put  in  place  (e.g.,  Google
Earth Engine®), it is probable that the use
of remote sensing for near real-time moni-
toring of selective logging disturbances will
rise drastically in the near future (Senf et
al. 2016). Google Earth Engine enables any-
one  with  a  web  browser  to  perform  ex-
tremely large analyses of the earth and its
environment.

Remote sensing techniques applied to 
selective logging in tropical forests

The need to conduct research on tropical
forest  degradation  emerged in  the  1990s
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as  the  spatial  extent  of  selective  logging
was found to be not accounted for in de-
forestation studies (Hirschmugl et al. 2014).
Various  remote  sensing  methods  have
been used to detect  and estimate the in-
tensity of selective logging in tropical for-
ests, but these methods are less developed
(Hethcoat et al.  2018). The majority of re-
mote  sensing  based  research,  regarding
the monitoring of selective logging in tropi-
cal  forests  uses  Landsat  imagery,  putting
into  consideration that  it  is  cost-free and
acquired in regular  intervals  (Souza et  al.
2013,  Mitchard 2016). Most authors (Asner
et  al.  2002,  Shimabukuro  et  al.  2014)  ac-
knowledge  they  can  detect  selectively
logged areas at moderately high intensities
(> 20 m3 ha-1; 3-7 trees ha-1), but their meth-
ods’  ability  to  quantify  the  extent,  lower
logging intensities (< 20 m3 ha-1) and dura-
tion of logging damage using Landsat im-
agery is not known (Hethcoat et al. 2018).
Early studies (Laporte & Lin 2003,  Read et
al. 2003, De Wasseige & Defourny 2004, Fu-
rusawa et al. 2004) assessed selective log-
ging by visual interpretation on Landsat im-
ages.  Visual  interpretation has  been used
to quantify clearings in forests and also to
identify  areas  degraded  by  selected  log-
ging activities (Souza et al. 2003, Matricardi
et al.  2005).  Da Ponte et al.  (2015) states
that the method is time-consuming and in-
effective  in  quantitative,  wall-to-wall  as-
sessments of forest disturbance dynamics.
The skills of the interpreter determine the
precision of the final product. The Spectral
Mixture Analysis (SMA) method, although
widely used in the Brazilian Amazon, a ma-
jor  challenge  with  the  SMA  method  by
Franke et al. (2012) in Central Kalimantan is
that choosing the endmember would have
to consider the differences in spectral re-
flectance as a result of topography and at-
mospheric  conditions,  and  this  limits  the
use of SMA analyses over large areas. Post-
classification  method  has  been  used  to
generate independent classification results
from two images acquired in different time
periods  and then  compared  pixel-by-pixel
(Hirschmugl  et  al.  2014),  or  object-by-ob-
ject  (Burivalova  et  al.  2015).  This  method
can only be used in a bi-temporal data anal-
ysis, and therefore it needs multiple bi-tem-
poral  comparisons (Da Ponte et  al.  2015).
Object-based analyses  focus  on physically
meaningful  features  rather  than  pixels.
This is achieved through image segmenta-
tion into individual  tree crown (ITC)  poly-
gon  objects,  which  reduces  the  canopy’s
high  local  spectral  variability,  and  mini-
mizes the mismatch of tree crown geo-mis-
allocation (Dalagnol et al. 2019).  Win et al.
(2012) used image differencing method us-
ing two SPOT 5 pan-sharpened images ac-
quired in October 2007 and January 2009
to analyze canopy changes from forest har-
vesting. Other complex methods were de-
veloped,  such  the  LandTrendr  algorithm,
usually applied to a single spectral index or
variable,  such  as  Tasseled  Cap  Wetness
(TCW),  which  is  derived  from  a  Tasseled

Cap Transformation, was used as the spec-
tral index because of its sensitivity to dis-
turbance events and water  content so as
to map selective logging among other for-
est  disturbance  activities  in  Bago  moun-
tains, Myanmar (Shimizu et al. 2017).

