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A bark beetle infestation predictive model based on satellite data in the
frame of decision support system TANABBO
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The European spruce bark beetle  Ips typographus L. causes significant eco-
nomic losses in managed coniferous forests in Central and Northern Europe.
New infestations either occur in previously undisturbed forest  stands (i.e.,
spot initiation) or depend on proximity to previous years’ infestations (i.e.,
spot spreading). Early identification of newly infested trees over the forested
landscape limits the effective control measures. Accurate forecasting of the
spread of bark beetle infestation is crucial to plan efficient sanitation felling of
infested trees and prevent further propagation of beetle-induced tree mortal-
ity. We created a predictive model of subsequent year spot initiation and spot
spreading within the TANABBO decision support system. The algorithm com-
bines open-access Landsat-based vegetation change time-series data, a digital
terrain model, and forest stand characteristics. We validated predicted suscep-
tibility to bark beetle attack (separately for spot initiation and spot spreading)
against beetle infestations in managed forests in the Bohemian Forest in the
Czech Republic (Central Europe) in yearly time steps from 2007 to 2010. The
predictive models of susceptibility to bark beetle attack had a high degree of
reliability (area under the ROC curve – AUC: 0.75-0.82). We conclude that spot
initiation and spot spreading prediction modules included within the TANABBO
model have the potential to help forest managers to plan sanitation felling in
managed forests under pressure of bark beetle outbreak.

Keywords: Spatial Predictive Model, Bark Beetle Infestation, GIS, ROC Curve,
Norway Spruce

Introduction
Bark  beetles  cause  severe  damage  to

coniferous  forests  in  the  Northern  Hemi-
sphere (Raffa et al. 2015). Spatio-temporal
analyses of bark beetle population dynam-
ics are the subject of study for several re-
search  teams  in  Europe  (Kärvemo  et  al.
2014,  Havašová  et  al.  2017,  Mezei  et  al.
2017) and in North America (Thatcher et al.
1980,  Simard et al. 2012,  Meddens & Hicke
2014,  Senf  et  al.  2015).  Spatially  explicit
models predicting the risk of tree mortality
are needed to efficiently mitigate damage
related to bark beetle attacks (Kärvemo et

al. 2014).
Predictive modelling  creates  a  model  of

future  behaviour  or  occurrence of  a  phe-
nomenon.  In  geographic  information  sys-
tems  (GIS),  spatial  predictive  modelling
aims to predict the occurrence of a certain
phenomenon in unknown areas based on
its  occurrence  in  space.  As  such,  spatial
predictive  modelling  relies  on  a  multi-lay-
ered  spatial  database  that  contains  at-
tribute information (slope, aspect, distance
from important objects, etc.) and their dis-
tribution in space (Gomarasca 2009).  The
spatial database is transformed into an ag-

gregation of attribute values to obtain an
index of  suitability  (or  of  the  contrasting
propensity) of the landscape to an occur-
rence of the modelled phenomenon. Vari-
ous  mathematical  and  machine  learning
methods have been applied to create spa-
tial  predictive  models  (Kuhn  &  Johnson
2013), such as multiple linear regression or
logistic  regression  (Pontius  &  Schneider
2001, Jakuš et al. 2005, 2017), multi-criteria
decision-making  using  crisp  or  fuzzy  set
theory (Lieskovsky et al.  2013,  Caha et al.
2014),  Dempster  Shafer  theory,  Bayesian
theory,  and  support  vector  machines
(Karell et al. 2017). The result of spatial pre-
dictive  modelling  is  usually  a  raster  with
cell values between 0 and 1, where a high
value indicates a high probability of occur-
rence of the modelled phenomenon.

Several  databases  or  statistical  models
based on a GIS approach have also been
developed to estimate bark beetle popula-
tion  dynamics  in  order  to  predict  future
damage or optimize forest protection mea-
surements (Thatcher et al. 1980, Simard et
al.  2012,  Kärvemo et al.  2014,  Meddens &
Hicke 2014), as operational and public data-
based models are missing.

