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A review of the performance of woody and herbaceous ornamental 
plants for phytoremediation in urban areas

Maurizio Capuana Urban and periurban areas are often contaminated by several pollutants. Phy-
toremediation is considered to be an effective and eco-friendly strategy for
the restoration of these contaminated lands. For this purpose, the exploitation
of ornamental plants could be an additional option, due to their positive im-
pact on the landscape. In this paper, we reviewed a selection of species which
have been proposed for utilization in phytoremediation. Several tree species
have been introduced in the past into urban environments for parks, gardens
and avenues, with a selection studied for their capacity to absorb, tolerate,
and translocate contaminants. Shrubby and herbaceous species are also com-
monly exploited for their ornamental features and are now studied for phy-
toremediation  purposes.  The  responses  of  several  effective  species  to  the
presence of heavy metals or dangerous organic compounds in the growth sub-
strate are examined in this paper.
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Introduction
Environmental  pollution is  an  increasing

global  problem.  Contaminants  vary  de-
pending upon their source and the type of
ecosystem involved. Urban areas can be af-
fected  by  several  organic  and  inorganic
contaminants,  which  negatively  impact
soils, water and the atmosphere (Biasioli et
al.  2006).  The study of  the effect of  con-
tamination  by  pollutants  on  these  urban
environments  and  potential  solutions  to
the problems associated with soil contami-
nation and rehabilitation dates to the last
few decades (Tiller 1992).

Urban and periurban soils are often pol-
luted as consequence of human activities.
Brownfield sites,  mainly located in periur-
ban sites, reflect industrial heritage and are
probably  the  most  common  scenarios
where urban and periurban contaminated
soils are found (Sleegers 2010). In general,
heavy metals are the major contaminants:

lead is commonly found near roads and as-
sociated with zinc and cadmium (Garcia &
Millan 1998); excessive copper is frequent-
ly detected in soils used for a long period
as  agricultural  land,  especially  vineyards
(Bretzel & Calderisi 2006), and chromium is
a residual of some industrial activities (Za-
yad & Terry 2003). Organic pollutants can
also injure urban soils by direct contamina-
tion,  or  after  initial  emission  into  the  at-
mosphere  followed  by  transport  in  both
gaseous and particulate forms, and subse-
quent accumulation in  soils  after  dry  and
wet atmospheric deposition (Cachada et al.
2012). Urban soils may also be very differ-
ent to more natural soils, due to lower or-
ganic  fraction,  water  drainage  and  aera-
tion,  different  pH  value,  microorganism
content and the presence of anthropic ma-
terial.  These features can change the per-
formance of these soils with respect to pol-
lutants (Tiller 1992,  Schleu et al. 1998). As
stated by Cunningham & Berti (1993) “new
technologies  are  needed  to  address  nu-
merous  contaminants,  especially  those
that are neither volatile nor mobile in soil
solution”.  Plants  have  been  proposed  to
mitigate  the  dangerous  effects  of  pollu-
tants,  with  phytoremediation  recognized
as a promising technology for the recovery
of contaminated environments (Salt et al.
1995). Phytoremediation could be success-
fully exploited in urban territories; in these
contexts,  many  herbaceous  and  some
woody  species  (including  forest  species)
are suitable for  planting because of  their
ornamental features and adaptability to in-
habited areas. Furthermore, plants are use-
ful sensors to identify environmental con-
tamination and potential exposures to pol-
lutants (Henry et al. 2013). In fact, some of
these species show the capacity to absorb,

hold or translocate specific contaminants;
moreover,  these  ornamentals  pose  little
threat  to  food  chain  contamination,  and
can be appreciated by the resident popula-
tions  for  their  positive  impact  on  land-
scape.

In the more circumscribed field of flower-
beds and urban green plantations, special
mixtures of topsoil are commonly used and
rules have to be followed with regards to
the  presence  of  contaminants  (Huinink
1998). Risks are higher in allotments, since
contaminants could be transferred to the
food  chain  (Scheyer  2000,  Khalid  et  al.
2017).  Attention  has  to  be  paid  to  parks,
playgrounds,  kindergartens  and  urban  ar-
eas where people come into close contact
with  soil  (Abrahams 2002,  Chiesura  2004,
De Miguel et al. 2006, Lee et al. 2006, Ljung
et al.  2006a,  Ljung et al.  2006b). In these
areas, selected ornamental plants may play
an important role in reducing the presence
of pollutants, while at the same time giving
a pleasant temporary decoration. Botanists
have elaborated several  definitions  of  or-
namental  plants;  these can be defined as
plants  that  have  highly  ornamental  fea-
tures such as ornamental flowers, fruits or
foliage (Li & Zhou 2005). Nevertheless, we
must  also  consider  that  the  ornamental
value of a plant may vary according to the
different  tastes  and  traditions  of  each
country.

The focus of  our  attention is the “origi-
nal” soils, and the present article is aimed
primarily at suburban areas, which can be
even  heavily  contaminated,  due  to  their
past uses. If the plants chosen to be used
in remediation are tree species, several se-
lection  criteria  have  to  be  taken  into  ac-
count  (Conway  & Vander  Vecht  2015),  in-
cluding problems linked to climate change
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(Roloff et al. 2009, Killi et al. 2018) and the
preferences  expressed  by  the  resident
populations  (these inclinations  are gener-
ally for plantations with high level of biodi-
versity  – Carrus  et  al.  2015).  Also,  it  is  al-
ways  advisable  to  consider  all  of  the  ac-
tions related to the sustainability of planta-
tions (Ferrini & Fini 2011) and the analysis of
costs  for  their  periodic  removal  and  dis-
posal (Berndes et al. 2004, Lewandowski et
al. 2006, Compernolle et al. 2012, Saxena et
al. 2019, Wan et al. 2016).

In  this  context,  we might  also  consider
the possible use of tree planting for short-
rotation  coppicing,  by  which  a  profitable
recovery  of  the  used  plants  can  be  per-
formed. For  instance,  willows may be ex-
ploited for  this  purpose,  since these spe-
cies display high ornamental value and are
suitable  for  bioenergy  production  com-
bined with potential for phytoremediation
(Guidi et al. 2013, Guidi Nissim et al. 2014b).
Therefore, the choice of species to be used
for  phytoremediation  includes  considera-
tion of criteria such as respect for biodiver-
sity,  easy  harvesting  management,  by-
product  utilisation and possible economic
returns.

After  their  use  for  soil  remediation,  all

plants  (woody  and  herbaceous)  must  be
harvested  and  treated,  since  the  content
of pollutants is an important concern. Sev-
eral  solutions  are  available  for  this  pur-
pose,  including  compacting,  composting,
biogas  production and pyrolysis  (Blaylock
& Huang 2000,  Nanda Kumar et  al.  1995,
Garbisu & Alkorta 2001). The easiest proce-
dure is incineration of biomass, with recov-
ery of  residual  heavy metals.  When orna-
mental flowers are used, cut flowers with
limited contaminants content can be even-
tually sold.

An overview is provided of the most ef-
fective woody and herbaceous plants (tree
species,  shrubs  and  herbaceous  flowers)
for the remediation of urban and suburban
areas, through analysis of recent literature
illustrating how these species react when
facing  either  inorganic  (heavy  metals)  or
organic contaminants. This review is specif-
ically  addressed  to  a  selection  of  species
suitable for exploitation in urban environ-
ments, due to their adaptability, ornamen-
tal characteristics and appreciation by resi-
dent populations; the proposed selection,
albeit large, is mainly focused on the spe-
cies best suited to European and American
environments.

