
ii F o r e s tF o r e s t
Biogeosciences and ForestryBiogeosciences and Forestry

Large scale semi-automatic detection of forest roads from low density 
LiDAR data on steep terrain in Northern Spain
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While forest roads are important to forest managers in terms of facilitating the
exploitation of wood and timber, their role is far more multifunctional. They
permit access to emergency services in the case of forest fires as well as act-
ing as fire breaks, enhance biodiversity, and provide access to the public to
enjoy recreational activities. Detailed maps of forest roads are an essential
tool for better and more timely forest management and automatic/semi-auto-
matic tools allow not only the creation of forest road databases, but also en-
able these to be updated. In Spain, LiDAR data for the entire national territory
is freely available, and the capture of higher density data is planned in the
next few years. As such, the development of a forest road detection methodol-
ogy based on LiDAR data would allow maps of all forest roads to be developed
and regularly updated. The general objective of this work was to establish a
low density LiDAR data-based methodology for the semi-automatic detection
of the centerline of forest roads on steep terrain with various types of canopy
cover. Intensity and slope images were generated using the currently available
LiDAR data of the study area (0.5 points m-2).  Two image classification ap-
proaches  were  evaluated:  pixel-based  and  object-oriented  classification
(OBIA). The LiDAR-derived centerlines obtained with the two approaches were
compared with the real centerlines which had previously been digitized in the
field. The road width, type of surface and type of vegetation cover were also
recorded.  The effectiveness  of  the  two approaches  was  evaluated through
three quality indicators: correctness, completeness and quality. In addition,
the accuracy of the LiDAR-derived centerlines was also evaluated by combin-
ing GIS analysis and statistical  methods. The pixel-based approach obtained
higher values than OBIA for two of the three quality measures (correctness:
93% compared to 90%; and quality: 60% compared to 56%) as well as in terms
of positional accuracy (± 5.5 m vs. ± 6.8 for OBIA). The results obtained in this
study demonstrate that producing road maps is among the most valuable and
easily attainable products of LiDAR data analysis.

Keywords:  GIS,  Pixel-based  Classification,  OBIA,  Quality  Measures,  Forest
Roads Network, Accuracy Assessment

Introduction
The forest road network comprises road-

ways within the forest which are used for
access  or  for  timber  extraction,  an  infra-
structure which, among other things, is es-
sential  for  carrying  out  the  sustainable
management of forests (Heinimann 1998).

Forest road networks provide connections
between different forested areas as well as
to the primary road network, thereby pro-
viding  access  to  recreational  and  educa-
tional  activities  for  the  public,  as  well  as
playing  an  important  role  in  fire-fighting
support (both preventative in terms of for-

est roads acting as firebreaks and in terms
of access to emergency services in the case
of forest fires) and logging activities (Gri-
golato et al. 2013). Despite this, it must also
be  acknowledged  that  forest  roads  can
also have negative impacts on the health
of ecosystems, mainly in relation to hydrol-
ogy and habitat disturbance (Sherba et al.
2014).

From the point  of  view of  forestry  pro-
duction,  in  order  to  carry  out  profitable
and  sustainable  forest  management  it  is
crucial  to  create  management  tools  that
help  to  establish  the  availability  of  re-
sources and the economic viability of their
use,  so  that  logging  costs  can  be  mini-
mized.  To  efficiently  calculate  transport
costs (including hauling and road transport
phases), it is essential to have access to in-
formation on the extent and conditions of
the current road forest network. The role
of GIS (Geographical Information Systems)
in this respect is increasingly important and
such  data  can provide  a  solid  framework
for forestry companies seeking to improve
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their logistics, as it allows the optimization
of transport planning according to various
criteria (Arora & Pandey 2011).  For all  the
reasons mentioned above, it is essential to
develop automatic/semi-automatic tools to
enable forest roads and timber extraction
routes  mapping  as  well  as  their  periodic
updating.

In  general  terms,  the  task  of  detecting
and  extracting  the  course  of  roads  from
digital information has been addressed in a
number of ways over the years: photoint-
erpretation and manual digitization, the in-
tegration  of  cartography  from  different
sources, data capture in the field, and data
capture  from  remote  sensors  (Kiss  et  al.
2016).  In  the case of  spatial  data sources
(aerial  photographs  or  satellite  images),
the  application  of  image  classification
methods  for  road  extraction  has  been
studied for more than twenty years (Gruen
& Li 1997, Heipke et al. 1997, Dial et al. 2001,
Narwade & Musande 2014, Kiss et al. 2016).
However,  these  methodologies  all  suffer
similar problems with respect to field data
collection in relation to forest roads: (i) the
high cost of data acquisition in relation to
the  relatively  small  areas  that  can  be
mapped; (ii) interference of GPS signal; and
(iii) occlusions due to the presence of trees
(Abdi  et al.  2012).  With the techniques of
photointerpretation  and  remote  sensing
the main drawbacks are the resolution of
the produced images, which in some cases
is  not sufficient for the detection of  very
narrow carriageways,  and difficulty in ob-
taining  information  from  below  tree  cov-
ered areas, which leads to discontinuities in
the centerlines of the forest roads identi-
fied (Sherba et al. 2014).