Satellite remote sensing offers the oppor-
tunity for repeated mapping of  tree mor-
tality,  and  Landsat-resolution  (30  m)  im-
agery is sufficient to map the dynamics of
tree  mortality  due to bark  beetles  within
stands during the epidemic phase of a bee-
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tle outbreak (Wulder et al. 2006, Meddens
& Hicke 2014,  Havašová et al. 2015). Open-
access Landsat-based classifications record
the removal of canopy tree cover (Hansen
et al. 2014) or monitor forest health (Barka
et al. 2018, Rossi et al. 2019). The monitor-
ing  of  forest  defoliation  (Bucha  &  Barka
2010) and parametrized country-wide main
tree species can even reveal subtle canopy
changes due to beetle attack (Havašová et
al. 2017). Satellite data are reliable for the
estimation of bark-beetle-caused tree mor-
tality, especially in the later stages of bark
beetle  outbreak  (Havašová  et  al.  2015,
2017).  However,  bark-beetle-caused  tree
mortality  interacts  with  wind  damage
(wind-caused tree mortality  – Mezei et al.
2014a). This means that, despite many ad-
vantages,  the  ability  to  use  satellite  data
for the mapping of bark-beetle-caused tree
mortality has certain limitations.

Satellite  data,  especially  Landsat  prod-
ucts,  together  with  relevant  forest  stand
characteristics,  are  used  to  model  tree
mortality (Kissiyar et al. 2005, Simard et al.
2012,  Kärvemo  et  al.  2014,  Meddens  &
Hicke  2014).  The bark-beetle-induced tree
mortality  predictors  are  usually  various
stand  characteristics  obtained  from  for-
estry  databases  or  from  remote  sensing
sources (Simard et al. 2012,  Kärvemo et al.
2014,  Meddens & Hicke 2014) and various
landscape  characteristics  (Kissiyar  et  al.
2005, Simard et al. 2012).

The  TANABBO  (Tatra  Mountains  Bark
beetle infestation prediction model – Kissi-
yar et al. 2005,  Jakuš et al. 2005) decision
support  system  combines  freely  available
satellite imagery with stand characteristics
to  predict  the  occurrence  of  beetle-in-
duced tree mortality in subsequent years.
TANABBO  is  also  a  GIS-based  system  for
the evaluation of  forest  stand predisposi-
tion  to  bark  beetle  attacks  (Jakuš  et  al.
2017).  The system is based on the known

causal links between bark beetle outbreaks
and environmental  parameters.  A module
on the prognosis of a bark beetle stand in-
festation is also a part of the system. The
system  captures  vegetation  change  over
time using a time-series of Landsat images,
NDVI  (the  normalized  difference  vegeta-
tion index),  a digital  terrain model  at  the
resolution of Landsat pixel size, and avail-
able stand characteristics  (stand age,  vol-
ume,  average  diameter,  and  average
height) at the stand resolution from forest
management databases (Jakuš et al. 2003).
A system of partial models is used, where
each  partial  model  produces  an  output
which is later used as an input for the main
model. The main output from the forecast-
ing part of TANABBO is a subsequent-year
prediction of bark-beetle-caused tree mor-
tality.  This  forecast  is  important  for  the
planning of forest protection measures in
the subsequent year. The one-year forecast
of  bark-beetle-caused  tree  mortality  is
based on the combination of the two pro-
cesses related to the spread of tree mortal-
ity  over  the  landscape:  the  initiation  of
bark beetle spots and the spots spreading
(Jakuš et al. 2003,  Robertson et al. 2007).
Spot initiation means the creation of new
bark  beetle  infestations  in  areas  without
previous attacks,  which is  difficult  to pre-
dict and relates to long-distance beetle dis-
persal  occurring  even  during  beetle  epi-
demics (Jakuš et al. 2005). Spot spreading
represents  the  expansion  of  an  existing
bark beetle spot into a neighbouring forest
stand (Jakuš  et  al.  2005).  Spot spreading
becomes dominant over the course of the
beetle  outbreak,  and in  later  phases,  the
majority  of  new infestations  are adjacent
to previous years’ infestations (Kautz et al.
2011, Potterf et al. 2019).

Each predictive model requires quality de-
termination before its use. One of the most
widely  used  methods  to  validate  the  re-

sults of predictive modelling is the Receiver
Operating Characteristic (ROC) curve analy-
sis, first introduced in signal detection the-
ory (Egan 1975). In ROC curve analysis, the
area under the ROC curve (AUC) is a very
popular metric of prediction quality (Metz
1978,  Fawcett  2006).  This  method  is  also
useful to measure the quality of spatial pre-
dictive  models  and  maps  (Pontius  &
Schneider 2001,  Lieskovsky et al. 2013), as
well as to compare them.