Several  tree species  have been success-
fully used in urban parks, gardens and av-
enues;  for  instance,  in  Europe  pines,  cy-
presses,  poplars,  willows,  birches,  syca-
mores and lindens are widely planted (Mil-
ler  et  al.  2015).  Numerous  recent  studies
demonstrated that some tree species have
a good attitude to tolerate, absorb and re-
move specific  contaminants  from the soil
(reviewed by  Mahar et al. 2016,  Pajević et
al.  2016). Trees can enhance the aesthetic
quality  of  urban  landscape  (Chen  et  al.
2009),  simultaneously  providing  other
functions,  such  as  improved  air  quality
(Mukherjee & Agrawal 2018), reduction of
noise pollution (Pathak et al. 2011), mitiga-
tion of waterlogging (Livesley et al.  2016)
and reducing heat island effects (Scholz et
al. 2018 – Fig. 1, Fig. 2).

A  great  variety  of  herbaceous  and
shrubby  species  have  been  analysed  for
phytoremediation  purposes  (reviewed  by
Liu et al.  2018 – Fig. 3),  but many still  re-
main  to  be  studied.  Furthermore,  plants’
association,  with  its  huge  possibilities  of
combinations,  offers  interesting  perspec-
tives and is therefore discussed.

The  choice  of  ornamental  woody  and
herbaceous  plants  for  urban  (and  periur-
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Fig. 1 - In vitro culture for 
the rapid mass propaga-
tion of plants to be 
exploited in phytoremedia-
tion: (a) multiclonal culture
of Populus alba; (b) in vitro-
rooted plantlet of Salix 
alba.

Fig. 2 - Woody species for 
phytoremediation: (a) a 
poplar plantation in an 
urban site (outskirts of Flo-
rence); (b) Betula pendula.
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ban)  environments  should  also  take  into
account some factors. In these sites (often
smaller  areas  compared  to  the  country-
side),  the  problem  of  the  scattering  of
leaves  could  be  more  relevant;  especially
when  using  trees,  and  for  species  that
translocate pollutants to the leaves, leaves
should  be  periodically  collected  and
treated. Moreover, due to the greater an-
thropic  presence in  urban  site  and  trans-
port constraints,  it  is  probably opportune
to  choose  species  that  have  less  mainte-
nance needs and leaves which are easier to
collect at the end of the leaf life-cycle.

Heavy metals
Pollution from industrial emissions, efflu-

ents  and  solid  discharges  are  the  main
source  of  an  abnormal  high  presence  of
heavy metals in soils. In general, numerous
human activities  result  in the emission of
these  harmful  pollutants  that  enter  into
the  biosphere  through  wastes  (emission,
waste-water  and  waste  solid),  including
municipal wastes in agriculture and exces-
sive use of fertilizers. Several plant species
have  the  capacity  to  absorb  and  translo-
cate specific metals; a selection of woody
and  herbaceous  species,  which  could  be
identified  as  “multipurpose  species”,  are
reviewed below,  for their  possible  utilisa-
tion in metal remediation coupled to con-
siderable ornamental features (Tab. 1,  Tab.
2).

Woody species
Among tree species traditionally used in

urban and periurban plantations, a limited
number showed suitability for phytoreme-
diation purposes. Analysis of the recent lit-
erature indicates that the most promising
are some species of the Salicaceae family
(Salix spp.,  Populus spp.), but some others
also  show  significant  pollution  resistance
traits,  such as  Ailanthus  altissima,  Robinia
pseudoacacia,  Betula pendula,  Carpinus be-
tulus, Ginkgo biloba and  Platanus hispanica
(Dadea  et  al.  2017).  Several  tree  species
(mainly willows and poplars) are not hyper-
accumulators, but do exhibit traits of high
interest, such as fast growth and high pro-

duction  of  biomass,  easy  propagation,  a
deep root system and the capacity to up-
take and translocate a significant amount
of  metal  contaminants  in  the  soil  to  the
shoots (Vassilev et  al.  2004,  Guerra et  al.
2011).  Poplars in particular, display a num-
ber  of  different  characteristics  useful  to-
wards environmental protection, which in-
clude phytoremediation, especially in com-
bination  with  short  rotation  forestry  and
landscape  restoration  (Facciotto  et  al.
2014). Woody species may also be utilised
for  the  plantation  of  green  belts  around
contaminated  lands.  Eucalypts,  willows
and poplars are all fast-growing trees with
short rotation coppice systems that could
be  successfully  utilised  for  this  purpose
(Pulford & Watson 2003). This phytoreme-
diation  would  have  to  be  undertaken  in
consideration  of  the  need  to  harmonize
these  choices  with  the  landscape charac-
ter, as generally requested by the resident
populations (Boll et al. 2014).

The effect of lead (Pb) has been assessed
in  one-year-old  potted  seedlings  of  Cap-
padocian  maple  (Acer  cappadocicum),  Eu-
ropean ash (Fraxinus excelsior) and Orien-
tal  aborvitae  (Platycladus  orientalis).  In-
creasing  Pb  application  in  the  soil  (from
100 to 500 mg kg-1) did not affect the dry
weight of roots of all species, while a grad-
ual  decrease  was  detected  in  leaves  and
shoots, with the highest inhibition in P. ori-
entalis. This species, however, showed the
highest  translocation  factor  values,  toler-
ance index and bioconcentration factor, in-
dicating a possible use of this conifer spe-
cies  for  remediation  of  Pb-polluted  soils
(Abbasi et al.  2017).  The bioconcentration
factor (BF) is defined as the ratio of met-
al(loid) concentration in aerial  biomass to
that  in  soil,  and  the  translocation  factor
(TF) the ratio of metal(loid) concentration
in shoots to that in roots, both factors tak-
ing values >1 in accumulators  and <1 in ex-
cluders; the tolerance index (TI) is the per-
cent of the organ’s growth of the treated
plant compared to the growth of the con-
trol plant (McGrath & Zhao 2003, Turner et
al. 1991). Three leguminous woody species,
Mimosa caesalpiniaefolia, Erythrina speciosa

and Schizolobium parahyba, were tested in
a lead-contaminated area. While  M. caesal-
piniaefolia did  not  show symptoms of  Pb
toxicity,  the  other  two  species  exhibited
reduced shoot biomass yield, leaf area and
height. The increase of Pb concentrations
in soil led to augmented Pb concentration
in shoots and roots, but most of the Pb ac-
cumulated  in  the  roots,  and  only  a  small
fraction  was  translocated  to  the  above-
ground parts of the plant. Mimosa showed
the highest Pb tolerance and phytostabili-
sation potential in lead-contaminated soils
(Ribeiro De Souza et al. 2012).

In  a  study  to  identify  candidate  species
among fast-growing trees for remediating
Pb-contaminated  soils  (Yongpisanphop  et
al.  2017),  hydroponic  cultures  of  cuttings
from  Acacia  mangium,  Azadirachta  indica,
Eucalyptus  camaldulensis,  and  Senna  sia-
mea, were tested in increasing Pb concen-
trations. All species showed high Pb toler-
ance (over 78%) but low TF (<1) for all treat-
ments  (10,  30,  and  50  mg  L-1).  Based  on
these indices,  A. mangium and  E. camaldu-
lensis were  found  to  be  good  candidate
species  for  Pb  remediation  (Yongpisan-
phop et al. 2017).

Willow (Salix  nigra)  showed a moderate
tolerance to silver (Ag) in a hydroponic ex-
periment with increasing AgNO3 concentra-
tions,  observing a significant reduction of
biomass production with AgNO3 0.027 μM,
but also adaptation signals  over  a  longer
timeline (Guidi Nissim et al. 2014a).