Remote sensing has shown to be reliable
in mapping forest disturbances such as se-
lective  logging  (Andersen  et  al.  2014).  In
detecting selective logging, different algo-
rithms have their own merits. Often, differ-
ent algorithms are mostly compared to get
the best. While localized case studies often
provide  detailed  maps  of  forest  distur-
bance  that  are  useful  for  forest  manage-
ment,  large  scale  mapping  techniques
could offer vital scientific insights (Senf et
al. 2016). Presently, the major constraint is
the  ability  to  transfer  methodologies  de-
signed for certain case studies to a wider
geographic  extent  (Senf  et  al.  2016),  and
advancement  on  how  to  generalize  and
transfer current approaches will thus assist
in carrying out local to regional analysis of
forest  disturbances  such  as  selective  log-
ging (Miettinen et al.  2014). For example,
some methods that were designed for the
Amazon basin could perhaps be applied in
other tropical regions like Africa or the in-
sular  Southeast  Asia.  Examples  of  such
methods  are  segmentation  based  auto-
mated statistical method for gap detection
(Pithon  et  al.  2013)  and  combination  of
spectral  mixture  analysis  (SMA)  informa-
tion into one band,  using the Normalized
Difference Fraction Index (NDFI) to detect
forest areas with canopy damage (Souza et
al. 2005). Research of remote sensing tech-
niques applied in monitoring selective log-
ging is still  an active topic and innovative
techniques  are required to effectively  ap-
ply  the  increasingly  diverse  and  complex
remotely  sensed  data  acquired  or  pro-
jected to be soon acquired from space and
airborne sensors.

Accuracy Assessment
The validation of selective logging maps

was mostly achieved through  in  situ data
(Fig.  5),  and  when  it  is  not  available,  re-
mote sensing data, data from model simu-
lations,  or  prior  knowledge  of  the  study
area by experts of the area were often ap-
plied. Even though the alternative methods
normally  improve the  accuracy  of  the re-
sults,  in situ data remain as the most reli-
able method (Souza & Barreto 2000, Asner
et al. 2005, Burivalova et al. 2015, Lei et al.
2018,  Lima et al. 2019), but still  the collec-
tion of sufficient number of reference sam-
ples in a dense forest is a serious challenge
(Banskota et al. 2014). A reliable validation
technique must have an appropriate sam-
pling and response design for selecting and
labeling reference samples (Banskota et al.
2014). Forest inventory data are considered
inconsistent and are mostly complicated to
merge with  remote  sensing  data,  due  to
disparity in plot size and spatial resolution
of  remote  sensing  sensors  (Senf  et  al.
2016). In some case accuracy assessment is

often  avoided  since  historical  reference
datasets are in most cases very expensive
and rarely available, and the absence of a
statistically  reliable  accuracy  assessment
interferes  with  the  integrity  of  selective
logging maps (Banskota et al. 2014). Pinagé
et  al.  (2019) doubted  that  ground-based
studies  could  measure  canopy  effects  as
accurately as lidar, thus an explicit ground-
based validation for canopy gaps was not
conducted. Also, the study did not perform
ground-based  validation  for  understory
damage and biomass, since it was consid-
ered costly. In the case of logging classifi-
cation,  the  authors  calibrated  the  model
for  one  sampling  epoch  and  tested  the
classification for a separate epoch on the
same site. The authors plan to validate the
classification  approach  in  future  studies.
After  reviewing the elements  of  accuracy
assessment  in  the  published  studies,  sev-
eral papers did not provide sufficient detail
on  how  accuracy  assessment  was  per-
formed.  The  major  deficiencies  identified
were the characterization of the reference
data (e.g., in terms of description of sam-
pling  unit),  the  absence  of  a  probability
sampling design, and the absence of an er-
ror matrix. Lack of transparency in report-
ing  creates  credibility  issues,  interferes
with the possibility to compare maps, thus
the publication of  the set of  elements to
make  accuracy  assessment  transparent
and  reproducible  is  vital  in  providing  re-
mote  sensing  researchers  with  the  infor-
mation they need to assess the reliability of
new  methods  and  modeling  techniques
(Morales-Barquero et al. 2019). In thematic
mapping with categorical data, accuracy is
normally stated as percentages of correctly
classified cases for each mapped class by
constructing an error matrix (Souza et al.
2003,  Matricardi et al. 2010,  Hirschmugl et
al. 2014, Shimizu et al. 2017), and such accu-
racy measures are usually estimated from a
sample and, thus, are not reliable, making
the  error  matrix  increasingly  inadequate
for full accuracy reporting (Banskota et al.
2014).  Dalagnol et al. (2019) used a LiDAR
map as  a  reference  to  validate  very  high
resolution imagery.  Hethcoat et al.  (2018)
assessed the performance of Random For-
est (RF) models using ten-fold cross-valida-
tion based on randomly sampled database
subsets (which were split into 75% for train-
ing  and 25% was  withheld  for  validation),
then threshold  value of  classification was
applied to the validation data and the asso-
ciated error rates were determined. It is a
general  assumption that accuracy will  de-
pend on the level of information extracted
from an imagery, as well  as  its  pixel  size.
However, we did not find any association
between the overall accuracy and the log-
ging intensity mapped,  independent from
the size of the study area.

