Maleki K, Zeller L, Pretzsch H (2020).
Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak
iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3172-013

Tab. S1-Overview of the structural indices used in this study.

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Type
1	D_{q}	Quadratic mean diameter (cm)	$\sqrt{\sum_{i=1}^{n} d_{i}{ }^{2} / n}$	d_{i} : the dimeter at breast height (cm) of i-tree n : the number of measured trees within each plot S : the plot area $\left(\mathrm{m}^{2}\right)$	Stand properties measures	Non-spatial
2	$B A$	Basal area ($\mathrm{m}^{2} \mathrm{ha}^{-1}$)	$\frac{10000}{S} \times\left(\sum_{i=1}^{n} \frac{\pi}{4} \times d_{i}^{2}\right)$			
3	N	The number of trees per hectare	$\frac{10000}{S} \times\left(\sum_{i=1}^{n} n_{i}\right)$			
4	SDI	Stand density (Reineke 1933)	$N \times\left(\frac{25}{D_{q}}\right)^{-1.605}$	N : the number of trees per hectare D_{q} : the quadratic mean diameter (cm)	Stand density	
5	Con	Contagion (Hui \& Gadow 2002)	$\frac{\sum_{i=1}^{N_{S}}\left(\frac{1}{4} \times \sum_{j=1}^{4} A_{j}\right)}{N_{S}}$	N_{s} : the number of reference trees in each plot i : the single reference tree j : the number of neighbours α : the standard angle where $A_{j}=1$ if $\alpha<72^{\circ}$ otherwise $A_{j}=0$ 0 (regularity) \leq Con ≤ 1 (clustering)	Horizontal tree distribution pattern considering four nearest neighbours	Spatial

Maleki K, Zeller L, Pretzsch H (2020).
Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak
iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Type
6	Agg	Aggregation (Clark \& Evans 1954)	$\frac{\sum_{i=1}^{N_{S}} r_{i}}{N_{S}} \times \frac{1}{2 \times \sqrt{\frac{N_{S}}{S}}}$	N_{s} : the total number of reference trees in each plot S : the plot area $\left(\mathrm{m}^{2}\right)$ r_{i} : the distance between i reference tree and its first nearest neighbour $A g g=1$: randomness Agg<1: clustering $1<A g g \leq 2.4191$: regularity	Horizontal tree distribution pattern considering first nearest neighbour	
7	I_{P}	Distribution index (Pielou 1959)	$\pi \times \frac{N_{p}}{S} \times \bar{r}^{2}$	\bar{r} : the mean square distances from the randomly chosen points to their nearest tree N_{P} : the number of points S : the plot area $\left(\mathrm{m}^{2}\right)$ $I_{P}=\left(N_{p}-1\right) / N_{p}$: randomness $I_{P} \geq\left(N_{p}-1\right) / N_{p}$: clustering $I_{P} \leq\left(N_{P}-1\right) / N_{p}$: regularity	Horizontal tree distribution pattern considering random points and their first nearest tree	
8	Dif	Diameter differentiation (Füldner 1995)	$\frac{\sum_{i=1}^{N_{S}}\left(\sum_{j=1}^{4}\left(1-\frac{\min \left(d_{i}, d_{j}\right)}{\max \left(d_{i}, d_{j}\right)}\right)\right)}{N_{S}}$	N_{s} : the total number of reference trees in each plot S : the plot area $\left(\mathrm{m}^{2}\right)$ d_{i} : d of i reference tree (cm) d_{j} : d of j nearest neighbour (cm) 0 (diameter equality) $\leq \operatorname{Dif} \leq 1$ (diameter differentiation)	Tree size differentiation considering four nearest neighbours	Spatial

Maleki K, Zeller L, Pretzsch H (2020).
Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak
iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Type
9	Dom	Diameter dominance (von Gadow \& Hui 2002)	$\frac{\sum_{i=1}^{N_{S}}\left(\frac{1}{4} \times \sum_{j=1}^{N_{S}} d m_{j}\right)}{N_{S}}$	N_{s} : the total number of reference trees in each plot S : the plot area $\left(\mathrm{m}^{2}\right)$ $d m_{j}=0$ if the neighbour tree j is larger than reference tree i, otherwise $d m_{j}=1$ 0 (complete dominance of neighbours) \leq Dom ≤ 1 (complete dominance of reference tree)		
10	$D_{\text {var }}$	Coefficient of variation of diameters (Pretzsch 2009a)	$\left(\frac{\sqrt{\sum_{i=1}^{N_{S}\left(\frac{\left(d_{i}-\bar{d}\right)^{2}}{N_{S}-1}\right.}}}{\bar{d}}\right) \times 100$	N_{s} : the total number of reference trees in each plot $d_{i}: d$ of i reference tree (cm) \bar{d} : arithmetic mean diameter of trees at breast height (cm) Increasing $D_{v a r}$ refers to increasing diameter variation.	Tree size differentiation considering all trees	Non-spatial
11	Ming	Species mingling (Füldner 1995)	$\frac{\sum_{i=1}^{N_{S}}\left(\frac{1}{4} \times \sum_{j=1}^{N_{S}} m_{j}\right)}{N_{S}}$	N_{s} : the total number of reference trees in each plot S : the plot area $\left(\mathrm{m}^{2}\right)$ $m_{j}=0$ if the neighbour tree j belongs to the same species of reference tree i, otherwise $m_{j}=1$ 0 (all neighbours have same species of reference tree) \leq Ming ≤ 1 (all neighbours of different species to reference tree)	Tree species intermingling considering four nearest neighbours	Spatial

Maleki K, Zeller L, Pretzsch H (2020).
Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak
iForest - Biogeosciences and Forestry - doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature
$\mathbf{1 2}$	Seg	Species segregation (Pielou 1977)	$1-\frac{\text { observed number of mixed pairs }}{}$	$-1 \leq \operatorname{Seg}<0:$ species mingling expected number of mixed pairs	Tree species intermingling $0<\operatorname{Seg} \leq 1:$ species segregation considering first nearest neighbour

