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Hemlock woolly adelgid niche models from the invasive eastern North 
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The hemlock woolly adelgid (Adelges tsugae Annand – HWA) is invasive in east-
ern North America where it causes extensive mortality to hemlock communi-
ties. The future of these communities under projected climate change is an is-
sue of landscape ecological interest and speculation. We employed the MaxEnt
algorithm with the random subset feature selection algorithm (RSFSA) in creat-
ing HWA niche models. Final models were ensembles of 12 statistically best
models with six predictors each. Out of 119 climatic, topographic, and soil
variables, 42 were used in at least one final model. Soil features, followed by
climate and topographic features, were most common in selected models. The
three most  important variables among all  models were November potential
evapotranspiration, slope, and percent Ochrepts soil. The potential distribu-
tions of HWA within eastern North America were projected under historical
and four future climate scenarios for 2050 and 2070 under low and high CO2

emissions. The mean of the minimum values for the minimum temperature of
the coldest  month from the 12 MaxEnt model projections in eastern North
America was -15.8°C. This value was close to -15°C, the extreme minimum
temperature found for both HWA occurrence points and previously reported
HWA cold temperature limits. These results indicate that HWA may be close to
equilibrium distribution in eastern North America under current climate. We
also reverse-casted the eastern North American MaxEnt model back onto the
HWA native ranges in eastern Asia and western North America. The projections
match best with native ranges in Asian islands, such as Japan, and the Cascade
Mountains in western North America. Statistically significant HWA range shifts
of 221-468 km northwards and 110-164 km eastwards were projected by the
12  models  for  2050-2070.  The  2070  high  CO2 emission  scenario  models
projects  HWA suitability  throughout most  of the northern range of  eastern
hemlock.

Keywords: Ecological Niche Modeling, Climate Change, Hemlock Woolly Adel-
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Introduction
The  hemlock  woolly  adelgid  (HWA  –

Adelges tsugae Annand, Hemiptera: Adelgi-
dae) is a non-native invasive insect in east-
ern North America causing high mortality
to native hemlock species (Spaulding & Ri-
eske 2010). The HWA was recorded for the
first time in Richmond of Virginia, in 1951;
however,  it  was  most  likely  introduced
much earlier (McAvoy et al. 2017). The gen-
otype  of  HWA  in  the  eastern  USA  origi-
nates from low elevations in southern Ja-
pan, on southern Japanese hemlock (Tsuga
sieboldii Carriére – Havill et al. 2006, 2016).
The current aggressive expansion in east-
ern USA on eastern hemlock (Tsuga cana-
densis [L.]  Carrière)  started  in  the  1980s
and was possibly related to climatic factors
(Spaulding & Rieske 2010).

All  ten  hemlock  species  (Tsuga spp.)  in
Asia and North America serve as host spe-
cies  of  HWA.  However,  HWA is  a  serious
pest only on the two native hemlock spe-
cies  of  eastern  North  America,  eastern
hemlock and Carolina hemlock (Tsuga car-
oliniana Engelman.  – Havill  et  al.  2006).
These hemlocks are observed to have little

to no resistance against HWA infestations
(McClure  & Cheah  1999).  Another  reason
for  the  successful  HWA  establishment  in
the eastern US is the lack of natural ene-
mies  (McClure  &  Cheah  1999).  Hemlock
mortality typically occurs in four to 10 years
(Spaulding  &  Rieske  2010,  McClure  et  al.
2001), but stand level mortality may occur
as soon as in two to three years (Trotter &
Shields 2009). Impacts of hemlock decline
by  HWA  include  alterations  in  ecosystem
functions and services, as well as negative
effects to other plant species and wildlife
(Rohr et  al.  2009,  Ford et al.  2012).  Hem-
lock  decline  affect  both  terrestrial  and
stream ecosystems.

The eggs and crawlers of HWA are spread
by  many  means,  including  wind,  phoresy
on wildlife, and anthropogenic factors (Mc-
Clure et al. 2001). Estimations of the annual
rate  of  HWA  range  expansion  vary  from
12.5 to 20-30 km (McClure et al. 2001, Morin
et al. 2009). Both short and long-distance
HWA  dispersal  has  been  observed  with
new colonies found far ahead of the main
front of the range expansion (Morin et al.
2009).  The  rate  of  range  expansion  has
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been notably faster pole-wards, compared
to the westward, following an anisotropic
pattern  of  spreading  (Morin  et  al.  2009,
Soberón & Peterson 2011). This pattern of
spreading  may  be  influenced  by  phoresy
on  migratory  birds  (McClure  &  Cheah
1999), as well as abundance and geograph-
ical distribution of eastern hemlock (Morin
et al. 2009).