The aim of our work is (i) to introduce an
algorithm of an updated module to predict
landscape-level spot bark beetle spot initia-
tion  and  spot  spreading  within  the  TAN-
ABBO decision support  system methodol-
ogy,  and  (ii)  to  validate  the  model  out-
comes  against  recorded  proxies  of  bark
beetle mortality data from public resources
in conditions of managed forests in 2008,
2009, and 2010 using ROC curve analysis.

Materials and methods

Study area and main disturbances
The case study area is a Division of “Vo-

jenské lesy a statky” (VLS, Military Forests
and  Properties),  s.p.,  Horní  Planá  in  the
Czech Republic (Fig. 1). VLS is a special-pur-
pose organization managing military train-
ing  areas.  The  forest  enterprise  manages
19,960 ha of land. Forests represent 16,569
ha of this area, and a water reservoir cov-
ers 203 ha; the rest of the area is covered
by grassland under intensive military activ-
ity (https://www.vls.cz/en). The rugged hills
with an altitude change of 100-150 m are a
landscape  typical  of  the  region.  Most  of
the  area  is  of  altitude  between  600  and
800 m,  with  the highest  point  at  1228 m
a.s.l. (Lysá Mt). The area partly belongs to
the  Bohemian  Forest  (the  Šumava  Mts.)
and partly  to the Šumavské podhůří  Mts.
The  mean  annual  temperature  varies  be-
tween 5 and 7 °C, and annual precipitation
totals  vary  between  700  and  800  mm
(Culek 1996).

Norway spruce (Picea abies L. Karst) is the
dominant tree species in the forests (69%),
very  often  growing  with  silver  fir  (Abies
alba Mill., 6%) and European beech (Fagus
sylvatica L., 5%). Scots pine (Pinus sylvestris
L., 12%) is abundant at lower altitudes. For-
est  stands  younger  than  40  years  cover
23.5%  of  the  area,  and  32%  of  stands  are
older  than  100  years  (https://www.vls.cz
/en). Natural conditions are represented by
Querceto-Fagetum to  Fageto-Piceetum for-
est altitudinal zones. Forests form a large
complex in higher altitudes surrounded by
meadows and pasturelands.

Wind,  snow,  and  bark  beetles  are  the
main disturbances to spruce forests. Wind-
throws (föhn is a common phenomenon in
the study area) are the most important dis-
turbance factor. In recent years, incidental
felling due to being windthrown and bark
beetle infestations have accounted for ap-
proximately 50% of total felling. Bark beetle
outbreaks in the study area follow trends
of  bark  beetle  populations  in  the  entire
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Fig. 1 - Study area (The Bohemian Forest, Czech Republic).
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Czech  Republic,  with  peaks  in  the  mid-
1980s and mid-1990s. A long-term outbreak
started in 2003 following a strong drought
in the whole of Central Europe (Rouault et
al.  2006).  This  outbreak was triggered by
windstorm Kyrill in 2007 (Fink et al. 2009).
Since  2015,  a  new  bark  beetle  outbreak
started  as  a  result  of  drought  and  warm
vegetation seasons.

Prediction framework
The predictive model involved known pa-

rameters controlling the occurrence of tree
mortality by spruce bark beetle (see more
details in Input data). We used yearly data
from 2007 to 2010 to predict and validate
the outcomes. The study area was hit by a
large  windstorm,  Kyrill,  in  January  2007
(Fink et al. 2009); therefore, we chose the
three  years  after  the  storm  (2008,  2009,
and 2010) to capture newly created beetle
infestations during the beetle outbreak.

Input data to predict beetle infestations
Age  structure,  percentage  of  spruce,

stand  density,  and  wood  volume  values
were taken from the forest  management
plan; potential  solar radiation (Hofierka &
Suri  2002)  was  derived  from  the  Shuttle
Radar  Topography Mission (SRTM) digital
elevation model  (DEM, 30 m resolution  –
http://srtm.csi.cgiar.org/).  NDVI  was  calcu-
lated from Landsat  5  and 7 satellite  data
(https://landsat.gsfc.nasa.gov/).  For  2008,
the  NDVI  raster  layer  was  based  on  En-
hanced  Thematic  Mapper  Plus  (ETM+)
scenes from July 28 and June 10; for 2009,
on the TM (Thematic Mapper) scene from
August 24; and for 2010, on the TM scene
from July 10. The selection of data was to a
large extent limited by the public availabil-
ity of satellite time-series and GIS data. The

selection of stand characteristics from for-
est management databases was based on
our  previous  work  (Mezei  et  al.  2014a,
2014b).