Within  this  unfavorable  context  for  the
application  of  remote  sensing  images  in
forest  areas,  LiDAR  technology  brought
about a great advance in the automatic de-
tection  and  updating  of  forest  road  net-
works,  because it  provides accurate mea-
surements  of  ground  elevation,  which al-
lows high resolution topographic mapping,
even under dense canopy cover (White et
al. 2010). As such, forest roads are easy to
identify as they are on ground level, have a
different topographic profile to other envi-
ronments  (planarity  of  the  road  surface)
and present high spectral contrast with the
otherwise undisturbed environment. These
attributes  can  be  exploited  through  the
analysis  of  LiDAR point clouds and LiDAR
intensity values (Buján et al. 2012). Various
authors have already harnessed the great
potential of LiDAR data for forest road de-
tection  and  used  airborne  laser  scanning
devices  in  studies  using  a  variety  of  ap-
proaches. In terms of how roads are repre-
sented in the final data collected, remote
sensing  methods  can  be  grouped  into
those  that  produce  two-dimensional  ele-
ments (road segments) and those that pro-
duce  one-dimensional  lines  (road  center-
line – Clode et al. 2007). Typically, research
in the first group uses high resolution/den-
sity data and allows the detection of both

the length and width of forest roads. Some
examples are the method based on stan-
dard edge extraction algorithms from the
slope map (Clode et al.  2007), the object-
oriented classification developed by  Sher-
ba et al. (2014) and the Support Vector Ma-
chine  used  by  Azizi  et  al.  (2014).  In  con-
trast, studies in the second group use low
resolution/density  data  which  allows  the
detection  of  the  road  centerline,  and  in-
clude, for example, the dynamic program-
ming  method  proposed  by  Saito  et  al.
(2013).

In  general,  while  Saito  et  al.  (2013)
achieved good results in terms of number
of roads detected and the accuracy of their
centerlines  with  high  or  medium  density
data,  all  methods encounter difficulties in
areas of dense canopy covers, and where
there is a high degree of slope and the den-
sity of ground points on roads obscured by
dense vegetation will be much lower. Thus,
methods that are based on the assumption
that  roads  will  have  a  higher  density  of
ground points than forested areas, such as
the  one developed  by  Beck  et  al.  (2015),
may fail in detecting roads lined by dense
tree  cover.  On  the  other  hand,  on  steep
terrain, the filtering algorithms have prob-
lems distinguishing which elevation is actu-
ally the ground level. Since the methods of
forest  road extraction developed to date
(Clode et  al.  2007,  Azizi  et  al.  2014)  have
used DTMs (Digital Terrain Models), which
are  based  on  ground  point  information,
this entails a challenge for forest road de-
tection using LiDAR data.  In addition, the
limited availability  of LiDAR data hampers
the development of comprehensive forest
road network maps, since data acquisition
is  one of  the most expensive steps in re-
mote sensing studies (González-Ferreiro et
al. 2012).

In  this  respect,  Spain  is  one of  the  few
countries in the world to have a National
Plan  for  Territory  Observation  (LiDAR-
PNOA© National  Geographic  Institute  of
Spain) which ensures the capture of LiDAR
data at various times across the whole of
its  territory.  At  the  moment,  data  from
only  one  flight  (between  2008  and  2015,
depending on  the  region)  is  available  for
civil  use,  but  more  flights  to  update  the
current data are expected to take place in
the next  couple of  years.  While  this  data
has  one  main  drawback  – the  low  cloud
point density used for the vast majority of
the territory (only 0.5 points m -2)  – this is
counterbalanced  by  the  fact  that  data  is
available for the whole national territory at
no cost. In addition, the fact that the data
is  to be updated periodically  with further
flights  means  that  there  is  an  ongoing
source of  date to use to ensure that  the
mapping of the forest road network is reg-
ularly brought up to date.

Despite  the  easily  accessible  availability
of LiDAR data and the great potential that
this technology has shown in various stud-
ies,  in  Spain  no  great  efforts  have  been
made to build a public cartography of for-

est  road  networks.  This  fact  is  especially
worrisome  in  the  northern  part  of  the
country (specifically in Asturias) where ac-
cording to the Spanish National Forest In-
ventory  (DGDRPF  2012),  73%  of  the  total
surface  is  forested  and  the  potential  for
wood production is extremely high. Within
this  area,  however,  environment  condi-
tions  are  difficult,  i.e.,  very  steep  orogra-
phy (47% of the land covered by trees has a
slope  between  30  and  60%  while  5%  has
more than 60%) and densely planted forest
stands.

In view of the above, this study aims to
test the hypothesis that it possible to use
low-density  LiDAR data  to  semi-automati-
cally  detect  and extract  forest  roads  and
that this is a more efficient alternative than
manual digitization. The study aims to de-
sign a semi-automatic methodology to ob-
tain the centerline of forest roads from low
density LiDAR data in a steep forested envi-
ronment. Two approaches have been eval-
uated: a pixel-based methodology and one
which  is  object-oriented  (OBIA).  In  addi-
tion, the influence of the characteristics of
forest roads (width and type of road sur-
face) and the surrounding vegetation (type
of canopy cover bordering the road) on the
results  of  these  two  types  of  semi-auto-
mated detection was also analyzed. Steep
environments are acknowledged to be an
extremely difficult context for forest man-
agement (White et al. 2010) and to obtain
accurate  information  about  forest  road
networks, thus a method of road detection
that is effective and efficient in these con-
ditions is likely to be easily applied in less
challenging circumstances.

