Supplementary Material

Appendix 1 - Model description.

Log-normal model

The log-normal model (LNM), first proposed by Preston (1948) is based on the central limit theorem. Because species diversity is affected by simultaneous influences of many biotic and abiotic factors, the random variation of these factors will cause species abundances to be a normally distributed (May 975). The logarithmic form (LNM) is:

$$S_{(R)} = S_0 e^{-(\alpha^2 R^2)}$$
(1)

where $S_{(R)}$ is the number of species in the *R*th octave to the left and to the right of the symmetrical curve, S_0 is the number of species within modal abundance octave and $1/\alpha$ is the width of the distribution (Kevan & Belaoussoff 1997).

Broken stick model

The broken stick model (BSM) was proposed by MacArthur (1957). The environment is compared with a stick of unit length on which S-1 points are thrown at random. The stick is broken at these points and the lengths of the S resulting segments are proportional to the abundances of S species. Under the assumption that all species in the community sharing close taxonomic status and with similar competitive capacity, the expected abundance of the *i*th rarest species among S species and N individual trees is:

$$N_i = \frac{N}{S} \sum_{k=i}^{S} \frac{1}{k}$$
⁽²⁾

where k equals to i. The model assumes that the resource allocation among competitive species follows a one-dimensional gradient (MacArthur 1957).

Zipf model

The Zipf model (ZM) was first introduced by Frontier (1985) who assumed that species occupancy is dependent on the actual environmental and physical conditions and the species present. The cost of occupancy of a pioneer species is rather lower than that of late successional species which have higher

requirements of forest ecosystem structure. This assumption reflects a successional process that late settlers are more difficult to survive than first arrivals. The abundance of the *i*th species is:

$$N_i = Nqi^{\gamma} \tag{3}$$

where N is the number of individual trees, q the predicted relative abundance of the species with the highest frequency in the community and γ a constant representing the average probability of species occupancy, suggesting as well a priority effect (Frontier 1985).

Niche preemption model

The niche preemption model (NPM) was proposed by Motomura (1932). When species enter an unsaturated habitat at the same time intervals and occupy a part of the niche, the SADs are more likely to form a NPM, which is particularly common for communities affected by only one or few factors. This model assumes that α percent of the total niches is occupied by the most frequent species, the second one occupies α percent of the remaining niches, i.e., $\alpha(1-\alpha)$; by this analogy, the niche occupied by *i*th species is $\alpha(1-\alpha)^{i-1}$. The species abundance is ranked by the amount of niches they occupy. The expected abundance for the *i*th species is:

$$N_i = N \alpha (1 - \alpha)^{i-1} \tag{4}$$

where N is the total number of individual trees in the community.

Neutral model

The neutral theory (NM) was introduced by Hubbell (2001). The neutral theory makes the following two assumptions: (1) the total number of individual trees species of a community is constant. In a saturated community, the increase of one species will result, to some extent, in a decrease of another species, and (2) there is no difference in functional and physiological traits between species. Species under the neutral theory have identical natality, mortality, immigration and speciation rates. On the basis of these two assumptions, species abundance shows a zero-sum multinomial distribution. The probability distribution of the species follows the following equations (Etienne 2005):

$$P[D|(\theta, J, m)] = \frac{J!}{\prod_{i=1}^{S} n_i \prod_{j=1}^{J} \Phi_j!} \frac{\theta^s}{(\theta)_s} \cdot \sum_{A=s}^{J} \left[K(D, A) \frac{(\theta)_j}{(\theta)_A} \frac{I^A}{(I)_J} \right]$$
(5)

$$I = \frac{m(J-1)}{1-m} \tag{6}$$

$$A = \sum_{i=1}^{S} a_i \le J \tag{7}$$

Tan L, Zhang P, Zhao X, Fan C, Zhang C, Yan Y, Von Gadow K (2020). Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3211-013

$$K(D,A) = \sum_{\left[a_{i},\ldots,a_{s}\right]_{i=1}^{S}} \prod_{i=1}^{S} \frac{\overline{S}(n_{i},a_{i})\overline{S}(a_{i,1})}{\overline{S}}$$
(8)

where S is the total number of species, n_s is the abundance of sth species and $D = (n_1, n_2, k, n_s)$ is the SADs. θ is an index represents a "fundamental diversity" number the greater the θ , the larger the number of species in a community. *j* is the total number of individual trees. *m* the immigration rate per unit area. Φ the number of species with *j* individual trees. *i* the number of individual trees which migrated to the local community. A is the number of individual trees of the parent generation and a_i the number of individual trees of the parent generation of the *i*th species. K(D,A) is a multinomial coefficient. The expected species abundance was estimated by taking the means of 100 simulations of neutral communities using the estimated θ and m predicted by a maximum likelihood estimation method and the total number of observed individual trees *j* (Walker & Cyr 2007).