Eastern  cottonwood  (Populus  deltoides)
was  evaluated  for  arsenic  (As)  tolerance
and phytostabilization potential,  by expo-
sure to various As levels in soil (control, 5,
10, 15, and 20 mg kg-1) in a 9-month pot ex-
periment. Plant height stress tolerance in-
dex  (TI)  significantly  decreased  with  in-
creasing As levels, while indices related to
root  length  and  dry  matter  were  not  af-
fected. TF and BF were less than 1.0,  but
root and shoot As content significantly in-
creased with increasing As concentrations
(Hussain et al. 2017). The effect of high cop-
per  (Cu)  concentrations  was  investigated
on  poplar  woody  cuttings  (Populus  ×  eu-
ramericana, clone “Adda”), finding that in-
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Fig. 3 - Two widespread
ornamental species studied
and proposed for phytore-

mediation purposes: (a)
Chrysanthemum; (b) Ner-

ium oleander.
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creasing levels of Cu up to 100 μM resulted
in a general reduction of plant growth and
that the metal was mainly accumulated in
the root system at all Cu levels (Borghi et
al.  2007).  Several  poplar  species (Populus
alba, P. deltoides, P. nigra, P. trichocarpa, P.
× generosa, P × canadensis) showed the ca-
pacity to accumulate cadmium (Cd), albeit
with different effectiveness (Zacchini et al.
2009). Poplars also demonstrated phytoex-
traction capacity for zinc (Zn – Di Baccio et
al. 2003).

Cadmium accumulation was also demon-
strated  in  Cinnamomum  camphora,  that
showed the maximum Cd content in stems
and leaves (Zeng et al. 2018).

In a greenhouse experiment on ornamen-
tal  plants,  four  shrubs  (Osmanthus  fra-

grans,  Ligustrum  vicaryi,  Loropetalum  chi-
nense var. rubrum, and Euonymus japonicus
cv. Aureo-mar) were tested in the presence
of Cd. The results showed that these spe-
cies can grow normally at Cd soil  concen-
trations lower than 24.6 mg kg -1. The metal
accumulated principally  in the roots,  with
the highest amount detected in Euomymus
(Zeng et al. 2018).

Rhapis excelsa, Camellia polyodonta and C.
gigantocarpa were  tested  for  soil  Cd  ab-
sorption in a pot experiment with different
Cd treatments (10, 25 and 50 mg kg-1). The
three  species  never  showed  any  toxic
symptom and grew well  at all  Cd concen-
trations. Cadmium contents was higher in
the roots than in the stems and leaves. At
50 mg kg-1 Cd concentration,  the Cd con-

tent in the roots of  Rhapis excelsa was the
highest amongst all the tested species and
7.05 times higher than that at 10 mg kg-1 Cd
concentration (Zhang et al. 2010). Lonicera
japonica plants  exposed to  Cd concentra-
tions up to 50 mg L-1 did not show signifi-
cant differences (compared to control)  in
height  and  dry  biomass  of  leaves  and
roots. TIs were all above 0.8 and the high
BF and TF justified the proposal to include
the species in the list of potential Cd accu-
mulators (Liu et al. 2009).

The ornamental shrub Euphorbia milii tol-
erated up to 75 mg of  applied Cr per  Kg
soil,  and  was  efficient  in  translocating  Cr
from roots to shoots. Plant death occurred
when  higher  metal  concentrations  were
used (Ramana et al. 2015).

Buddleja  asiatica is  known  to  display  a
high accumulation capacity  and tolerance
for lead. This species, and the related orna-
mental B. paniculata, were therefore inves-
tigated in a hydroponic culture, in the pres-
ence  of  10  or  20  mg  L-1 Pb.  Both species
showed increased biomass and Pb concen-
trations in the roots of 12.1 and 21.7 mg kg -1,
respectively. In a 3-month pot experiment,
using three different soils with various Pb
levels (10.6, 31.3, and 89.1 mg kg -1) the two
species of Buddleja had a slight decrease in
survival rates at the highest Pb concentra-
tion, but a general regular growth. In a 6-
month field trial  experiment conducted in
Pb-contaminated sites (Pb content: 95-101
mg  kg-1),  both  Buddleja species  showed
100%  survival,  increased  biomass  produc-
tion  and  phytoextraction  capacity  (TF)
from 1.1 to 2.3 (Waranusantigul et al. 2008).
Ricinus communis, as well, showed the ca-
pacity to uptake nichel (Ni) from contami-
nated soils, and was therefore classified as
an  accumulator  (Adhikari  &  Kumar  2012);
this species also demonstrated a great po-
tential for Cd removal, due to its features
of fast growth, high biomass and consider-
able absorption and accumulation (Huang
et al. 2011).

It  is  more  common  for  a  soil  to  be  af-
fected by the pollution of a mix of heavy
metals; some case studies are therefore re-
ported below concerning woody plants.

In  a  pot  experiment  with  seven  willow
clones,  significant  differences  between
clones were found in cadmium and zinc ac-
cumulation.  Cd  and  Zn  were  transferred
from roots to aboveground tissues (mainly
leaves), leading to the conclusion that wil-
lows are suitable phytoextractors of mod-
erately contaminated soils (Vyslouzilová et
al.  2003). Another study tested the ability
of  five  woody  species  to  extract  heavy
metals  (copper,  zinc or cadmium) from a
polluted soil. Salix viminalis and Betula pen-
dula had  already  demonstrated  phytoex-
traction  ability  for  Zn  and  Cd,  while  the
phytoextraction capabilities  of  Alnus inca-
na, Fraxinus excelsior and Sorbus mougeotii
were  unknown.  The  results  suggest  that
none of these species transferred Cu to the
shoots. Salix and Betula were able to trans-
fer Zn and Cd to leaves and twigs, while Al-
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Tab. 1 - Ornamental plants for the phytoremediation of heavy metal: trees and shrubs.
(A): accumulation; (T): translocation.

Group Species Pollutants A / T References

Tr
ee

s

Acacia mangium Pb A Yongpisanphop et al. 2017
Acer cappadocicum Pb A Abbasi et al. 2017
Azadirachta indica Pb A Yongpisanphop et al. 2017
Betula pendula Zn A,T (partial) Rosselli et al. 2003
Cinnamomum camphora Zn A,T Zeng et al. 2018
Eucalyptus 
camaldulensis

Pb A Yongpisanphop et al. 2017, 
Motesharezadeh et al. 2017Cd T

Fraxinus excelsior Pb A Abbasi et al. 2017
Mimosa cesalpiniaefolia Pb A Abbasi et al. 2017
Platycladus orientalis Pb T Abbasi et al. 2017
Populus alba Cd,Pb A Houda et al. 2016, Zacchini 

et al. 2009
Populus deltoides As A Hussain et al. 2017

Cd A Zacchini et al. 2009
Populus nigra Cd A Zacchini et al. 2009
Populus trichocarpa Cd A Zacchini et al. 2009
Populus × canadensis Cd A Zacchini et al. 2009
Populus × euramericana Cu A Borghi et al. 2007

Zn T (partial) Di Baccio et al. 2003
Cr, Fe T (partial) Giachetti & Sebastiani 2006

Populus × generosa Cd A Zacchini et al. 2009
Salix dasyclados Cd A Landberg & Greger 1994

Zn T Vyslouzilová et al. 2003
Salix fragilis Cd, Zn T Meers et al. 2007
Salix miyabeana Zn T Desjardins et al. 2016
Salix nigra Ag A Guidi Nissim et al. 2014b
Salix schwerinii Cd, Zn T Meers et al. 2007
Salix viminalis Cd A Landberg & Greger 1994

Zn T Vyslouzilová et al. 2003
Senna siamea Pb A Yongpisanphop et al. 2017

Sh
ru

bs

Buddleja asiatica Pb T Waranusantigul et al. 2008
Buddleja paniculata Pb T Waranusantigul et al. 2008
Catharanthus roseus Ni, Pb A Subhashini & Swamy 2013
Euonimus japonicus Cd A Zeng et al. 2018
Euphorbia milii Cr T Ramana et al. 2015
Ligustrum vicaryi Cd A Zeng et al. 2018
Lonicera japonica Cd T Liu et al. 2009
Loropetalum chinense Cd A Zeng et al. 2018
Osmanthus fragrans Cd A, T Zeng et al. 2018, Wu et al. 