The  continued  spread  of  HWA  coupled
with effects of climate change and related
range shifts are causing great uncertainty
in evaluation of its impact, as well as in risk
assessment  and  management  planning
(Liang  et  al.  2014).  Predictive  models  for
range  expansion  support  forest  health
management assisting in preparations for
potential  further  spread  (McAvoy  et  al.
2017).  Previous  studies  have  investigated
the  potential  shift  of  the  northern  HWA
range  in  relation  to  winter  temperatures
and related HWA mortality (Paradis  et al.
2008,  Fitzpatrick et al. 2012,  McAvoy et al.
2017,  Ellison  et  al.  2018).  Although  cold
temperatures  are  regarded  as  an  impor-
tant  limiting  factor  for  HWA  populations
(Tobin et al. 2017), other factors should be
investigated as well. Topographic features
coupled  with  climate  are  main  drivers  of
species distribution at a regional scale (Pe-
terson et al. 2011). At higher spatial resolu-
tions, other environmental factors increase
in significance, e.g., soil properties, such as
soil water holding capacity, which interact
with climate (Ehrlén & Morris 2015). Use of
relevant non-climatic variables, such as to-
pography  and  soil  features,  with  climatic
features can produce more robust assess-
ments of the impacts of climate change on
species ranges (Iverson et al. 2011).

Ecological niche modeling (ENM, or spe-
cies distribution modeling) is a popular ap-
proach for spatially projecting species dis-
tributions  under  historical  (or  contempo-
rary)  climate  and  future  climate  change
scenarios  (Peterson  et  al.  2011,  Ehrlén  &
Morris 2015). This study represents the first
use of ENMs to project suitable habitat for
HWA within the introduced range of east-
ern North America under either historical
or  future  climate  scenarios.  We  also  re-
verse-cast introduced range HWA models,
projecting  them  back  onto  the  native
range in East Asia and West North America
(i.e., reciprocal distribution modeling – Fitz-
patrick et al. 2007) in order to: (1) evaluate
the sensitivity of the models to HWA occur-
rences in the native range as an indicator
of the degree to which HWA is at equilib-
rium within the introduced range; and (2)
project the most suitable areas in the na-
tive range for collecting potential HWA bio-
logical  control  agents  adapted  to  intro-
duced  range  environments.  Accordingly,
our primary objectives are to:  (1) develop
MaxEnt  niche  models  for  the  introduced
population of HWA in eastern North Amer-
ica utilizing 119 environmental variables, in-
cluding  climate,  topography  and  soil  fea-
tures;  (2)  project  the  introduced  range
HWA models back onto the native range of

HWA in Asia and western North America;
and (3) project the eastern North American
introduced  range  HWA  models  to  future
climates  in  2050  and  2070  according  to
HadGEM2-ES low and high emission scenar-
ios.

Materials and methods

Environmental predictors
In this study, we screened a large set of

119 environmental predictors at 1 km reso-
lution for inclusion in HWA niche models,
including 79 climatic variables, 16 topogra-
phic  variables,  12  soil  physical  properties,
and  12  soil  suborders  (Tab.  S1  in  Supple-
mentary material).  Soil  physical character-
istics and topographic variables are impor-
tant as modifiers of climate, including soil
water  holding  capacity  and  topographic
sun exposure in future climate niche mod-
eling  (Ehrlén  &  Morris  2015).  Since  the
hemlock woolly adelgid is dependent upon
hemlock as a food source, the interaction
of  soil  and  topographic  features  with  cli-
mate  was  regarded as  particularly  impor-
tant  for  identifying  environmental  condi-
tions suitable for hemlock. Soil features in-
cluded  the  distribution  of  soil  suborders
that have been previously reported as as-
sociated with hemlocks (Burns & Honkala
1990) and which overlap with global Tsuga
spp. distributions (Farjon 1990 – Tab. S1 in
Supplementary material).