Material and methods

Study area
The  study  area  is  located  in  Asturias,  a

mountainous region situated in the north-
west  of  Spain.  A  state-owned  forest  of
178.77  ha was  chosen as  a  pilot  area  be-
cause it is a representative sample of the
type of forests found in the region, which
are generally characterized by steep slopes
and a variety of species. Elevation range is
between 36 and 335 meters a.s.l. and over
half the area (55.7%) has a slope ranging be-
tween  31%  and  60%,  while  20.7% is  above
60%.  These  characteristics  provide a  chal-
lenging  though  realistic  environment
where the detection methodologies of this
study could be assessed.

The study area incorporates a number of
stand types. There are pure stands of Pinus
pinaster  Ait. (both mature stands  – hence-
forth: “pine” – and younger reforested ar-
eas under 5 years old – henceforth: “refor-
ested”), along with mixed stands of broad-
leaved  species  which  are  dominated  by
Castanea sativa Mill., but also include Quer-
cus robur  L. and Eucalyptus globulus  Labill.
(henceforth: “broadleaved”). The distribu-
tion of the different stand types across the
study area is shown in Fig. 1A.
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Forest road detection from LiDAR data on steep terrain

Data
LiDAR data for  the study area was  cap-

tured under  the framework of  the  PNOA
(LIDAR-PNOA 2012) during the summer of
2012. Average cloud point density was 0.5
points m-2 and the altimetric accuracy of Li-
DAR data was around 20 cm.

In order to test the accuracy of the LiDAR
detection of forest roads, the real center-
lines  of  the  forest  roads  network  in  the
study area were collected in the field dur-
ing the summer of 2013 using a GPS Trimble
Explorer  XH™ (Trimble,  Sunnyvale,  CA,
USA) with  submetric  accuracy.  This  data
was  collected  in  shape  format,  whereby
the lines defining the centerlines of forest
roads are associated with a database which
records  their  main  attributes  (width  and
type of road surface and surrounding vege-
tation).

A further set of field data was also cap-
tured using a GPS model with centimetric
accuracy   (TOPCON  GR-3™,  TopCon  Posi-
tioning Systems Inc.,  Livermore, CA, USA)
which was then used to assess  the  accu-
racy of  the LiDAR-derived products to be
used in the analyses. Firstly, to assess the
accuracy  of  the  LiDAR-derived  DTMs,  55
ground points were measured in the field
which were located in areas of varying de-
grees of slope and different types of vege-

tation to ensure variability in these factors
was  covered.  Secondly,  to  evaluate  the
planimetric accuracy of the LiDAR-derived
centerlines  obtained  with  the  two  ap-
proaches,  a  subsample was  selected con-
sisting of four sections of forest roads (A,
B, C and D), each with a different type of
road  surface,  and  sometimes  differing  in
road  width  and  surrounding  vegetation
(Tab. 1). The field-survey centerline of each
section was digitized for use as a positional
reference.

LiDAR data processing
For the detection of the forest road net-

work two LiDAR inputs  were  used:  slope
map and intensity image. The intensity im-
age  enables  covered  areas  to  be  distin-
guished  from  uncovered  areas,  and  the
slope map provides information about ter-

rain morphology (Sherba et al. 2014).
In  order  to  get  an  accurate  slope  map,

the first step was to obtain a DTM of the
study area. The procedure to obtain a DTM
from  LiDAR  data  involves  two  differenti-
ated  steps:  the  separation  of  the  LiDAR
point cloud into those points belonging to
the  ground  and  those  belonging  to  tree
cover through a filtering process; and the
subsequent interpolation of ground points
to generate a continuous surface that com-
prises the DTM. A two-step validation proc-
ess (see below) was carried out so that the
best  combination  of  parameters  in  each
case was established and then used to pro-
duce the final DTM.

Filtering quality assessment
Firstly, the filtering of ground points was

conducted using the “GroundFilter” func-
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Fig. 1 - (A) Distribution of different stand types across the study area; (B) DTM resulting from the validation step; (C) Slope map
resulting from the DTM; (D) Intensity image of the study area.

Tab. 1 - Characteristics of the subsample sections.

Section
Length

(m)
Road 
surface

Road width 
(m)

Surrounding 
vegetation

A 994.3 Aggregate 2-4 Pine

B 809.2 Dirt 2-4 Pine

C 266.1 Rock 2-4 Reforested

D 359.8 Aggregate >4 Pine
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tion  (an  adaptation  of  the  IRI  filter  by
Kraus & Pfeifer (1998) included in the soft-
ware FUSION ver. 3.5 (McGauhey 2009). To
find the parameters of the “GroundFilter”
function  (g,  w)  showing  the  best  perfor-
mance,  36  combinations  were  tested  in
four control areas (each of around 0.5 ha)
having specific  characteristics  making the
analysis  difficult,  such  as  steep  terrain,
dense  vegetation,  etc.).  The  ranges  for
each parameter were as follows: g  [-2, -1]ϵ
at intervals of 0.5 m and w  [1.5, 3.5] at inϵ -
tervals of 1 m. Within the control areas, Li-
DAR datasets  were manually  classified  as
ground and not ground points to obtain a
reference dataset for comparison. The vali-
dation of the filtering process was carried
out following the methodology outlined in
Sithole & Vosselman (2004) and  Hu et al.
(2014). The filtering parameters finally  se-
lected were g = -1.5 and w = 3.5.