Reference

Etienne RS (2005). A new sampling formula for neutral biodiversity. Ecology Letters 8: 253-60.

Frontier S (1985). Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology 23: 53-312.

Hubbell SP (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press.

Kevan PG, Belaoussoff S (1997). Log-normality of biodiversity and abundance in diagnosis and measuring of ecosystemic health: pesticide stress on pollinators on blueberry heaths. Journal of Applied Ecology 34:80-80.

- MacArthur RH (1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences of the United States of America 43: 93-295.
- May RM (1975). Patterns of species abundance and diversity. Ecology & Evolution of Communities: 81-120.
- Motomura I (1932). On the statistical treatment of communities. Zoology Management 44: 379-383.
- Preston FW (1948). The commonness, and rarity, of species. Ecology 29: 254-283
- Walker SC, Cyr H (2007). Testing the standard neutral model of biodiversity in lake communities. Oikos 116:143-155.

Tan L, Zhang P, Zhao X, Fan C, Zhang C, Yan Y, Von Gadow K (2020). **Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China** iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3211-013

Appendix 2 - R script.

```
# The raw data is organized according to the data format of CTFS
scale.data.matrix= function(data,xsize,ysize,gridsize) {#xsize and ysize are the side lengths of the
plot, girdsize is the side length of sampling unit
rowcol.to.index=function (rowno, colno, gridsize, plotdim = c(xsize, ysize))
  badrc = (rowno <= 0 | colno <= 0 | rowno > plotdim[2]/gridsize |
     colno > plotdim[1]/gridsize)
  rowno = rowno - 1
  colno = colno - 1
  maxrow = floor(plotdim[2]/gridsize)
  index = colno * maxrow + rowno + 1
  if (length(badrc[badrc > 0]))
     index[badrc] = NA
  return(index)
  }
gxgy.to.index=function (gx, gy, gridsize, plotdim = c(xsize, ysize))
  badgxgy = (gx < 0 | gy < 0 | gx >= plotdim[1] | gy >= plotdim[2] |
      is.na(gx) | is.na(gy))
  colno = 1 + floor(gx/gridsize)
  rowno = 1 + floor(gy/gridsize)
  if (length(badgxgy[badgxgy > 0]))
      colno[badgxgy] = rowno[badgxgy] = NA
  return(rowcol.to.index(rowno, colno, gridsize, plotdim))
  }
   no=gxgy.to.index(data$x,data$y,plotdim=c(xsize,ysize),gridsize=gridsize)
   data1=na.omit(cbind(data,no))
   qrat=sort(unique(no))
   n=length(grat)
   sp=unique(data$sp)
   m=length(sp)
   abu.grat=matrix(0,n,m)
   colnames(abu.grat)=sp
   rownames(abu.qrat)=qrat
    nobrance.data=data1
    for(i in 1:n)
       data2=nobrance.data[nobrance.data$no==grat[i],]
       for(j in 1:m)
           abu.qrat[i,j]=length(data2[data2$sp==sp[j],]$sp)}
       total.abu=apply(abu.grat,2,sum)
       abu.qrat.t=t(abu.qrat)
       abu.qrat.t2=data.frame(abu.qrat.t,total.abu)
       abu.qrat.r=abu.qrat.t2[order(-abu.qrat.t2$total.abu),]
       abu.qrat.f=t(abu.qrat.r)
       result=abu.qrat.f[-(n+1),]
       rownames(result)=qrat
    return(result)
       }
data.matrix10=scale.data.matrix(data, 800, 500, 10)
obsSAD.fn=function(data){
 abundorder=matrix(NA, nrow=dim(data)[1], ncol = dim(data)[2])
 for(i in 1:dim(data)[1]){
  abundorder[i,]=sort(data[i,],decreasing =TRUE)
 }
```