Study extent and species occurrence 
records

Limited  samples  of  occurrence  observa-
tions in the native range of a species may
fail  to approximate the extent of suitable
environments,  and ENMs developed from
such data may lack transferability to novel
regions or differing spatial  scales  (Menke
et al.  2009,  Peterson et  al.  2011).  In addi-
tion,  Menke  et  al.  (2009) suggested  that
models built on occurrences from one area
and  projected  to  a  highly  disparate  area
with  different  environmental  gradients
may  be  prone to  errors.  Errors  in  model
transferability  may  be  more  pronounced
when  ENMs are  used in  predicting  range
shifts of invasive species that have altered
their niche requirements in their new envi-
ronments (Urban et al.  2007). Due to the
limited sparse and clustered pattern of the
HWA observations in Asia, especially in the
continental Asia, we only utilized HWA ob-
servations from eastern North America for
developing  and  calibrating  HWA  niche
models.  Global  HWA  occurrence  records
were  obtained  from  a  variety  of  sources
(see  Appendix  1  in  Supplementary  mate-
rial). Some occurrence records were down-
loaded from the Global Biodiversity Infor-
mation  Facility  (GBIF)  and  iNaturalist  or
georeferenced from available HWA maps.
However, most of the data were received
from scientists and forest managers in the
US  and Canada.  We gathered  4,219  HWA
observation with high spatial accuracy and
unique  location  form  the  eastern  North

America  (Fig.  1).  We  also  updated  the
county level infestation map according to
the occurrence data set (Fig. 1).

MaxEnt model calibration
We developed the MaxEnt models from

the  introduced  eastern  North  American
HWA  occurrence  observations  employing
the “dismo” package (Hijmans et al. 2011)
in  R  (R  Core  Team 2017).  Since the  HWA
population may not yet  be in  equilibrium
and expanded to its full potential range in
eastern  North  America,  we  developed  a
calibration  background  evaluation  extent
represented  by  a  narrow  20  km  buffer
from a convex hull polygon of current pres-
ence  points  (Fig.  1).  We generated about
10,000  pseudoabsence  points  within  the
background evaluation extent, buffered at
20  km  from  presence  points,  for  model
evaluation.  The  “PresenceAbsence”  pack-
age by Freeman & Moisen (2008) was used
with presence and pseudoabsence data to
calculate  pseudoabsence-based  (psa)  ver-
sions of the True Skill Statistic (TSSpsa) and
Area under the Curve statistic (AUCpsa). To
reduce  MaxEnt  model  complexity  and
overfitting for improved model generaliza-
tion,  the  MaxEnt  beta  regularization  was
adjusted  to  two  and  only  quadratic  and
hinge features were used (Warren & Seif-
ert 2011,  Tracy et al. 2018). MaxEnt models
were  calibrated  to  binary  presence/ab-
sence  format  using  a  threshold  at  maxi-
mum TSSpsa (Liu et al. 2013).

Feature selection
The  119  environmental  predictors  were

screened to produce smaller selected fea-
ture subsets  for inclusion in  final  MaxEnt
models  using  the  random  subset  feature
selection algorithm (RSFSA) of  Tracy et al.
(2018).  The  RSFSA  first  generated  hun-
dreds of random subsets of environmental
predictors (features) of specified sizes that
were restricted by a correlation filter of r =
|0.7|  maximum  inter-variable  correlation
(Dormann et al. 2013). The random feature
subsets were then used to develop MaxEnt
models  that  were ranked in  performance
by subset  wrappers  of  AUCpsa or  the  cor-
rected Akaike information Criterion (AICc).
Results were then used to select an opti-
mal  smaller subset size beyond which im-
provements in AUCpsa, AICc, and overfitting
(AUCtest – AUCtrain; Warren  &  Seifert  2011)
were minimal. The statistical performance
of RSFSA-selected  versus random MaxEnt
models was evaluated after generating and
ranking  thousands  of  models  for  the  se-
lected  subset  size  using  held  out  model
training and testing data  (for  details,  see
Tracy  et  al.  2018).  The  binary  calibrated
twelve top RSFSA-selected MaxEnt models
were combined by frequency consensus to
form a feature subset ensemble (FSE).