Assessment of LiDAR DTM accuracy
In order to assess the accuracy of the Li-

DAR DTM, a robust statistical error valida-
tion process (Höhle & Höhle 2009) was car-
ried  out  after  generating  the  candidate
DTMs with the various combinations of fil-
ter  parameters.  To  do  this,  the  55  GPS
ground  captured  in  the  field  (see  above)
were used as control points. All the candi-
date  DTMs  had  resolution  of  2  ×  2  m  to
guarantee  that  there  was  at  least  one
point within each pixel.

The DTM which obtained the best results
following the two validation steps (Fig. 1B)
was  selected  to  generate  the  slope  map
(Fig. 1C) which then served as input for the
detection approaches.

Due to the fact that intensity values are
influenced  by  terrain,  flight  and  sensor
characteristics,  as well  as  by  atmospheric
conditions  (Song & Civco 2004),  intensity
values need to be corrected. The only data
available  for  this  is  the  average  flight
height, which can be used to normalize the
range,  as per the methodology proposed
by  García et al.  (2010). Based on the nor-
malized intensity values of the LiDAR data,

an intensity  image was created for  a  cell
size of 2 m (Fig. 1D).

Forest roads detection workflow: pixel-
based vs. object-oriented classification 
(OBIA)

To extract  the forest roads from the Li-
DAR  data,  the  workflow  shown  in  Fig.  2
was  followed  using  two  different  ap-
proaches:  a  pixel-based  classification  and
an OBIA one. In both cases the intensity im-
age and the slope map were the inputs of
the procedure.

In the first approach,  the normalized in-
tensity image and the slope map were sub-
jected  to  a  pixel-level  classification  using
the  Maximum  Likelihood  (ML)  algorithm.
This  method  considers  that  digital  levels
within each class fit a normal  distribution
such that each classification category can
be described by a probability function de-
duced from its mean vector and its matrix
of variance-covariance. The calculation was
performed for  all  classification categories
involved, each pixel being assigned to the
category  that  maximized  the  probability
function (Edgeworth 1908).

In the second approach,  the normalized
intensity  image  and  the  slope  map  were
subjected  to  an  object-oriented  unsuper-
vised classification.  The  algorithm for  the
segmentation  of  both  images  was  Mean-
shift  (MS)  segmentation (Comaniciu  &
Meer  2002).  This  algorithm identifies  fea-
tures or segments in an image by grouping
together adjacent pixels that have similar
spectral  characteristics.  The  amount  of
spatial and spectral smoothing to assist in
the derivation of  features  of  interest  can
be  controlled.  Unlike  with  the  ML  algo-
rithm, no assumption about probability dis-
tributions is made.

The  intensity  images  and  slope  maps
from  the  two  different  classification  pro-
cesses used were then reclassified,  based
on a manual visual analysis, to obtain a bi-
nary image  – “forest roads” (1)  and “not
forest roads” (0)  – for both slope and in-
tensity.

These binary slope and intensity  images
were  then  refined  using  a  majority  filter
which removes single pixels  or  noise and
replaces the cell(s) depending on the cate-
gories of the neighboring cells. After that,
the two binary images from each approach
were combined by multiplication to obtain
one single final binary image, also classified
into 0 (not road) or 1 (roads), for the pixel
approach and one for the OBIA approach.

This  final  binary  image  resulting  from
each  approach  was  then  subjected  to  a
second refining process in order to remove
noise and to achieve continuity within cate-
gory 1 “forest roads” (dilation and closing
filter). The final step was automatic vector-
ization, a technique which converts raster
data into vector entities (Mena 2006). Us-
ing this technique, a vector file which de-
fined  the  centerline  of  the  forest  roads
with  a  line  was  obtained  (LiDAR-derived
centerlines).  Visual  inspection of  these Li-
DAR-derived centerlines was carried out to
ascertain  the  threshold  for  noise  (estab-
lished  as  being  25  m),  and  all  lines  not
meeting  this  threshold  were  removed  to
reduce noise.

The  workflow  explained  above  was  au-
tomatized  with  the  help  of  GIS  software
that uses a Model Builder.