2011
Pb T Wu et al. 2011

Rhapis excelsa Cd A Zhang et al. 2010
Ricinus communis Ni A Adhikari & Kumar 2012
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nus,  Fraxinus and  Sorbus excluded  them
from  their  above-ground  tissues  (Rosselli
et  al.  2003).  A  pot  experiment  involving
Salix  miyabeana grown in brownfield soils
differentially  contaminated  with  Ag,  Cu
and Zn (up to 113.60, 47.50, and 117.00 mg
kg-1 respectively), demonstrated a potential
capability  for  phytoremediation,  since  a
high  concentration  of  Zn  (119.96  ±  20.04
mg  kg-1)  was  detected  in  above-ground
plant tissues at the end of the treatment
(Desjardins et al. 2016).

Five species of  Salix were tested in a pot
experiment  to  compare  their  capacity  to
extract and accumulate Cd, Zn, Cu, Ni, Pb,
and  chromium  (Cr).  Salix  schwerinii
“Christina”,  S.  dasyclados “Loden” and  S.
fragilis “Belgisch Rood” showed the high-
est  Cd  and  Zn  accumulation  and  were
therefore considered good candidates for
remediation (Meers et al. 2007). In an ex-
periment on a strongly polluted soil (up to
18 mg Cd kg-1, 1400 mg Cu kg-1, 500 mg Pb
kg-1 and  3300  mg  Zn  kg-1),  Salix  viminalis
demonstrated  a  high  translocation  of  Cd
(≥80 mg kg-1) and zinc (≥3000 mg kg-1) to
the  leaves  alongside  reduced  growth.  In
contrast, when grown in a moderately pol-
luted soil  (2.5 mg Cd kg -1 and 400 mg Zn
kg-1), S. viminalis extracted 0.13% of total Cd
and 0.29% of total  Zn per year and exhib-
ited vigorous growth (Jensen et al. 2009).
In  another  study  on  eight  Salix  viminalis
clones  and  one  S.  alba clone,  differences
emerged between clones in biomass pro-
duction and accumulation efficiency,  with
two S. viminalis clones demonstrating a su-
perior  capacity  to  accumulate  five  heavy
metals (Cd, Cu, Hg, Pb, Zn – Mleczek et al.
2010).

Poplars also showed some potential  for
phytoextraction of chromium and iron (Gi-
achetti  &  Sebastiani  2006),  cadmium  and
lead (Houda et al. 2016).

The  accumulation  of  heavy  metals  has
been assessed in leaves of some ornamen-
tal trees and shrubs used in districts of Tur-
key affected by high heavy metal pollution,
finding  significant  differences  among  the
tested species. The highest concentrations
(mg kg-1) of Zn, Cu, Cd and iron (Fe) were
observed  in  Cedrus  libani (618.0),  Betula
alba  (106.3), Salix alba  (24.5) and  Eleagnus
angustifolia (0.3), while the highest Ni (6.4)
and Pb (3.8) contents were found in  Pyra-
cantha coccinea (Gülser et al. 2011).

A pot experiment was carried out on os-
manthus  (Osmanthus  fragrans  var.  thun-
bergii), cultured in substrate supplemented
with different concentrations of Cd, Pb, Zn,
and Cu.  The species showed high Cd and
Pb transfer efficiencies and a limited trans-
fer of Zn and Cu in the presence of Cd, sug-
gesting the possible  utilization  of  osman-
thus in phytoremediation applications (Wu
et al. 2011).

Herbaceous species
Cadmium is one of the most widespread

contaminating  metals  in  soils.  Its  action
was  investigated  on  three  ornamental

plants, Tagetes erecta, Salvia splendens, and
Abelmoschus manihot, finding a little effect
on seed germination of the three species
and  on  shoot  elongation  of  S.  splendens,
but  a  significant  inhibitory  effect  on root
elongation of all the tested plants and on
shoot  elongation  of  T.  erecta.  The  calcu-
lated Cd-tolerance indices  led to the con-
clusion that A. manihot was the most toler-
ant plant to Cd while S. splendens the most
sensitive (Wang & Zhou 2005). Conversely,
Bosiacki  (2008) found  high  Cd  accumula-
tion  in  leaves  and  shoots  of  Salvia  splen-
dens, as  well  as  in  inflorescences  of  He-
lianthus annuus,  which is one of the most
studied  ornamental  species  for  remedia-
tion purposes, while Tagetes erecta proved
a moderate capacity  to extract and accu-
mulate  Cd,  with  the  greatest  amount

found in roots, then in leaves and shoots,
and the lowest in inflorescences (Bosiacki
2008). Five concentrations of Cd (0, 25, 50,
75 and 100 mg kg-1 soil) were tested with
three  varieties  of  tuberose,  finding  that
this metal did not produce any toxic macro-
scopic symptoms in all the three varieties.
Having  shown  Cd  accumulation  in  the
shoots  higher  than  100 μg  g-1 dry  weight
and a ratio of Cd >1 in the shoots to bulbs,
this species has to be considered as a po-
tential  effective  Cd accumulator  (Ramana
et al. 2012). Chlorophytum comosum is a po-
tential Cd accumulator; in a pot experiment
it showed a TI above 100 in soil Cd concen-
tration of 100 mg kg-1, and at Cd concentra-
tion up to 200 mg kg-1,  the Cd content in
roots  and  aboveground  tissues  reached
1522 and 865 mg kg-1, respectively (Wang et
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Tab.  2 -  Ornamental  plants for the phytoremediation of heavy metals:  herbaceous
species. (A): accumulation; (T): translocation.

Group Species Pollutants A / T References

H
er

ba
ce

ou
s

Althaea rosea Cd T Liu et al. 2008
Pb A Liu et al. 2008

Alternanthera 
bettzickiana

Cd, Pb T Tauqeer et al. 2016

Alyssum maritima Cr T Budak et al. 2011
Amaranthus caudatus Ni T Bosiacki & Wojciechowska 

2012
Cd T Cay 2016

Aptenia cordifolia Cr T (partial) Budak et al. 2011
Calendula officinalis Cd A Liu et al. 2008

Cr T (partial) Ramana et al. 2013
Cu T Goswami & Das 2016

Canna indica Pb, Zn Cr,
Ni, Cd

T Subhashini & Swamy 2014
A Subhashini & Swamy 2014

Chlorophytum comosum Cd T Wang et al. 2012
Zn T Tao et al. 2011

Gomphrena globosa As A Signes-Pastor et al. 2015
Helianthus annuus Cu T Forte & Mutiti 2017

Cd T Bosiacki 2008
Ni T Mohammadzadeh et al. 2014
As T Reed et al. 2013

Hydrangea paniculata Cu T Forte & Mutiti 2017
Impatiens balsamina Cr T (partial) Miao & Yan 2013
Iris lactea Cd A Han et al. 2007
Iris pseudacorus Cr, Zn A Caldelas et al. 2012
Mesembryanthemum 
crystallinum