MaxEnt model projections and range 
shifts

The  12  RSFSA-selected  MaxEnt  models
calibrated for the introduced eastern North
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American range were first projected over a
wider extent in eastern North America de-
limited  by  an  800  km  buffer  around  the
HWA occurrence observations (Fig. 1). The
introduced  range  models  were  then  re-
verse-cast projected to the species native
ranges  to  East  Asia  and  western  North
America over areas buffered from HWA oc-
currence  observations  by  2,000  km  and
800 km,  respectively.  Presence data  over
much of the native HWA continental range
in Asia was not available, especially west of
China,  making  generation  of  pseudoab-
sence  data  outside  20  km  buffers  from
presence  data  for  calculating  specificity
and AUC more prone to error. Consequent-
ly,  in order to assess the performance of
HWA models generated for eastern North
America on the native range, we used the
sensitivity statistic, which does not require
pseudoabsence data (Jiménez-Valverde et
al.  2011).  We also calculated sensitivity re-
verse  transferability  index  (sensitivity  na-
tive  range  – sensitivity  introduced  range;
Heikkinen et al. 2012).

The  12  introduced  range  HWA  models
were  also  projected  onto  four  future  cli-
mate scenarios for eastern North America
that  were  based  on  the  Hadley  Centre’s
HadGEM2-ES  general  circulation  model
with low and high representative concen-
tration  pathways  for  CO2 emissions  (RCP
2.6 and RCP 8.5) for 2050 (2050he26 and
2050he85) and 2070 (2070he26 and 2070-
he85).  We  developed  change  detection
maps  between  the  contemporary  climate
and the four future climate scenarios. The
12-model MaxEnt feature subset ensemble
projection under historical climate was sub-
tracted from ensembles of each of the four
future  projections.  The  resulting  maps
show the change in the number of models
projecting HWA habitat suitability. We also

quantified  the  north/south  and  east/west
shifts in centroids for each of the 12 Max-
Ent  historical  climate  models  paired  with
the  future  climate  models.  Mean  eleva-
tions within binary historical and future cli-
mate models were also compared.

Results

Feature selection
The random subset  feature selection al-

gorithm  revealed  that  little  gain  in  AUC,
AICc, or overfitting was achieved for Max-
Ent  models  using  feature  subsets  larger
than six of 119 variables (Fig. S1 in Supple-
mentary material). The six-variable MaxEnt
models selected by AUC performed signifi-
cantly  better  in  terms  of  AUC,  AICc,  and
overfitting  compared  to  random  six-vari-
able models (Fig. S1). A total of 42 variables
out of 119 were used in the top 12 RSFSA-
selected six-variable MaxEnt models (Tabs.
S1-S4 in Supplementary material). Nineteen
variables  were used in more than one of
the top 12  models.  From one to three of
the  six  variables  per  model  were  climate
variables.  The  percentages  of  variable
types selected for the models were 41.7%
edaphic indices, 37.3% climate indices, and
20.8%  topographic  indices  (Tab.  S1).  The
edaphic indices include 25% soil properties
(e.g., % silt from 0-5 cm), and 16.7% soil tax-
onomy indices  (e.g.,  %  Ochrepts  suborder
per 1 km cell). From the 79 climatic layers,
the  evapotranspiration  layers  (actual  and
potential  evapotranspiration:  AET–PET)
were the most often (15.2%) utilized (e.g.,
mean  monthly  November  PET),  followed
by  monthly  temperature/precipitation  in-
dices (13.8% – e.g., mean maximum temper-
ature  in  February),  and  BioClim  indices
(8.3% – e.g., mean temperature of the wett-
est quarter: bio_8). The six highest ranked

variables by mean MaxEnt model permuta-
tion importance and frequency of appear-
ance  in  the  selected  12  models  were:  (1)
November mean PET; (2) slope; (3) % Ochr-
epts soil; (4) % silt in 0-5 cm; (5) % Udepts
soil; and (6) February mean maximum tem-
perature (Tab. S2 in Supplementary mate-
rial). Eight of the top 12 ranked climate vari-
ables were from the winter  season.  Max-
Ent variable response curves indicated that
intermediate levels  of  November PET and
February maximum temperatures were op-
timal for HWA, as were greater slope and
greater percent Ochrepts and Udepts soils.
The  suitability  of  %  silt  at  0-5  cm  sharply
peaked at around 45% (Fig. S2).