Analysis of results and accuracy 
assessment

Overall assessment using the quality 
measures

The  results  from  the  two  approaches
were assessed using the methodology de-
scribed by Azizi et al. (2014), i.e., the LiDAR-
derived  centerlines  from  each  approach
were  compared  with  the  real  centerline
measured in the field. In order to do this,
the  real  centerline  was  divided  into  500
segments of equal length (48 m) and a 10
meter buffer was built  around it  (i.e.,  the
area of influence of the forest road). In this
way,  all  LiDAR-derived centerlines located
completely  within  the  buffer  zone  were
considered  to  be  detected  (“True  Posi-
tives”, TP – Fig. 3A) and those only partly in
the buffer zone were designated as “False
positives” (FP  – Fig.  3B),  while  those not
identified  were  classified  as  “False  Nega-
tives” (FN – Fig. 3C)

From the number of TP, FN and FP found,
the  quality  measures  were  calculated,  as
described in the work of Wiedemann et al.
(1998a),  i.e.,  completeness  (eqn.  1),  cor-
rectness (eqn. 2) and quality (eqn. 3):

(1)

(2)

(3)

Completeness  is  the  percentage  of  the
reference data (in this case the field data)
explained by the extracted data, while cor-
rectness represents the percentage of cor-
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Fig. 2 - The workflow followed to obtain LiDAR-derived centerlines.iF
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rectly  extracted  road  data.  Quality  is  a
more  general  measure  of  the  final  result
which combines completeness and correct-
ness into a single measurement. The maxi-
mum  value  for  each  of  the  quality  mea-
sures is 1 (100%).

Influence of the characteristics of forest 
roads and the surrounding vegetation in 
the detection

An analysis of variance (ANOVA) was per-
formed to evaluate the influence of various
factors  on  the  detection  of  forest  roads,
particularly on the quality measures: com-
pleteness, correctness and quality. The fac-
tors  analyzed  were:  surrounding  vegeta-
tion type, road surface and road width. All
possible combinations of the three factors
were considered resulting in a forest road
classification of 25 classes. In addition, the
influence of the two different approaches
used in the detection was also evaluated.

Assessment of accuracy of LiDAR-derived 
centerlines

Besides estimating the quality of the two
methods tested in terms of completeness
correctness and quality,  the positional ac-
curacy of the centerlines of the LiDAR-de-
rived  centerlines  was  compared  to  the
field-survey centerline of  sections  A,  B,  C
and D using a simple method proposed by
Goodchild & Hunter (1997). This method is
based on the generation of buffers of dif-
fering  width  around  the  field-survey  cen-
terline,  after  which the percentage of  Li-
DAR-derived centerlines inside each buffer
width is calculated. To this end, 20 buffers,
at  half  meter  intervals  from  0.5  to  10  m
were  created.  Based  on  the  results  ob-
tained with the two different approaches,
a plot of the percentage of LiDAR-derived
centerlines lying within the buffer  vs. the
buffer  width  was  created  and  the  buffer
width required to accommodate 95% of the
field-survey centerlines was used as a mea-
sure of overall  positional accuracy (Good-
child & Hunter 1997, Tveite 1999).

Results and discussion

Overall Assessment of the two 
approaches (Pixels vs. OBIA)

The  LiDAR-derived  centerlines  obtained
with  each  of  the  two  approaches  are
shown graphically in Fig. 4.

Tab.  2 shows the average values  of  the
quality measures obtained for each of the
two approaches assessed in this study.

In terms of completeness, the value ob-
tained in the two approaches was similar,
meaning that total percentage of the for-
est roads network detected with both ap-
proaches  is  around  60-65%.  The  correct-
ness value was also very similar for both,
and  indicates  that  around  90%  of  the  Li-
DAR-derived  centerlines  detected  auto-
matically represented real roads. Commis-
sion error in both cases was therefore low.

Quality provides a more global  measure

of  reliability,  since  it  takes  into  account
both  the  completeness  and  the  correct-
ness of the extracted data (Wiedemann et
al.  1998b).  The quality  value  in  the pixel-
based approach was 4%  higher  than with
OBIA (60 and 56%, respectively). Thus it can
be concluded that,  as  a  whole,  the pixel-
based classification yields slightly better re-
sults than the object-oriented one, particu-
larly in terms of quality and completeness.

Influence of the characteristics of forest
roads and the surrounding vegetation 
on detection

Based on the real centerlines collected in
the  field,  the  total  length  of  the  forest
roads network is 24 km, 70% of which were
identified in the visual inspection as being
in  good  condition.  In  relation  to  road
width,  the  vast  majority  of  forest  roads
(75%) were wide enough to allow for the
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Fig. 3 - Measures used to calculate the quality measures in forest road detection for
the two assessed methodologies. (A) “True Positive” (TP): LiDAR-derived centerlines
that are real forest roads. (B) “False Positive” (FP): LiDAR-derived centerlines that do
not follow the real road. (C) “False Negative” (FN): forest roads not identified.
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Fig. 4 - Forest road network obtained with the two detection approaches: pixel-based (A) and OBIA (B).
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circulation of forestry machinery (2.5 m or
more).

In this scenario, and despite the hetero-
geneity of the study area which presented
great  differences  in  terms  of  orography,
types of surrounding vegetation and road
surface, both approaches were able to de-
tect and draw the centerline of the princi-
pal  forest  roads.  Both  approaches  were
particularly  effective  in  areas  where  road
width was > 2.5 m and when roads were
not  occluded  by  vegetation,  conditions
particularly prevalent in the southern part
of the study area (Fig. 4A, Fig. 4B).