Ni T (partial) Amari et al. 2016

Mirabilis jalapa Cr T Miao & Yan 2013
Salvia splendens Cd T Bosiacki 2008
Polianthe tuberosa Cd T Ramana et al. 2012
Pteris vittata As T Zeng et al. 2019
Sedum alfredii Zn A Cheng & Zhou 2014
Syngonium sp. As A Huq et al. 2005
Tagetes erecta Cd A Bosiacki 2008

Ni T Bosiacki & Wojciechowska 
2012

As T Reed et al. 2013
Tagetes patula As A Huq et al. 2005
Tagetes erecta × patula As T Chintakovid et al. 2008
Vinca rosea Cr T Ehsan et al. 2016a
Zinnia elegans Pb, Cr T Ehsan et al. 2016b

As A Signes-Pastor et al. 2015
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al.  2012).  A detailed  work on the relation
between  Canna  indica and  Cd,  demon-
strated  its  considerable  potential  in  cad-
mium accumulation, but the root concen-
tration factor was higher than the BF, indi-
cating a limited translocation (Solanki et al.
2018).  Calendula  officinalis was  found  to
grow normally  in  soils  containing 100 mg
kg-1 Cd,  with  high  metal  accumulation  in
roots and shoots. In a hydroponic culture,
for Althaea rosea the highest Cd accumula-
tion was detected in shoots, and for both
Calendula  officinalis and  Althaea  rosea, a
good accumulation capacity and tolerance
to Pb were also observed (Liu et al. 2008).
Iris lactea var. chinensis was found to accu-
mulate Cd in leaves and roots after treat-
ment with a hydroponic culture with 0 to
160  mg  L-1 Cd  treatment,  showing  a  TI
higher than the value detected in the other
species  tested,  I.  tectorum (Han  et  al.
2007).

The effects of increasing doses of Ni (up
to  300  mg  dm-3  substrate)  were  investi-
gated in three selected ornamental plants:
Tagetes  erecta,  Helianthus  annuus,  and
Amaranthus  caudatus,  finding  that  the
highest  amounts of  Ni  were accumulated
in leaves of tagetes and amaranth, and in
inflorescences of sunflower. Globally, tage-
tes showed the highest Ni uptake at con-
centrations of 25 and 50 mg dm-3, while for
the substrates with an addition of 75, 150
or 300 mg Ni dm-3, the greatest accumula-
tion was recorded in amaranth (Bosiacki &
Wojciechowska 2012). An interesting orna-
mental  halophyte,  Mesembryanthemum
crystallinum,  was compared to the model
species Brassica juncea, growing the plants
for 3 months on a soil containing 0, 25, 50,
and  100  mg  kg-1 NiCl2.  Ni  reduced  the
growth  activity  of  both species,  but  to  a
lower extent in M. crystallinum. Ni accumu-
lated  mainly  in  roots  and  the  fraction
translocated  to  shoots  was  higher  in  M.
crystallinum than in  B. juncea (Amari et al.
2016).  Catharanthus roseus irrigated for 60
days with aqueous solutions of nickel and
lead showed high accumulation of the two
metals by roots, and to a lesser extent in
stems  and  leaves  (Subhashini  &  Swamy
2013).

Chlorophytum comosum seedlings treated
with Zn showed inhibition of  root  length
and fresh and dried plant weight at all the
tested  Zn  concentrations  (from  200  to
2000 mg kg-1),  while the length of above-
ground tissues and the volume of roots de-
clined with the Zn dose. TI was above 50 at
Zn concentrations lower than 600 mg kg-1

(Tao et al. 2011).
Aptenia  cordifolia,  Brassica  juncea,  Bras-

sica  oleracea,  and  Alyssum  maritima  were
studied  for  their  capacity  to  uptake  and
translocate hexavalent chromium (VI) sup-
plied by irrigation. Increases in the Cr con-
centration significantly enhanced both ac-
cumulation and translocation of the metal
in the roots and shoots of the tested spe-
cies,  with  highest  values  recorded  in  the
shoots  of  Alyssum  maritima and  in  the

roots of Brassica juncea (Budak et al. 2011).
In a study on exposure to Cr of four orna-
mental plants, calendula, chrysanthemum,
aster and dahlia, the metal caused a drastic
reduction  of  plant  growth  at  10  mg  kg -1,
and at 25 mg kg-1 was responsible of a dif-
fuse mortality in chrysanthemum. Overall,
only calendula could be considered a possi-
ble candidate for phytoremediation of soils
contaminated with low level of Cr (Ramana
et al. 2013). In another experiment on three
ornamental  species  cultured  in  pots  con-
taining  substrate  with  four  Cr  concentra-
tions,  Impatiens  balsamina showed  a  de-
cline in the biomass as the dose of  Cr in-
creased, while in  Mirabilis jalapa and  Tage-
tes erecta the four treatments did not im-
pact growth; TF and BF of  M. jalapa were
greater than 1,  indicating this  species is  a
good candidate for the remediation of Cr-
polluted soils (Miao & Yan 2013). In  Vinca
rosea grown  in  pots  containing  soil  with
levels of chromium from 10 to 60 mg kg -1,
plant  height,  fresh  and  dry  weight  de-
creased with high contamination levels of
chromium.  TFs  were  found  to  be  lower
than  1  for  low  metal  concentrations  and
higher than 1 with Cr concentrations from
30 to 60 mg kg-1 (Ehsan et al. 2016a).

In  the  presence  of  Pb,  the  remediation
potential of  Vinca rosea was higher than 1
at Pb concentrations from 20 to 40 mg kg-1

and lower with 50 to 90 mg kg-1 (Ehsan et
al.  2016b).  Similar  results  were  obtained
with zinnia (Zinnia elegans) grown in pots
containing  soils  with  different  levels  of
lead  and  chromium.  Plants  grown  in  the
presence of lead were healthier compared
to plants  grown in  Cr-contaminated soils.
TF was also higher in Pb-contaminated soils
(Ehsan et al. 2016c).

For copper remediation,  Calendula offici-
nalis showed a high tolerance (up to 400
mg kg-1) to copper contamination, with the
maximum Cu accumulation (4.67 and 3.99
mg g-1 in leaves and roots, respectively) in
soil treated with 300 mg Kg-1, a level con-
siderably higher than the amount of 1 mg
g-1 which  defines  Cu  hyperaccumulators
(even the TF was >1 at all Cu doses  – Gos-
wami & Das 2016).

For  arsenic  remediation,  Tagetes  patula
and  Syngonium sp.  were  tested  in  pots
with soil containing As up to 10 mg kg-1. The
plants showed significant As accumulation,
particularly in roots, with an average TF of
0.91 for marigold and 0.75 for arum (Huq et
al.  2005).  A  further  experiment  on  a
triploid  hybrid  Tagetes  erecta  × patula
showed that arsenic was found mostly in
leaves (46.2%) with the lowest As content
(5.8%) in flowers. The hybrid plants contin-
ued to grow vigorously in the As-contami-
nated substrate (Chintakovid et al.  2008).
Several  ornamental  plant  species  were
tested for  their  potential  for  As  remedia-
tion in a hydroponic system: iris (Iris savan-
narum),  switchgrass  (Panicum  virgatum),
Tithonia  rotundiflora,  Coreopsis  lanceolata,
sunflower  (Helianthus  annuus),  and  mari-
gold (Tagetes erecta).  Tithonia and Coreop-

sis showed respectively 85% and 65% reduc-
tions in dry weight at 0.75 mg L-1 As concen-
tration.  At  the  highest  As  rate,  marigold
and sunflower had uptake ratios of 7.4 and
16.6, respectively, and TF near one, allow-
ing consideration of these species as inter-
esting candidates for As phytoremediation
(Reed et al. 2013).