To  better  combine  field  and  inventory
data with remote sensing data, researchers
should  publicly  archive  their  field  data
upon publication,  overtly  including spatial
metadata,  and researchers  and managers
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participating  in  new  inventories  or  field
campaigns could incorporate remote sens-
ing in their  campaign designs (Senf et al.
2016). For future work to guarantee appro-
priate  interpretation  of  remote  sensing
data calls for standardized field data collec-
tion, acquired over larger areas and in plots
that consider forest disturbance dynamics
and  what  temporal  and  spatial  distur-
bances  can  or  will  be  captured  on  these
plots (Senf et al. 2016). An improved avail-
ability  and accessibility  of  high-  and very-
high spatial resolution imagery notably will
promote the creation of high-quality refer-
ence datasets for calibrating remote sens-
ing models  of  logging disturbances,  how-
ever, the data must be made accessible to
researchers  at  low  costs  (Olofsson  et  al.
2014).

Conclusion
In spite of several initiatives for monitor-

ing  selective  logging  in  tropical  forests,
mapping the areal extent or impacts of se-
lective logging utilizing remote sensing im-
agery  remains  a  challenge.  Selective  log-
ging is a key contributor to the economic,
social, and ecological dynamics of tropical
regions.  The long history of  selective log-
ging  in  tropical  forests,  spanning  several
decades, makes them ideal study systems
when assessing the long-term effects of se-
lectively logged areas and to notify future
management decisions.  Nevertheless, log-
ging impacts differ widely, making general-
ization,  as  well  as  policy  implementation,
difficult.  We  establish  that  a  variety  of
methods and sensors are especially impor-
tant  for  monitoring  selective  logging  in
tropical  forests.  While  our  review  docu-
ments a significant increase in studies map-
ping selective logging in recent years, we
also identified several challenges which re-
quire improvement:
• Forest monitoring programmes to assess

degradation  especially  from  selectively
logged  activities,  are  needed  elsewhere
within the tropical forests.

• Improved quality  and accessibility  of  re-
mote sensing data applicable at different
spatial scales would lead to more diversi-
fication of remote sensing users.

• More integration of remote sensing into
scientific  disciplines  dealing  with  other
types of research questions about degra-
dation by selective logging so as to fur-
ther  the  scientific  involvement  of  this
rapidly developing technology.

• There is need to increase scientific activi-
ties related to selective logging to other
regions  within  tropical  areas,  such  as
tropical  Africa,  which are disadvantaged
in remote sensing technology and knowl-
edge.

• More  sophisticated  data  fusion  tech-
niques  are  expected  in  the near  future,
that  can  be  more  effective  in  mapping
degradation by selective logging.

• Commitment  by  space  agencies  for  sys-
tematic  and  coordinated  observation  of
tropical forests on a sustainable basis and

with an open data policy.
• Technological  developments  associated

with unmanned aerial  vehicles to collect
and share UAV data at broader scales and
minimal costs are needed.

• The  innovation  of  accurate  automated
methods for processing LiDAR data could
be  of  critical  help  because  they  would
lower the data processing costs, allowing
for  data  acquisition  of  extensive  areas
while  providing  repeatable  and  consis-
tent estimates of vital forest attributes.

• Affordable  and reliable methods  are  re-
quired for analyzing dense time series of
satellite  image  time  series  that  provide
high spatial details.

• Improvement on how to generalize and
transfer approaches designed for certain
case studies to a wider geographic extent
will assist in carrying out local to regional
analysis of selective logging.

• More research  on  remote  sensing  tech-
niques  applied  in  monitoring  selective
logging are required to effectively apply
the increasingly diverse and complex re-
motely sensed data acquired or projected
to be acquired from space and airborne
sensors.

• Researchers  should  standardized  field
data collection so as to guarantee appro-
priate  interpretation  of  remote  sensing
data.
Solving these concerns in future research

can  assist  integrating  remote  sensing-
based  maps  into  operational  forest  man-
agement, and support an inclusion of selec-
tive  logging  disturbances  as  integrated
processes  into  local,  regional  and  global
ecosystem models.
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