Tab. 3 reports the results of the ANOVA
performed on the quality measures evalu-
ated and shows that there were no statisti-
cally significant differences between group
averages for the two methodologies used
in  the  detection  (Methodology  column).
However, significant statistical differences
were found between all  quality measures
in  the  case  of  vegetation  type,  and  be-
tween completeness and quality averages
in the case of road width.

The strongest influence on detection was
that of the surrounding vegetation, as can
be observed in Fig. 5 which graphically rep-
resents  the  relationship between the val-

ues  of  the quality  measures  and  the  sur-
rounding  vegetation  for  the  pixel-based
classification.  It  can  clearly  be  observed
that  all  values  except  correctness  are
lower  for  forest  roads  through  broad-
leaved stands. This suggests that the pixel-
based classification works  better  in areas
with wide forest roads which are not sur-
rounded  by  broadleaved  species.  Forest
road width itself may not be the only factor
influencing  forest  road  detection,  the
width of the belt of forest cleared in order
to construct the carriageway is also likely
to have a role. However, this is more diffi-
cult  to  quantify  with  LiDAR  technology,
and  was  not  taken  into  account  for  the
purpose of  this  study.  Another issue that
should be taken into consideration is  the
fact  that  the  open space  between  forest
stands due to the forest road and its con-
struction will get smaller over time due to
the growth of tree crowns along the stand
edge close to the road, which at a certain
point may begin to occlude the road itself.
In  this  respect,  broadleaved species  have
globular thick crowns which will generally
occupy more space than conifers, and this
may  have  contributed  to  the  lower  road
detection rates in broadleaved stands.

Comparing  these  results  with  those  of
other authors, a study carried out by  Azizi
et al. (2014) in a forested area using LiDAR
data with a density of  4 points m-2 found
values  of  completeness,  correctness  and
quality of 63.02%, 75.07% and 52.17%, respec-
tively.  In  their  case,  they used input data
(Digital Surface Model and intensity image)
from  an  SVM  (Support  Vector  Machine)
classification.  The  values  they  found  are
quite  close  to  those  obtained  from  the
pixel-based  classification  presented  here,
especially  in  terms of  quality,  despite the
data  used  in  the  present  study  being  of
much  lower  density,  only  0.5  points  m-2.
One  reason  for  this  may  be  that  in  the
work of Azizi et al. (2014), 80% of its forest
roads were under tree cover, which nega-
tively influenced the detection in terms of
the low number of ground points resulting
in a DTM of 1 meter of resolution. Another
study by  Sherba et  al.  (2014) used a  fully
automated  object-based  classification,
which performed well with a total accuracy
of 86%,  a considerable improvement over
the pixel-based unsupervised classification
used for  comparison,  which resulted in  a
road  classification  accuracy  of  only  77%.
However, it should be taken into account
that these authors were working with data
of 6 points m-2  and an average road width
of 4 meters. In fact they also assessed the
influence on the quality of detection of ar-
tificially  reducing the point  cloud density.
They  found  that  changing  the  average
point  density  from  1.2  points  m-2 to  0.06
points m-2 resulted in total accuracy falling
from close to 70% to below 50%. Determin-
ing  the  optimum  data  density  for  forest
road detection is challenging, and although
all authors agree that the higher the better
(James et al. 2007, Kiss et al. 2016), several
studies demonstrated that road curves and
slope  can  be  assessed  from  even  very
sparse  (1.12  points  m-2)  airborne  scanning
data  (Craven  &  Wing  2014).  However,  in
any given area, factors such as road width,
type of road surface, surrounding vegeta-
tion,  etc.  will  vary,  making  it  difficult  to
draw definitive  conclusions  from compar-
isons between studies.

In the future, in line with the PNOA, when
LiDAR data of  higher density will  be cap-
tured for  the whole  of  Spain,  the  results
obtained with the methods detailed in this
work  will  be  improved  in  terms  of  both
quality and positional accuracy. Until such
data will  be available, the approaches de-
scribed here can serve to provide the first
step  in  developing  a  large-scale  national
database of forest roads networks.

Two limitations  of  the  approaches  used
here must, however, be recognized. These
pertain to forest roads width and the type
of vegetation bordering forest roads. The
majority of the forest roads that were not
detected  by  either  approach  are  narrow
and,  on the  whole,  surrounded by  dense
broadleaved  vegetation.  The  influence  of
the type of  vegetation is  made especially
evident by the fact that the centerline of
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Tab.  2 -  Quality  measures  obtained for the two detection approaches:  pixel-based
(Pixels) and OBIA.

Approach Completeness Correctness Quality

Pixels 0.65 0.90 0.60

OBIA 0.59 0.93 0.56

Tab. 3 - Results of Analysis of Variance (ANOVA) to quantify the influence of the fac-
tors on the quality measures.