The effects of As were tested under hy-
droponic conditions on two other flower-
ing species, Gomphrena globosa and Zinnia
elegans. Arsenic principally accumulated in
the  roots,  followed by leaves,  stems and
flowers, indicating that these species were
arsenic tolerant plants but not potentially
As-remediating (Signes-Pastor et al. 2015).

For the phytoremediation of mixed heavy
metals,  a study on  Alternanthera bettzick-
iana, a species commonly used as an orna-
mental edging plant, showed a good accu-
mulation of Cd and Pb at concentrations up
to 1.0 mM, with total uptake of both met-
als higher in shoots than roots (Tauqeer et
al.  2016). Based on BF and TF, also  Canna
indica was indicated to be a good accumu-
lator of Cd, Pb, Ni, Zn, and Cr, with high TF
for Ni and Cr (Subhashini & Swamy 2014).
The macrophyte  Iris pseudacorus is consid-
ered to be a candidate for Cr rhizofiltration
and  Zn  phytoextraction,  having  shown  a
good tolerance and accumulation capacity
towards these two metals. Plants grown in
a nutrient solution containing ZnCl2 or CrCl3

from 0 to 200 μg ml -1 survived and accumu-
lated Cr and Zn in all tissues (Caldelas et al.
2012). In a greenhouse experiment, Hydran-
gea paniculata and Helianthus annuus accu-
mulated significant amounts of Cu and Pb.
Helianthus showed  high  accumulation  of
heavy metals in the shoots and efficacious
translocation to the leaves,  while Pb was
not as easily taken up and translocated as
Cu. Hydrangea stored more metals in stems
than in leaves, showing a lower transloca-
tion ability than Helianthus (Forte & Mutiti
2017).  Tanacetum vulgare showed environ-
mental adaptability on high industrial pollu-
tion and an interesting capacity of mercure
and lead uptake (Stevović et al. 2010).

Organics
Phytoremediation  of  organic  contami-

nants  generally  involves  few  classes  of
compounds,  which  are  principally  chlori-
nated  solvents,  petroleum  hydrocarbons
(PHCs),  polycyclic  aromatic  hydrocarbons
(PAHs),  polychlorinated  biphenyls  (PCBs)
and explosives. Contamination of soils with
such products can have several causes, the
main ones being uncontrolled industrial ac-
tivity,  intensive farmland exploitation and
percolation  of  polluted waters  of  various
origins.  The  most  common  contaminated
soils  are  probably  former  industrial  sites,
which  may  display  residual  pollutants  at
different soil depths.

Over  recent  years,  positive  results  have
emerged  regarding  the  capacities  of  sev-
eral  plant  species  to  degrade specific  or-
ganic  compounds.  According to  Shimp et
al.  (1993) it is fundamental to understand
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the physical,  biological, and chemical rela-
tionships that determine the fate of each
organic contaminant in the rhizosphere.

In this section some case examples con-
cerning  ornamental  woody  and  herba-
ceous species are illustrated (Tab. 3).

Woody species
In  a  soil  contaminated  with  a  mix  of

PAHs, PCBs and heavy metals, two clones
of  different  willow  species  (Salix  sachali-
nensis SX61 and  S.  miyabeana SX64) gave
encouraging growth and survival results af-
ter a single growing season planted in soils
with  high concentrations  of  both organic
and heavy metal contaminants (Guidi et al.
2012). Salix alba, S. gracilistyla var. melanos-
tachys and Itea virginica were treated for 9
days with a 4 mg L-1 suspension of two her-
bicides  (isoxaben  and  oryzalin).  Isoxaben
reduced the growth rate of  white willow
and  I.  virginica,  while  both  herbicides  re-
duced the growth index for  S. gracilistyla.
The final dry weight was lower for all taxa
when exposed to both herbicides, but the
set of data suggest that  S. alba and  I.  vir-
ginica display some attitude in the remedia-
tion of oryzalin (Baz & Fernandez 2002).

In hydroponic studies, hybrid poplar cut-
tings  (Populus  deltoides × nigra)  removed
54.0% of dioxane (1,4-Dioxane), a persistent
environmental pollutant, indicating the po-
tential of this species in the phytoremedia-
tion of sites contaminated by dioxane and
other  hydrophilic  pollutants  (Aitchison  et
al. 2000).  P. deltoides × nigra showed also
the capacity  to accumulate PCBs,  observ-
ing  that  mono-  and  di-chlorinated  con-
geners  were  primarily  translocated  from
the roots to the secondary stems, tri-chlori-
nated  to  the  main  stem  but  not  farther,
and tetra-chlorinated were bound strongly
to root tissues (Liu & Schnoor 2008). With
the  same hybrid,  the  capacity  to  uptake,
hydrolyze  and  dealkylate  atrazine  to  less
toxic metabolites was detected by  Burken
& Schnoor (1997).

Nerium oleander (Fig. 3b) resulted able to
remove 92% of fluoride from a 10 mg L-1 NaF
solution,  within  15  days  (Khandare  et  al.
2017).  Ricinus  communis showed  a  great
potential  for  removing  dichlorodiphenyl-
trichloroethane (DDT) from contaminated
soils,  with different effectiveness depend-
ing on the genotype (Huang et al. 2011).

Herbaceous species
In a study on  Aster amellus, the capacity

was observed to decolorize the sulfonated
azo dye Remazol Red. After the cultivation
period,  four  non-toxic  metabolites  were
identified; this indicated that the plant can
be  used  for  cleaning  textile  effluents
(Khandare et al. 2011). In another study on
phytoremediation  of  dyes  from  textile
wastewater,  Tagetes patula, Aster amellus,
Portulaca grandiflora  and  Gaillardia grandi-
flora were  tested  separately,  finding  that
within  30  days  they  reduced  the  color
value by 59,  50,  46 and 73%,  respectively.
Only a minor decrease in plant growth was

observed, suggesting that these ornamen-
tal species could be an interesting solution
for use on the ridges of constructed wet-
land for the treatment of  dyes (Chandan-
shive et al. 2018).

Tagetes  patula and  Mirabilis  jalapa were
tested  in  a  pot  experiments  to  evaluate
their  remediation  capacity  towards  ben-
zo[a]pyrene  (B[a]P).  The  dry  biomass  of
the  two  species  increased  at  low  B[a]P
doses  and  then  reduced  with  increasing
concentrations.  It  also  emerged  that  the
tolerance to this pollutant was greater at
the  plant’s  flowering  and  mature  stages
compared with the seedling stage. Signifi-
cantly positive correlations were found be-
tween the B[a]P content of roots,  stems,
leaves and shoots to soil B[a]P concentra-
tions (Sun & Zhou 2016).

For the treatment of PHCs-contaminated
soil, Iris dichotoma and I. lactea were inves-
tigated in a pot culture experiment. These
species  were  found  to  promote  degrada-
tion of fractions of PHCs. I. lactea tolerated
high  concentration  of  PHCs  (40,000  mg
kg-1) and showed a good degradation rate
of petroleum hydrocarbons. In contrast,  I.

dichotoma tolerated lower PHC concentra-
tions, with a lower rate of total petroleum
hydrocarbons  (TPHs)  degradation  (Cheng
et al.  2017).  Impatiens  balsamina was also
tested for petroleum remediation,  finding
that after a 4-month culture period in pot,
the average TPHs degradation rate was up
to  18.13-65.03%,  greater  than  that  (10.20-
35.61%) of natural degradation in the con-
trol treatment (Cai et al. 2010).