Ground-truth data on bark-beetle-caused 
tree mortality

To validate  the  predictive model,  model
quality  parameters (performance metrics)
were calculated using maps of bark-beetle-
caused tree mortality from 2008, 2009, and
2010 (Fig. 2).

As  a  proxy  for  the  localization  of  bark-
beetle-caused  tree  mortality,  we  used
Landsat-based and expert-classified forest
health data available as Web map service
(WMS) layers from the Czech Institute of
Forest  Management  (Ústav  pro  hospodář-
skou  úpravu  lesů  Brandýs  nad  Labem –
ÚHÚL);  these  data  were  available  until
2016.  The  portal  has  published  classified
Landsat  time-series  data  (forest  stands
health  status)  since  1994  (Stoklasa  2003,
Barka  et  al.  2018).  These  data  were  ac-
cepted  as  a  good  estimation  of  forest
health  in  the  Czech  Republic  and  in  the
study area, where they corresponded to ar-
eas  infested  by  bark  beetles.  The  forest
health status layers contain the following
categories: 0, healthy stands; 0/I, first signs
of  damage;  I,  small  damage;  II,  medium
damage;  IIIa,  strong damage;  IIIb/IV,  very
strong damage. We transformed the forest
health  data  to  bark-beetle-caused  tree
mortality.  We  considered  pixels  classified
to  the  classes  “IIIa,  strong  damage” and
“IIIb/IV, very strong damage” as bark-bee-
tle-caused tree mortality, based on expert
knowledge  of  the  study  area.  The  pixels
classified  as  bark-beetle-caused  tree  mor-
tality  are  considered  as  such  only  in  the
first year of occurrence. The yearly combi-

nation of beetle occurrences resulted in a
time series of bark-beetle-caused tree mor-
tality.

For the next step, we measured the dis-
tances  between  new  and  previous  years’
infestation  spots  (Euclidean  distance  tool
in  ArcGIS® v.  10.5  – Esri,  Redlands,  CA,
USA). Based on the proximity to the previ-
ous year’s  infestation,  we considered pix-
els more distant than 30 m (Landsat resolu-
tion, delineating neighbouring pixels) from
the previous year’s infestation as spot initi-
ation;  otherwise,  they  were  considered
spot spreading.

Predictive maps of susceptibility to a 
bark beetle attack

In our study, the prediction of bark beetle
attack probability was based on the combi-
nation of susceptibility to bark beetle spot
initiation and susceptibility  to the spread-
ing of existing bark beetle spots.

Prediction of susceptibility to bark beetle 
spot initiation

Based on the TANABBO methodology (Ja-
kuš et al. 2017) we applied logistic regres-
sion (Hair et al. 2010) to estimate suscepti-
bility to the initiation of bark beetle spots
over the landscape. Logistic regression is a
special  form  of  multivariate  regression
analysis in which the dependent variable is
a  non-metric,  dichotomous  (binary)  vari-
able. It is also the case with spatial predic-
tive models, because we predict the occur-
rence of phenomena,  i.e., whether or not
they are present at a given site. This is also
the reason why the better-known linear re-
gression is not suitable for this type of clas-
sification problem.

Tree  mortality  (presence  of  pixels  with
dead trees) caused by spot initiation was
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Fig. 2 - Map of spruce bark
beetle infestations in the

study area (The Bohemian
Forest, Czech Republic) in

2008-2010.
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the dependent factor and was represented
as presence (1) or absence (0) of new (ini-
tial) bark beetle spots in the analysed year.
The  distance  from  existing  spots  (dst),
NDVI (ndv), solar radiation (sol), age struc-
ture (age),  stand density (dns),  and wood
volume per hectare (vol) were the indepen-
dent factors in the statistical analyses. Be-
fore calculating the logistic regression, we
statistically analysed the significance of the
input parameters by calculating the Gini in-
dex  (Gini  1912)  and  mutual  independence
by calculating the correlation coefficients.
The Gini coefficient, sometimes called the
Gini index or Gini ratio (Gini 1912), is a mea-

sure of statistical dispersion used primarily
in economics,  but  it  is  also useful  in geo-
statistics (Wackernagel 2003). The Gini in-
dex  measures  the  inequality  among  the
values of  a variable,  in our case between
the values of  input factors in the healthy
forest  and  the  values  in  the  bark  beetle
spots. We applied it to calculate the signifi-
cance of input factors in spatial predictive
modelling.