Metric
Vegetation Road surface Methodology Road width

F prob F prob F prob F prob

Completeness 7.92 0.0002 1.27 0.2967 0.25 0.6205 3.97 0.0258

Correctness 6.64 0.0008 0.98 0.4123 0.54 0.4667 2.86 0.0677

Quality 7.49 0.0004 1.14 0.3453 0.44 0.5120 4.8 0.0129
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Fig. 5 - Rela-
tionship be-

tween the
values of the
quality mea-
sures evalu-

ated in the
pixel-based

classification
and the sur-

rounding
vegetation.
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forest roads running through broadleaved
stands  is  at  times  completely  occluded,
thus  making  road  detection  exceedingly
difficult. It should be noted that the LiDAR
data used in this study was captured dur-
ing  summer,  when  broadleaved  canopies
were in full leaf. Thus, the laser beam can-
not  penetrate  through the  dense  canopy
to the ground, resulting in a lower quality
DTM  not  representing  the  shape  of  the
land surface, but rather of the vegetation.
In the case of intensity image, the leafy ar-
eas appear very dark because they repre-
sent the highest points of the vegetation,
especially  in  those  areas  where  the  high
canopy density hinders the centerline of a
forest road to be detected from the air, or
is completely masked. In areas where there
are two types of vegetation stand adjacent
to  each  other,  such  as  pine  and  broad-
leaved stands,  it  can be seen that the Li-
DAR-derived centerline was detected with-
out problem in the pine forest area but dis-
appears or  is  interrupted in the part  bor-
dered by broadleaved trees.

In  reforested  stands  however,  the  per-
centage  of  LiDAR-derived  centerlines  de-
tected  was  high,  since  the  relatively  re-
cently  planted  vegetation  was  not  very
dense and did not occlude the centerlines
of the roads. However, the number of false
positives in these areas was also high, be-
cause the presence of bare soil among the
trees gives rise to high intensity values, and
the  classification  algorithm  has  problems
distinguishing soil between lines of smaller
young trees from the surface of the road.
According  to  the  results  of  Beck  et  al.
(2015), differences in canopy cover proved
to  be  a  weakness  in  the  road  extraction
process,  which  requires  relative  consis-
tency  of  cover  type  to  define  intensity
thresholds.  Extreme  differences  in  cover
type throughout an area will have a large
impact  on  results  of  the  road  extraction
process.  False  positives  in  particular  are
more sensitive to these differences.

In  this  study,  forest  roads  that  did  not
have pronounced gradient were difficult to
identify, as can be observed in the bottom
left corners of  Fig.  4A and  Fig.  4B where
slope is around 20%. This has also been doc-
umented by White et al. (2010) and Azizi et
al. (2014). Areas of gentle gradient can also
cause breaks in the continuity of the forest

roads  network when drawing the center-
line (Ferraz et al. 2014).

Assessment of positional accuracy of 
LiDAR-derived centerlines

The results of the assessment of the posi-
tional  accuracy  of  the LiDAR-derived cen-
terlines  obtained  with  the  method  of
Goodchild  &  Hunter  (1997) are  shown  in
Fig. 6, which plots the percentage of the Li-
DAR-derived  centerline  lying  within  the
buffer  against  buffer  width  for  each  ap-
proach, pixel-based (6A) and OBIA (6B).

Tab.  4 shows the positional  accuracy  of
each approach in each of the sections ex-
amined,  that  is,  the  width  of  the  buffer
needed to encompass 95% of the field-sur-
vey centerline. In general,  the pixel-based
classification gave better results, especially
in section D, where the accuracy difference
between the two approaches was 4 m. The
higher accuracy in this section is due to the
combination  of  two  most  favorable  fac-
tors,  big width (more than 4 m) and sur-
rounding  vegetation  composed  by  pines
which  was  the  kind  of  stand  having  the
best behavior in terms of forest roads de-
tection.

The average positional error was ± 5.50 m
for the pixel-based approach and ± 6.88 for
OBIA. In the case of LiDAR-derived center-
line accuracy, the fact that the pixel-based
classification was more accurate may be re-
lated to the resolution of the images used
in the classification process.  According to
Cánovas-García (2012),  the object-oriented
classification approach is capable of deliv-
ering more accurate results than those ob-
tained  by  a  pixel-based  approach,  espe-
cially when dealing with high spatial resolu-
tion images. However, in this case the reso-
lution of the information layers involved in
the detection of forest roads was not high
because  of  the  low  density  of  the  data
used, and this may have counteracted the

difference found by Cánovas-García (2012).
In  addition,  Cowen et  al.  (1995) highlight
the  fact  that  the  object  to  be  identified
must be composed of at least 4 pixels if re-
mote sensor images are used, a condition
which was not always met in this study. As
a result,  the advantage of  OBIA methods
over pixel-based methods, that is the abil-
ity to generalize and reduce heterogeneity,
becomes  a  drawback  with  low  density
data. Finally, much of the study area has a
high degree of slope and dense vegetation
which,  together  with  the narrower width
of some of  the forest  roads and the low
resolution of the information layers, makes
it difficult to create objects that are repre-
sentative  of  roads  in  the  segmentation
process.

