Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Туре
1	D_q	Quadratic mean diameter (cm)	$\sqrt{\sum_{i=1}^{n} d_i^2/n}$	<i>d_i</i> : the dimeter at breast height (cm) of <i>i</i> -tree <i>n</i> : the number of measured trees within each plot <i>S</i> : the plot area (m ²)	Stand properties measures	Non-spatial
2	BA	Basal area (m ² ha ⁻¹)	$\frac{10000}{S} \times \left(\sum_{i=1}^{n} \frac{\pi}{4} \times d_i^2\right)$			
3	N	The number of trees per hectare	$\frac{10000}{S} \times \left(\sum_{i=1}^{n} n_i\right)$			
4	SDI	Stand density (Reineke 1933)	$N \times \left(\frac{25}{D_q}\right)^{-1.605}$	<i>N</i> : the number of trees per hectare <i>D</i> _{<i>q</i>} : the quadratic mean diameter (cm)	Stand density	
5	Con	Contagion (Hui & Gadow 2002)	$\frac{\sum_{i=1}^{N_s} \left(\frac{1}{4} \times \sum_{j=1}^4 A_j\right)}{N_s}$	<i>N_s</i> : the number of reference trees in each plot <i>i</i> : the single reference tree <i>j</i> : the number of neighbours <i>a</i> : the standard angle where $A_j=1$ if $\alpha < 72^\circ$ otherwise $A_j=0$ 0 (regularity) $\leq Con \leq 1$ (clustering)	Horizontal tree distribution pattern considering four nearest neighbours	Spatial

Tab. S1 - Overview of the structural indices used in this study.

Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Туре
6	Agg	Aggregation (Clark & Evans 1954)	$\frac{\sum_{i=1}^{N_S} r_i}{N_S} \times \frac{1}{2 \times \sqrt{\frac{N_S}{S}}}$	N_s : the total number of reference trees in each plot S: the plot area (m ²) r_i : the distance between <i>i</i> reference tree and its first nearest neighbour	Horizontal tree distribution pattern considering first nearest neighbour	
				Agg=1: randomness Agg<1: clustering $1 \le Agg \le 2.4191$: regularity		
7	IP	Distribution index (Pielou 1959)	$\pi \times \frac{N_p}{S} \times \bar{r}^2$	\overline{r} : the mean square distances from the randomly chosen points to their nearest tree N_P : the number of points S: the plot area (m ²)	Horizontal tree distribution pattern considering random points and their first nearest tree	
				$I_P = (N_p-1)/N_p$: randomness $I_P \ge (N_p-1)/N_p$: clustering $I_P \le (N_p-1)/N_p$: regularity		
8	Dif	Diameter differentiation (Füldner 1995)	eter entiation her 1995) $\frac{\sum_{i=1}^{N_S} \left(\sum_{j=1}^4 \left(1 - \frac{\min(d_i, d_j)}{\max(d_i, d_j)} \right) \right)}{N_S}$	<i>N_s</i> : the total number of reference trees in each plot <i>S</i> : the plot area (m^2) <i>d_i</i> : d of <i>i</i> reference tree (cm) <i>d_j</i> : d of <i>j</i> nearest neighbour (cm)	Tree size differentiation considering four nearest	Spatial
				0 (diameter equality) $\leq Dif \leq 1$ (diameter differentiation)	neignbours	

Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Туре
9	Dom	Diameter dominance (von Gadow & Hui 2002)	$\frac{\sum_{i=1}^{N_S} \left(\frac{1}{4} \times \sum_{j=1}^{N_S} dm_j\right)}{N_S}$	N_s : the total number of referencetrees in each plotS: the plot area (m²) $dm_j=0$ if the neighbour tree j is largerthan reference tree i, otherwise $dm_j=1$ 0 (complete dominance ofneighbours) $\leq Dom \leq 1$ (completedominance of reference tree)		
10	Dvar	Coefficient of variation of diameters (Pretzsch 2009a)	$\left(\frac{\sqrt{\sum_{i=1}^{N_S} \frac{\left(d_i - \bar{d}\right)^2}{N_S - 1}}}{\bar{d}}\right) \times 100$	N_s : the total number of reference trees in each plot d_i : d of i reference tree (cm) \overline{d} : arithmetic mean diameter of trees at breast height (cm) Increasing D_{var} refers to increasing diameter variation.	Tree size differentiation considering all trees	Non-spatial
11	Ming	Species mingling (Füldner 1995)	$\frac{\sum_{i=1}^{N_S} \left(\frac{1}{4} \times \sum_{j=1}^{N_S} m_j\right)}{N_S}$	<i>N_s</i> : the total number of reference trees in each plot <i>S</i> : the plot area (m ²) $m_j=0$ if the neighbour tree <i>j</i> belongs to the same species of reference tree <i>i</i> , otherwise $m_j=1$ 0 (all neighbours have same species of reference tree) $\leq Ming \leq 1$ (all neighbours of different species to reference tree)	Tree species intermingling considering four nearest neighbours	Spatial

Oak often needs to be promoted in mixed beech-oak stands - the structural processes behind competition and silvicultural management in mixed stands of European beech and sessile oak

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor3172-013

Number	Index	Description	Equation	Symbols and letters description	Structural feature	Туре
12	Seg	Species segregation (Pielou 1977)	$1 - rac{observed number of mixed pairs}{expected number of mixed pairs}$	$-1 \le Seg < 0$: species mingling Seg=0: independent distribution $0 < Seg \le 1$: species segregation	Tree species intermingling considering first nearest neighbour	