The  result  of  the  logistic  regression  in
each raster cell (corresponding to the input
raster  data)  forms  a  prediction  model  of
spot initiation.

Prediction of susceptibility to a bark 
beetle spot spreading

The relationship between active bark bee-
tle spot size and independent factors (the
same as in the case of modelling suscepti-
bility to bark beetle spot initiation) was the
basis for calculations of the potential of a
bark  beetle  spot  spreading  (Jakuš  et  al.
2005). In the frame of raster GIS, it could
be  understood  as  the  estimation  of  the
likelihood that a given cell would be added
to  an  existing  spot,  thus  increasing  the
spot’s size.

First, for each bark beetle spot, the spot
size  was  computed.  This  means  that  for
each  raster  cell,  the  spot  size  containing
that cell was calculated. Cells not affected
by bark beetle spots have a value of 0. The
potential for the bark beetle spot size was
calculated using linear regression. The size
of the active bark beetle spot was consid-
ered  as  the  dependent  factor,  and  the
other parameters (distance, NDVI, solar ra-
diation,  age  structure,  stand  density,  and
wood  volume  per  hectare)  were  consid-
ered as the independent factors. All factors
were normalized before entering the calcu-
lation,  i.e.,  their  values were transformed
to values ranging from 0 to 1. The resulting
multiple  linear  regression  function  was
used  for  the  calculation  of  the  potential
bark  beetle  spot  size  for  each  pixel.  The
raster of the relative resistance was com-
puted from the potential bark beetle spot
size by the function 1/s, where s is a poten-
tial spot size. Based on a GIS algorithm of
movement  of  a  friction surface  (Eastman
1999), the model of relative resistance was
used as a friction surface in the computa-
tion  of  cost  distances  from  existing  bark
beetle spots. The maximum spreading dis-
tance was derived from the maximum spot
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Fig. 4 - The predictive 
model of the susceptibility 
of the study area (The 
Bohemian Forest, Czech 
Republic) to bark beetle 
attack in 2008.
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size in the study area. The cost distances
were linearly resized to 0-1 to create a pre-
dictive  model  of  the  probability  of  bark
beetle spot spreading (maximum cost dis-
tance corresponds to 0, distance 0 m corre-
sponds to 1).

A combined predictive model of 
susceptibility to bark beetle attack

A model  of  susceptibility  to bark beetle
attack was created based on the model of
bark beetle initiation and the model of bark
beetle spreading using the maximum oper-
ation (the MAX() function in map algebra).
In other words, each value of the model of
susceptibility  to  bark  beetle  attack repre-
sented  the  higher  corresponding  value
from the two predictive models described
above. The flowchart of the methodology
of the creation of the predictive models is
shown  in  Fig.  3.  Details  of  the  complete
methodology of the creation of the predic-
tive models are described in  previous pa-
pers (Jakuš et al. 2005, 2017).

Validation of the predictive models and 
predictive maps

In this paper, we propose a methodology
and new module of the TANABBO decision
support system for the validation of all pre-
dictive models. We applied ROC curve anal-
ysis  according  to  Pontius  &  Schneider
(2001),  where  AUC is  computed using the
trapezoidal rule of integral calculus. To vali-
date  the  predictive  model  for  each  year,
we used  reference  bark  beetle  spots  de-
tected in the subsequent year (Fig. 4). We
proposed the application of  two types of
validation. In the first case (combined), we
validated all models, i.e., models of suscep-
tibility to the initiation, spreading, and at-
tack, using all bark beetle spots detected in
the subsequent year. In the second (sepa-
rated)  case,  we  validated  the  models  of
susceptibility  to  bark  beetle  attack  initia-
tion only  using the  initialized bark  beetle
spots  and the models  of  susceptibility  to
bark beetle spots spreading only using the
spread spots.

Data processing and analysis
We performed most of the data prepara-

tion and processing in the TANABBO v. 1.9
software system (Jakuš et al. 2017 – http://
www.tanabbo.org).  The TANABBO 1.9 en-
ables time-series analysis of data on spruce
stand mortality. Statistical analysis of input
parameters,  logistic  regression,  and  ROC
curve  analysis  were  performed  with  the
Python programming language and the li-
braries NumPy,  SciPy,  Matplotlib,  and sci-
kit-learn.