Comparing  the  results  obtained  in  this
study  with  other  similar  works,  accuracy
values  are  lower  than  those  obtained  by
White et  al.  (2010) and  Azizi  et  al.  (2014)
(1.3  and  1.2  m  respectively).  This  may  be
due in large part to the low density of the
LiDAR data used in this  study (0.5  points
m-2 vs. 12  and  4  points  m-2,  respectively)
which forces the slope map and the inten-
sity  image to have a  low resolution com-
pared to the images used in the abovemen-
tioned papers. Morever, forest roads width
in  both  these  studies  is,  on  average,
greater than that in this study. In the case
of White et al. (2010), the process of digitiz-
ing the centerline was manual, while in this
study  it  was  completely  automatic.  Al-
though this introduces a certain degree of
error, it has the great advantage that it can
be applied to large areas at very low cost.
For example, Gao & Wu (2004) report that
the automatic extraction of road network
information involves significantly less time
and expense, though it is methodologically
more complex.  Doucette et al.  (2009) de-
fines productivity in relation to digitization
of data as being the time taken to digitize
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Tab. 4 - Positional accuracy values (in meters) for the two approaches for each sec-
tion.

Section
Length

(m)
Road
surface

Road
width (m) Vegetation Pixel OBIA

A 994.3 Aggregate 2-4 Pine 7.00 10.00

B 809.2 Dirt 2-4 Pine 5.50 5.50
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the information per measure of  area.  Ro-
man  et  al.  (2017) in  an  area  with  similar
characteristics to those of this study, found
manual digitization to have a productivity
of 1 km per minute. In contrast, the produc-
tivity  of  the  semi-automatic  process  pre-
sented here is 1  km in 9.2s (using a com-
puter with 8 GB of RAM). Based on these
data, the use of the proposed method al-
lows  productivity  to  be  increased  more
than  6  fold  with  respect  to  the  manual
method. Moreover, the positional accuracy
of ± 5.50 m obtained here is still much bet-
ter  than  the  ±  12  m  obtained  by  USGS
(United States  Geological  Survey)  in  their
topographic maps,  or  the ± 10 m used in
traditional  data  sources  to  plot  roads  on
the 1:25.000 topographic maps in Iran (Az-
izi et al. 2014). It is also very similar to the ±
5 m positional accuracy of the mapping of
the Spanish public  road network,  demon-
strating  that  even  the  low  density  data
used in this work can provide estimations
as good as, and often better than, existing
cartographies.

One  final  point  to  note  is  that  forestry
road extraction is typically a manual proc-
ess  where  positional  error  depends  on  a
number of  factors,  but  the human factor
(i.e., differences depending on the person
making the digitization) has been reported
to be approximately 3 meters (Doucette et
al. 2009). As such, one of the main advan-
tages  of  automatic  vectorization  tech-
niques is  that the effect  of  the individual
disappears,  and hence  accuracy  error  de-
pends  only  on  the  data  sources  and  the
vectorization methodology. Finally, if map-
ping were  conducted over  larger  extents
(hundreds to thousands of square kilome-
ters) automated and semi-automated road
extraction techniques could offer substan-
tial  savings in terms of time (Doucette et
al. 2009).

Conclusions
In this  study a methodology for the de-

tection and extraction of forest roads from
freely available LiDAR data of low density
was designed and applied. The results ob-
tained confirm the initial hypothesis that it
is  possible  to  semi-automatically  recon-
struct  the  forest  roads  network  even  in
steep forested environments. As the analy-
sis  procedure has been implemented in a
GIS Model Builder, it can be applied quickly
and easily in other forest areas with similar
or less complex and challenging character-
istics.

Of  the  two  approaches  evaluated,  the
pixel-based  classification  method  yielded
slightly  better  results  than  the  OBIA one
with  regard  to  the  quality  measures  and
positional  accuracy.  The  completeness,
correctness,  and quality values  were 65%,
90%  and  60%,  respectively,  compared  to
59%, 93% and 56% obtained with OBIA. De-
spite  this,  the  results  of  the  ANOVA  de-
monstrate  that  neither  the  methodology
used nor the type of road surface had any
significant influence on the detection and

digitization  of  the  road  centerline,  al-
though  road  width  and  the  type  of  sur-
rounding vegetation do. In fact, the results
indicate that low density LiDAR data is suit-
able for  the  detection and digitization of
forest  roads  over  large  areas,  especially
those where forest roads are wider (over 4
m) and are not surrounded by broadleaved
stands.  With  respect  to  positional  accu-
racy,  the  values  obtained  by  pixel-based
classification are on average, 1.38 m more
accurate  than  those  from  the  OBIA  for
each of the sections examined (± 5.50 vs. ±
6.88 m, respectively). The value of ± 5.50 m
can  be  considered  acceptable  given  that
traditional data sources used to plot roads
have lower accuracy values than this.

Regarding  the  methodology  limitations,
future research should focus  on both im-
proving the effectiveness of image classifi-
cation  and  achieving  more  defined  and
continuous  lines  (road  centerlines)  in  ad-
verse vegetation and slope conditions.

Finally, efforts at a national level by gov-
ernments  to  capture  higher  cloud  point
density data on a country-wide level open
the door to large-scale detection trials.  In
Spain, the data that will be captured in the
future, within the framework of PNOA, will
allow  the  methodology  presented  in  this
study to be used to develop a cartography
of forest roads, including mountainous ar-
eas, which can be updated every time new
data  is  released.  However,  in  the  mean-
time,  the  approaches  described  in  this
work  offer  a  valuable  first  step  towards
such  a  complete  large-scale  database  of
forest roads networks.
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