In a pot-culture experiment to assess the
TPHs-phytoremediation potential  of 14 or-
namental  plants  in  petroleum-contami-
nated soil,  it  emerged that  Gaillardia  aris-
tata,  Echinacea  purpurea,  Festuca  arundi-
nacea and Medicago sativa were effective in
reducing TPHs (and related compounds) in
10 mg kg-1 TPH-contaminated soil. Removal
rates after 30 days were between 37.2 and
49.4%, (control only 12.9%). Removal rates
of TPH composition were also significantly
higher  than  controls,  and  Fourier  trans-
form infrared spectroscopy confirmed the
presence of oil in the plant tissues (Liu et
al. 2012).

Plants of  Portulaca oleracea were able to
remove fluoride from a 10 mg L-1 NaF solu-

iForest 13: 139-151 145

Tab. 3 - Ornamental plants for the phytoremediation of organic compounds. (B[a]P):
benzo[a]pyrene; (DDT): dichlorodiphenyltrichloroethane; (HCH): hexachlorocyclohex-
ane;  (PCB):  polychlorinated  biphenyls;  (PAH):  polycyclic  aromatic  hydrocarbons;
(TCE): trichloroethylene; (TPH): total petroleum hydrocarbons. 

Group Species Pollutants References

Tr
ee

s

Itea virginica Oryzalin Baz & Fernandez 2002

Populus deltoides × nigra TCE Doty et al. 2017
Dioxane Aitchison et al. 2000

PCB Liu & Schnoor 2008

Atrazine Burken & Schnoor 1997

Populus hybrids HCH Bianconi et al. 2011

Salix alba Oryzalin Baz & Fernandez 2002

Salix miyabeana PAH, PCB Guidi et al. 2012
Salix sachalinensis PAH, PCB Guidi et al. 2012

Sh
ru

bs
Cytisus striatus HCH Becerra-Castro et al. 2013
Nerium oleander Fluoride Khandare et al. 2017

Ricinus communis DDT Huang et al. 2011

H
er

ba
ce

ou
s

Aloe vera Formaldehyde Liu et al. 2007

Aster amellus Dyes Khandare et al. 2011

Canna indica Triazophos Cheng et al. 2007

Chrisanthemum morifolium Benzene,
Formaldehyde

Liu et al. 2007

Crassula portulacea Benzene Liu et al. 2007

Dianthus chinensis Sulfur dioxide Liu et al. 2007
Echinacea purpurea TPH Liu et al. 2012

Festuca arundinacea TPH Liu et al. 2012

Gaillardia aristata TPH Liu et al. 2012

Gaillardia grandiflora Dyes Chandanshive et al. 2018

Impatiens balsamina TPH Cai et al. 2010

Iris lactea TPH Cheng et al. 2017

Medicago sativa TPH Liu et al. 2012

Mirabilis jalapa B[a]P Sun & Zhou 2016

Portulaca grandiflora Dyes Chandanshive et al. 2018

Portulaca oleracea Fluoride Khandare et al. 2017
Tagetes patula Dyes Chandanshive et al. 2018

B[a]P Sun & Zhou 2016
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tion, within 15 days by 73%; the higher fluo-
ride concentrations showed lower removal
rates  (Khandare et  al.  2017).  Canna  indica
was  studied  in  a  hydroponic  system  for
testing its  ability  to remediate triazophos
contamination,  a  harmful  pesticide.  After
21 days of exposure, a significant percent-
age of  the  substance  was  removed  from
the substrate (Cheng et al.  2007). Among
numerous  other  cases,  Chrysanthemum
morifolium can simultaneously absorb and
purify  benzene  and  formaldehyde  to  a
large extent, while  Aloe vera var.  chinensis
can  absorb  formaldehyde;  Crassula  portu-
lacea is  active  towards  benzene,  and  Di-
anthus chinensis towards sulfur dioxide (Liu
et al. 2007).

Wild  ornamentals  with  high  ornamental
value, fast growth and extensive root sys-
tems  are,  in  general,  a  suitable  solution,
when  deemed capable  of  degrading con-
taminants, due to their broad adaptability,
widespread distribution and ease of  culti-
vation (Cheng & Zhou 2014).

Consociations
Soils are often polluted by different met-

als or organic compounds, so phytoremedi-
ation  may  require  multiple  plant  species
and  ecotypes  since  most  of  the  plants
suited to this purpose show an aptitude to
accumulate only one or a few pollutants.

A  pot  experiment  was  carried  out  with
the  aim  of  determining  the  phytoextrac-
tion  potential  of  the  hyperaccumulator
Pteris  vittata  when  co-planted  with  a
woody tree (Morus alba or Broussonetia pa-
pyrifera) in soil contaminated with Cd, Pb,
Zn,  or  As.  The  uptake  of  As  was  signifi-
cantly  increased  when  co-planted  with
Morus or Broussonetia (by 80.0% and 64.2%
respectively).  However,  co-plantation  did
not have a promoting effect on the metal
accumulation of both M. alba L. and B. pa-
pyrifera (Zeng et al. 2019).

In  the  case  a  huge  expanse  of  land,  a
consociation of grasses could be a good so-
lution. Work by  Maila et al. (2005) demon-
strated the potential  of  the grass species
Brachiaria serrata and  Eleusine corocana in
decontaminating  PAHs-contaminated  soil.
It  was  found that  after  a  ten-week treat-
ment  the naphthalene  concentration was
undetectable  in  the  “multispecies”  vege-
tated  soil  compared  to  96%  removal  effi-
ciency in the monoplanted treatment and
63% in the control. For the same contami-
nants,  ryegrass  (Lolium  perenne),  white
clover (Trifolium repens) and celery (Apium
graveolens)  were  tested,  finding  that  the
remaining percentage of PAHs in mixtures
was significantly lower than those in mono-
cultures and non-planted soils (Meng et al.
2011).  Another  work proved  that  Brassica
campestris showed low removal  of  PAHs,
while  Medicago sativa had the highest po-
tential  for  remediation  of  phenanthrene
and Trifolium repens for pyrene; but mixed
cropping (rape with white clover or alfalfa,
Medicago sativa) showed far better results
than single cropping for the remediation of

PAHs (Wei & Pan 2010).
Concerning  polychlorinated  biphenyls

(PCB),  Terzaghi et al. (2019) demonstrated
that  Festuca  arundinacea cultivated  by
adding compost or in consociation with Cu-
curbita pepo ssp. pepo and Medicago sativa
cultivated with  Rhizobium spp. and mycor-
rhizal  fungi  reduced total  PCB  concentra-
tions by about 20%, with a significant deple-
tion in a high number of PCB congeners. In
an  in vitro experiment,  Petunia grandiflora
and  Gaillardia  grandiflora,  when  cultured
together, showed a great effectiveness in
degrading  and  removing  a  dye  mixture
from the substrate in 36 h, with results sig-
nificantly higher than those detected from
the cultivars in isolation (Watharkar & Jad-
hav 2014).