All  predictive models were visualized by
predictive maps created in the ArcGIS® v.
10.5 software environment.

Results
In the case study, we created predictive

models of the susceptibility of an area to a
bark  beetle  attack  for  2008,  2009,  and
2010.  For  each  model,  we  calculated  pa-

rameters of its accuracy based on the pro-
posed methodology.

Statistical analysis and predictive model
creation

The results of preliminary statistical analy-
sis (correlation matrix and Gini index calcu-
lation) are presented in  Tab. 1 and  Tab. 2.

The  analysis  was  performed  on  734,608
(937  × 784)  raster  cells  representing  the
study area. The results show the statistical
significance of the input parameters (Tab.
1)  and  their  mutual  independence  (no  or
low correlation – Tab. 2).

The  coefficients  of  regression  functions
for the creation of the predictive model of
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Tab. 2 - Correlation matrix of input factors.

Input factor
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Distance from spots 1.00 - - - - -

NDVI 0.11 1.00 - - - -

Solar radiation 0.00 -0.03 1.00 - - -

Age structure -0.15 -0.01 -0.02 1.00 - -

Stand density 0.12 -0.10 -0.02 -0.18 1.00 -

Wood volume ha-1 -0.10 0.01 0.00 0.44 0.17 1.00

Tab. 3 - Coefficients of logistic regression functions for the creation of the predictive
models of susceptibility to the bark beetle spot initiation for 2008, 2009, and 2010.

Parameters
Year

2008 2009 2010

Distance from spots -36.7099 -26.9146 -18.9125

NDVI -1.6011 -0.0525 -0.5652

Solar radiation -0.0240 -0.2789 -0.2934

Age structure 1.0524 0.6254 1.0125

Stand density -0.0004 -0.0021 0.0001

Wood volume ha-1 -0.3194 -0.4225 -0.3119

Tab.  4 -  Coefficients  of  linear  regression  functions  for  potential  bark  beetle  spot
spreading calculations for 2008, 2009, and 2010 (all parameter values were normal-
ized).

Parameters
Year

2008 2009 2010

Constant 0.732 0.598 0.731

Distance -0.535 -0.622 -0.443

NDVI -0.607 -0.564 -0.591

Solar radiation -0.303 -0.212 -0.178

Age structure 0.47 0.419 0.416

Stand density 0.192 0.267 0.043

Wood volume ha-1 -0.572 -0.545 0.521
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ryTab. 1 - Gini index of all input factors for 2008, 2009, and 2010, which expresses the
difference in the distribution of individual factors in bark beetle spots compared to
the distribution in the forest (the larger the absolute value of the index, the greater
the difference).

Input factor
Year

2008 2009 2010

Distance from spots -0.45 -0.64 -0.48

NDVI -0.16 -0.24 -0.19

Solar radiation -0.12 -0.12 -0.15

Age structure 0.19 0.21 0.15

Stand density -0.13 -0.07 -0.04

Wood volume ha-1 0.16 0.16 0.15
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susceptibility to bark beetle spot initiation
from 2008 to 2010 are shown in Tab. 3, and
the  coefficients  of  linear  regression func-
tions for potential spot size calculation are
shown  in  Tab.  4.  The  size  of  the  coeffi-
cients  also  indicates  the  relative  impor-
tance of the input factors.

The maximal spot size during the analysis
period  in  the  study  area  was  52,200  m2;
thus, we used the value 228 m (calculated
as a square root) as the maximal distance
of bark beetle spot spreading in construct-
ing the predictive model of susceptibility to
a bark beetle spot spreading (cells beyond
a  distance  of  228  m  from  existing  spots
were ineligible).

The predictive models of the susceptibil-

ity  of  an area to bark beetle attack were
created  using  both  the  above-described
models and the MAX() function. All predic-
tive models are shown as predictive maps
in  Fig.  4 and Figs. S1-S2 in Supplementary
material.

Validation of predictive models
Fig.  S3  (Supplementary  material)  shows

the validation of the combined spot initia-
tion  and  spread  predictive  models  (e.g.,
2008,  AUC=0.82).  The  validation for  sepa-
rate  spot  initiation  and  spot  spreading  is
shown in  Fig. 5. The results of the valida-
tion of all predictive models created within
our  case study are summarized in  Tab.  5,
which contains the mean of all  predictive

values  (ma),  mean  of  predictive  values  in
bark  beetle  spots  (ms),  and  the  AUC for
each model. For the prediction of suscepti-
bility to bark beetle spot initiation, the AUC
values ranged from 0.71 to 0.82. The  AUC
values for the model of susceptibility to a
bark  beetle  spot  spreading  ranged  from
0.72 to 0.76.