Tan L, Zhang P, Zhao X, Fan C, Zhang C, Yan Y, Von Gadow K (2020). Analysing species abundance distribution patterns across sampling scales in three natural forests in Northeastern China iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3211-013

obsSAD=apply(abundorder,2,mean) return(obsSAD) obsSAD10=obsSAD.fn(data.matrix10) library(untb) theta=optimal.theta(obsSAD10) m=optimal.prob(obsSAD10) SADdata<-as.count(obsSAD10) count=600 # 600 times simulations data.result=matrix(0,count,43) for(i in 1:count) { line=untb(SADdata,m) length(line) for(j in 1:len){ data.result[i,j]=line[[j]] } neutalexp10=apply(data.result,2,mean) #Calculating the expected SAD by other modes library(vegan) mod<-radfit(obsSAD10)</pre> a<-fitted(mod) BSMexp10=a[,1] NPMexp10=a[,2] LNMexp10=a[,3] ZMexp10=a[,4]

Species	Abundance	Species	Abundance
Corylus sieboldiana	27221	Viburnum opulus	520
Acer pseudosieboldianum	18366	Maackia amurensis	399
Acer barbinerve	16817	Ulmus davidiana	304
Acer tschonoskii	12477	Malus baccata	191
Acer tegmentosum	5470	Rhamnus davurica	111
Acer pictum	4175	Euonymus verrucosus	105
Pinus koraiensis	3047	Lonicera japonica	52
Eleutherococcus senticosus	2594	Sorbus aucuparia	51
Tilia amurensis	2502	Euonymus phellomanus	32
Syringa reticulata	2102	Sorbaria sorbifolia	31
Philadelphus schrenkii	1856	Populus ussuriensis	29
Acer ukurunduense	1845	Populus koreana	17
Prunus maximowiczii	1774	Phellodendron amurense	9
Quercus mongolica	1402	Betula platyphylla	8
Acer mandshuricum	1348	Sambucus williamsii	7
Sorbus alnifolia	942	Aralia elata	5
Prunus padus	924	Ribes mandshuricum	5
Ulmus laciniata	753	Populus davidiana	2
Fraxinus mandshurica	742	Rosa davurica	2
Betula costata	581	Tilia mandshurica	2
Euonymus alatus	525	Deutzia parviflora	1

Tab. S1 - The abundance of each species in Changbaishan.

Species	Abundance	Species	Abundance
Carpinus cordata	6576	Ulmus davidiana	62
Acer barbinerve	6001	Betula dahurica	60
Acer mandshuricum	5494	Sorbus aucuparia	58
Corylus sieboldiana	4525	Rhamnus ussuriensis	51
Acer pictum	3733	Euonymus alatus	37
Ulmus laciniata	2637	Populus koreana	36
Syringa reticulata	2449	Eleutherococcus senticosus	26
Tilia amurensis	1825	Betula platyphylla	24
Acer ukurunduense	1525	Lonicera japonica	23
Acer tegmentosum	1458	Aralia elata	20
Pinus koraiensis	1303	Philadelphus schrenkii	16
Sorbus alnifolia	998	Rhamnus davurica	12
Juglans mandshurica	784	Fraxinus chinensis	12
Betula costata	755	Populus davidiana	10
Phellodendron amurense	743	Lonicera chrysantha	9
Abies holophylla	656	Malus baccata	7
Euonymus phellomanus	629	Maackia amurensis	5
Prunus padus	588	Rhamnus schneideri	4
Fraxinus mandshurica	385	Deutzia parviflora	3
Euonymus verrucosus	320	Abies nephrolepis	3
Prunus maximowiczii	223	Sambucus williamsii	2
Ulmus macrocarpa	186	Salix koreensis	2
Quercus mongolica	151	Lonicera ruprechtiana	2
Tilia mandshurica	99	Acer triflorum	1

Tab. S2 - The abundance of each species in Jiaohe.

Species	Abundance	Species	Abundance
Abies nephrolepis	5393	Prunus padus	81
Tilia amurensis	4233	Picea jezoensis	63
Acer pictum	3812	Rhamnus davurica	50
Pinus koraiensis	2606	Quercus mongolica	37
Acer tegmentosum	2039	Corylus sieboldiana	33
Acer ukurunduense	2012	Phellodendron amurense	14
Betula costata	1694	Populus cathayana	9
Alnus hirsuta	1477	Populus ussuriensis	8
Fraxinus mandshurica	1112	Eleutherococcus senticosus	7
Betula platyphylla	709	Salix matsudana	5
Picea asperata	707	Abies holophylla	4
Picea koraiensis	577	Lonicera japonica	3
Syringa reticulata	494	Populus nigra	3
Ulmus davidiana	318	Rhamnus diamantiaca	3
Populus davidiana	275	Maackia amurensis	2
Amygdalus davidiana	146	Juglans mandshurica	1

Tab. S3 - The abundance of each species in Liangshui.