Enhanced phytoremediation
It  is  worth noting  that,  for  several  tree

species,  the  plant-fungi-bacterium  system
represents  an  important  interactive  bal-
ance  for  the  implementation  of  the  phy-
toremediation  activity,  as  recently  ob-
served in hybrid poplar (Populus deltoides ×
P. nigra) and willow (Salix purpurea subsp.
lambertiana – Guarino et al. 2018). Eucalyp-
tus  camaldulensis also  demonstrated  in-
creased  effectiveness  in  extraction,  up-
take, and translocation of Cd when inocu-
lated with arbuscular mycorrhiza fungi  or
plant growth promoting rhizobacteria (Mo-
tesharezadeh et  al.  2017).  As  an example
for herbaceous species, Helianthus annuus
inoculated with  Bacillus safensis and/or  Ko-
curia rosea was tested in soil with four lev-
els  of Ni  concentrations (0,  150,  300,  and
450 mg kg-1), finding that the highest Ni up-
take  was  observed  at  Ni  300,  when  the
sunflower  seed  was  co-inoculated  by  B.
safensis + K. rosea (Mohammadzadeh et al.
2014).

With regard to organic pollutants, endo-
phyte-assisted phytoremediation  of  a  site
contaminated with Trichloroethylene (TCE)
was studied using Populus deltoides × nigra
inoculated  with  a  strain  of  Enterobacter.
The inoculated trees showed an increased
growth  and  a  reduced  toxic  effect  com-
pared to control, excreting 50% more chlo-
ride ions into the rhizosphere, a good sig-
nal of an increased TCE metabolism in plan-
ta. A significant decrease in the concentra-
tion  of  TCE  and  its  derivatives  from  the
tree-associated  groundwater  plume  was
also detected (Doty  et  al.  2017).  With  hy-
brid poplar clones associated to Arthrobac-
ter strains,  the possibility  to rhizoremedi-
ate soils contaminated with the insecticide
exachlorocyclohexane (HCH) isomers  was
demonstrated, stressing the importance of
in situ pre-selection of the best candidate
plants and bacteria strains (Bianconi et al.
2011). The shrub Cytisus striatus, also in as-
sociation with microbial inoculants (Rhodo-
coccus erythropolis and  Sphingomonas  sp.)
showed an interesting activity on the dissi-
pation of  the HCH.  HCH  concentration  in
soil  was  reduced after  plant  growth and,
more  significantly,  with  inoculated  plants

(Becerra-Castro et al. 2013).
Many studies  assess  the  remediation  of

metal-polluted soil with the help of several
agents,  mainly synthetic  organic chelates,
but also natural organic compounds and in-
organic  products,  that  overcome  limita-
tions to phytoremediation due to low met-
al  solubility  and  availability  (Leštan  et  al.
2008). Nevertheless, the high cost of these
products  and  the  possible  toxic  outflow
into the environment have to be taken into
account. Below, a few cases are mentioned
as examples.

The application to soil of sodium dodecyl
sulfate  (SDS),  ethylenediaminetriacetic
acid  (EDTA)  and  ethylenegluatarotriacetic
acid  (EGTA)  to  enhance  Cd  remediation
was studied with Calendula officinalis. EDTA
was  observed  to  be  toxic  to  the  plants,
while the addition of SDS and/or EGTA re-
sulted in  significantly  increased plant  bio-
mass  (p  <  0.05).  Almost  all  of  the  treat-
ments containing SDS or/and EGTA led to
an increase in the total Cd content in the
plants (Liu et al. 2010). For enhancing the
uptake and translocation of Cd, Cr, and Ni,
two  cultivars  of  Helianthus  annuus were
used  in  conjunction  with  EDTA  and  citric
acid (CA) as chelators. EDTA at a concen-
tration of 0.1 g kg-1 produced the best re-
sults  for  both cultivars,  while  the highest
CA concentrations had a phytotoxic effect
(Turgut et al. 2004). In Althaea rosea, EDTA
and tannic acid led to higher heavy metal
removal of Cd, Ni, Pb and Cu from an artifi-
cially  contaminated  soil,  with  significant
heavy  metal  accumulation  in  stems  and
leaves (Cay et al. 2015).

In view of a more environmentally friend-
ly  choice,  less  harmful  products  can  be
used.  Amaranthus caudatus showed an in-
creased capacity to uptake cadmium when
solutions  of  tea  saponin  (extracted  from
camellia seeds) or EDTA were supplied to
the soil, detecting TF >1, with better values
for saponin (Cay 2016). In a pot experiment
with Helianthus annuus, the effects of cul-
ture in a soil contaminated with Cd and Zn
and amended with swine manure, salicylic
acid  (SA),  or  potassium  chloride  (KCl)
were assessed. The three amendments in-
creased  sunflower  biomass,  height,  and
flower  diameter.  Manure  significantly  de-
creased  the  bioaccumulation  coefficient
(BCF) of Cd and Zn, while KCl increased the
BCF of Cd. Either swine manure and KCl in-
creased Cd and Zn translocation from roots
to aboveground parts, while swine manure
and SA reduced the Cd/Zn ratios in flowers
(Hao et al. 2012).

Within this wide frame, the development
of  transgenic  plants  with  enhanced  phy-
toremediation  capacity  is  also  a  possible
approach  (Shah  &  Pathak  2019),  but  the
general opposition of public opinion to the
introduction of  genetically  modified plant
species has to be carefully considered.

Conclusions
The use of ornamental (woody and flow-

ering) plants for the phytoremediation of
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urban and periurban environments shows
many positive aspects that have been high-
lighted  in  this  work.  The  “multipurpose”
function of these plants plays an important
role in the environmental  restoration and
aesthetic enhancement, but the success of
the  phytoremediation  strategy  lies  in  the
careful choice of species and/or genotypes
matching  the  specific  environments  and
pollutants.

From  the  review  of  the  available  litera-
ture it emerged that, trees in general, even
if  not  classifiable  as  hyperaccumulators,
display a greater potential for exploitation
in  phytoremediation  compared  to  herba-
ceous  species.  This  is  simply  due  to  the
greater  biomass  growth  potential  and
rooting  system  depth  of  woody  species.
On the other hand, herbaceous species are
characterised by higher variability and plas-
ticity, and offer the possibility of frequent
replacements.

Among trees, Salicaceae are probably the
most investigated species for phytoremedi-
ation  purposes  (Marmiroli  et  al.  2011).
Great  interest  is  addressed  to  Salix spp.,
while  poplars  are  now  considered  to  be
model species, comparable to  Arabidopsis
among  herbaceous  plants.  Due  to  their
adaptability to different environments, fast
growth, ease of propagation and good per-
formances  when  exposed  to  some  pollu-
tants,  these  species  might  possess  some
useful practical applications in phytoreme-
diation, particularly in peri-urban areas. For
urban environments, several other woody
species are probably more suitable, being
characterised by a higher ornamental  val-
ue.  Among  flowering  herbaceous  plants,
the  possibility  of  choice  is  significantly
wider; for instance, the Asteraceae family
shows a wide range of interesting species
(Nikolić  & Stevović 2015) with  sunflowers
having been studied in depth and demon-
strating a high capacity to remediate spe-
cific pollutants.

Several interesting species are yet to be
explored,  and special  attention should be
paid  to  the  huge  possibilities  offered  by
plant  consociation,  including  aspects  re-
lated to  modifications  in the structure of
the rhizosphera. Within this topic, possible
associations  between  herbaceous  plants,
trees  or between herbaceous and woody
plants  are  practically  infinite,  allowing  a
perfect adhesion to the needs of each spe-
cific environment, and making phytoreme-
diation an “aesthetic experience”,  as pro-
posed by Sleegers (2010).

Finally, efforts are required to overcome
problems  related  to  the  disposal  of  con-
taminated materials  and how to limit the
costs  related  to  the  exploitation  of  this
technique.

In synthesis, phytoremediation could now
be seen as part of a multifunctional proc-
ess that creates a green infrastructure net-
work  defining  evolving  landscapes,  not
only  in  the countryside but  also in  urban
environments.
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