The  combined  type  of  validation  shows
relatively high accuracy in the prediction of
all infested areas. Separated types of vali-
dation show better results for bark beetle
spot spreading.

Discussion
The use of public data derived from the

Landsat  time series is  sufficient for moni-
toring  beetle  outbreaks  during  epidemic
phases  (Havašová  et  al.  2015).  However,
mid-resolution  satellite  scenes  represent
an important  data source.  We used a  na-
tional web service (Stoklasa 2003, Barka et
al. 2018), with limited references. Havašová
et al. (2017) showed that the national web
service data could be more precise in bark
beetle  damage  identification  than  data
from  the  well-referenced  Global  Forest
Watch service (Hansen et al. 2014).

The main limitation of our reference tree
mortality data was the difficulty  in  distin-
guishing between wind damage and bark-
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Tab. 5 - Results of the validation of predictive models from 2008 to 2010. (ma): mean
of all predictive values of the model; (ms): mean of predictive values in bark beetle
spots; (AUC): area under ROC curve. The higher the ms value compared to the ma val-
ue, the more reliable the model.

Year of
prediction ma ms AUC

2008 0.110 0.435 0.82

2009 0.063 0.242 0.79

2010 0.182 0.631 0.75

Fig. 5 - The results of the 
second (separated) type of
validation of predictive 
models. The ROC curves 
and the calculated AUC val-
ues of the predictive mod-
els from 2008 to 2010 using
classified bark beetle spots
(initialized spots were used
for validation of the model 
of susceptibility to bark 
beetle spot initiation and 
spread bark beetle spots 
for validation of the model 
of susceptibility to bark 
beetle spots spreading).
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beetle-caused tree mortality. However, our
study was performed in a period after ex-
tensive  windstorm  damage,  when  bark
beetles  were the dominant cause of  tree
mortality,  which  was  the  subject  of  the
study.  This  allowed us  to use public  data
about forest health as a proxy of bark bee-
tle damage.

Our models show relatively good results
in the early stages of the bark beetle out-
break.  According  to  Økland  et  al.  (2016),
this is a period when an attack is relatively
hard to predict. Our study provides testing
and  extension  of  the  TANABBO  decision
support system and also the design and im-
plementation of a module for its validation.

Statistical analysis and predictive model
creation

The predictors used herein are similar to
predictors  applied  by  other  authors  (Si-
mard et al. 2012,  Kärvemo et al. 2014). We
used Landsat-based NDVI as an important
predictive variable. Its significance was also
confirmed by statistical analysis (Gini index
and coefficients of  regression equations).
Meddens & Hicke (2014) also used several
Landsat-based  indices,  including  NDVI,  as
explanatory variables to predict bark-bee-
tle-caused tree mortality.  The use of data
on tree mortality from the previous year is
in  agreement  with  the approach used by
Kärvemo et al. (2014). During an outbreak,
infestations  are  usually  spatially  concen-
trated and show a high spatial and tempo-
ral  autocorrelation  pattern  (Simard  et  al.
2012).  Kautz et al. (2011) and  Simard et al.
(2012) used the distance to the closest local
infestation as a bark beetle pressure vari-
able. This parameter also proved to be sig-
nificant in our study. Other important fac-
tors are wood volume per ha, age, and po-
tential solar radiation. On the contrary, the
least significant parameter  in our  analysis
was density. The statistical significance of
the solar  radiation parameter  was not so
high  in  our  analysis,  but  this  parameter
alone has the potential for more accurate
determination based on more accurate dig-
ital models created by aerial laser scanning.
Nevertheless, the results showed that the
predictive models of susceptibility to bark
beetle attack from the TANABBO decision
support  system  provided  predictions  of
subsequent  years’  infestations  with  rela-
tively high accuracy (AUC = 0.75-0.82).

Validation of whole predictive models
Modelling  complex  spatiotemporal  phe-

nomena  such  as  forest  susceptibility  to
bark  beetle  attack  is  a  very  challenging
problem, which deals with complex nonlin-
ear conditioning parameters that are often
dynamic  and  change  dramatically  over
time.  Therefore,  validation  results  above
0.90  in  these  types  of  modelling  are  ex-
tremely hard to achieve. In our study, the
AUC values of the final models ranged from
0.75  to  0.82  (Tab.  5).  Phillips  &  Dudik
(2008) suggested  that  models  with  AUC
values above 0.75 should be considered as

useful  for  predictions  (Ortiz  et  al.  2013).
Therefore,  the  validation  result  of  AUC =
0.75 can be considered as reasonable, and
the susceptibility model can be considered
as  usable  and  reliable.  Kärvemo  et  al.
(2014) used  boosted  regression  trees  for
large-scale  risk  mapping  of  an  eruptive
bark beetle.  The model  was validated for
multiple years and gained AUC results rang-
ing from 0.729 to 0.818.

An  interesting  point  is  that  our  model
was  more  accurate  for  the  prediction  of
bark  beetle  attack  in  2008  (AUC =  0.82)
than in subsequent years. This result indi-
cated that our model better predicted bee-
tle  infestations  just  after  wind  damage
(from  2007,  otherwise  not  included  in
study), which is likely explained by the spa-
tial  dependence  of  proximity  to  wind-
thrown trees in subsequent years (Potterf
et al. 2019).

Validation of partial models
Our two types of validation (validation of

models of all  bark beetle infestations and
separate validation of bark beetle infesta-
tions created by spot initiation and infesta-
tion  caused  by  existing  spots  spreading)
helped us more deeply understand under-
going processes. The first (combined) type
of  validation  did  not  show  large  differ-
ences between the partial models and the
final  predictive  model  (AUC for  initiation:
0.71-0.82,  AUC for spreading:  0.70-0.76,  fi-
nal predictive models  AUC 0.75-0.82). One
of the key variables in both models is the
distance from the infestations of the previ-
ous year, therefore the partial models are,
to a certain extent, interchangeable.

On the  other  hand,  the  second type  of
validation  (separate)  showed  significantly
better prediction of the processes of exist-
ing  spot  spreading  (AUC 0.86-0.95)  than
prediction of new bark beetle infestations
(AUC 0.56-0.64). This is caused by the sig-
nificance  of  distance  from  the  previous
year’s infestations and especially by hypo-
thetical  overlay  between  spot  initiation
and spot spreading at short distances from
the last year’s infestations. We can see that
on ROC curves for spot initiation, the graph
is even below the diagonal for small false
positive rate (FPR) values,  and  vice  versa;
for spreading, the ROC curve grows rapid-
ly. To summarise, it is easier to predict spot
spreading than spot initiation (Økland et al.
2016).

The  final  effect  of  the  described  pro-
cesses is the confirmation of relatively high
accuracy of the final predictive model.

Implementation in forest management
The described and validated algorithm for

prediction  of  bark  beetle  infestation  is  a
core  part  of  the  TANABBO  decision  sup-
port system (Kissiyar et al. 2005,  Jakuš et
al. 2005, 2017). The one-year prediction can
potentially  be  applied  in  the  planning  of
forest  protection  measures  in  areas  af-
fected by  bark  beetle  outbreaks  or  areas
with extensive wind damage and expected

bark  beetle  outbreak.  Important  limita-
tions of the practical use of our models are
the  difficulties  in  distinguishing  between
wind- and bark-beetle-caused tree mortal-
ity  with  the use  of  Landsat  data.  On the
other hand, the interaction between wind-
and bark-beetle-caused tree damage (Me-
zei  et  al.  2014a)  could  possibly  improve
those negative effects on model accuracy.

A  limitation  of  Landsat  data  is  the  fact
that in the mountainous conditions of cen-
tral Europe, there is usually only one cloud-
free Landsat scene available in the course
of one year.

Conclusions
The  beetle  infestation  model  imple-

mented within the TANABBO decision sup-
port system (Kissiyar et al.  2005,  Jakuš et
al. 2005, 2017) relatively accurately predicts
tree mortality as a combination of spot ini-
tiation and spot  spreading over  the  land-
scape (AUC = 0.75-0.82).
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Supplementary Material

Fig.  S1 -  The predictive model  of  the sus-
ceptibility of the study area to bark beetle
attack in 2009. 

Fig.  S2 -  The predictive model of the sus-
ceptibility of the study area to bark beetle
attack in 2010. 

Fig. S3 -  The results of the first (combined)
type of validation of predictive models: the
ROC curves and the calculated AUC values
of  the  predictive  models  from  2008  to
2010.
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