Introduced range distribution maps
The  RSFSA-selected  MaxEnt  models  un-

der  historical  climate  projected  suitable
habitat for HWA over much of  the native
eastern  hemlock  range  in  the  US  to  the
southernmost part of Canada (Fig. 2). The
100% model consensus area ranges approx-
imately from 44 degrees in the northeast
to  34  degrees  in  the  South.  Within  the
southern  range,  high  elevation  Southern
Appalachians  are  more  suitable  for  the
species than the surrounding low elevation
areas. A lower number of models projected
suitability  of  the  westernmost  range  for
the  eastern  hemlock  and  mid-  to  north
Nova  Scotia.  The  northern  part  the  hem-
lock  range  (>  45°  N)  was  generally  pro-
jected  as  unsuitable  for  HWA  under  con-
temporary  climate.  The  12  MaxEnt  HWA
models  covered  areas  with  minimum  val-
ues  for  the minimum temperature of  the
coldest  month  (bio6)  averaging  (±  stan-
dard deviation) -15.80 ± 0.47 °C, minimum
values  for  the  mean  temperature  of  the
coldest  quarter  (bio11)  averaging  -7.97   ±
0.46 °C, and maximum values for the maxi-
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Fig. 1 - Hemlock woolly
adelgid (HWA) occur-

rences (n = 4,219) within
the native range of

Tsuga canadensis in east-
ern North America,

including occupied coun-
ties in the US and
Canada (n = 492).
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mum temperature of the warmest month
(bio5) averaging 34.24 ± 0.63 °C. The corre-
sponding extreme values for these climate
features from current HWA occurrence ob-
servations in eastern North America were
similar at  -15.00 °C (bio6),  -7.20 °C (bio11),
and 32.00 °C (bio5).

Reverse-cast native range distribution 
maps

The RSFSA-selected MaxEnt feature sub-
set ensemble models developed from the

HWA  introduced  range  were  reverse-cast
to the native  ranges  in Asia  and western
North America and overlaid with the HWA
occurrence  observations  and  host  Tsuga
spp. ranges (Fig. 3, Fig. 4). The MaxEnt en-
semble  model  projected  high  suitability
over most of the native HWA range in Ja-
pan,  Central  Taiwan,  and  Ulleung  Island,
Republic of Korea (Fig. 3). The introduced
range HWA models also projected suitable
habitat in the continental range in Asia, but
higher suitability was not as well correlated

with HWA occurrences. MaxEnt model suit-
ability was generally high for the HWA oc-
currences  in  the  Cascade  Mountains  of
West  North  America,  with  less  suitability
projected for HWA occurrences eastwards
beyond  -121.5°  W  in  Washington,  Oregon,
and Idaho (Fig. 4).  Sensitivity of the east-
ern North America HWA model projection
to Asian islands did not significantly differ
from sensitivity in eastern North America,
but sensitivity was lower for projections to
the  Asian  continent  and  western  North

152 iForest 12: 149-159

Fig. 2 - Hemlock woolly 
adelgid introduced range 
MaxEnt feature subset 
ensemble model projection
over eastern North Amer-
ica for contemporary cli-
mate. The scale indicates 
number of models in 
agreement on HWA suit-
ability.

Fig. 3 - Hemlock woolly 
adelgid introduced range 
MaxEnt feature subset 
ensemble model projection
over native East Asian 
range for contemporary cli-
mate. The scale indicates 
number of models in 
agreement on HWA suit-
ability.
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America (Fig. S3A in Supplementary mate-
rial).  Sensitivity  reverse  transferability  in-

dices for model projections over the three
native ranges of Asian continental, Asian is-

lands, and West North America were highly
variable and they did not significantly differ

iForest 12: 149-159 153

Fig. 4 - Hemlock woolly adel-
gid introduced range Max-

Ent feature subset ensemble
model projection over native

western North American
range under contemporary
climate. The scale indicates
number of models in agree-

ment on HWA suitability.

Fig. 5 - Hemlock woolly adelgid introduced range MaxEnt feature subset ensemble model projection over eastern North America for
four future climate scenarios: (A) 2050he26; (B) 2050he85; (C) 2070he26; and (D) 2070he85. The scale indicates number of models
in agreement on HWA suitability.
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(Fig. S3B). There was a borderline non-sig-
nificant linear trend for lower sensitivity for
MaxEnt models (P = 0.061) in the Asian is-
land range with higher numbers of climatic
variables included in the models (Fig. S3D
in Supplementary material).

Introduced range future climate 
distribution maps

All  four  of  the  future  climate  RSFSA-se-
lected MaxEnt HWA ensemble models pro-
jected  expanded  suitability  to  the  north
and east in North America (Fig. 5A-D,  Fig.
6A-D).  Both the northward and eastward
shifts  of  the  centroids  of  the  12  MaxEnt
models  were  significantly  different  from
zero  for  all  future  climate  scenarios  (P  <
0.02;  Welch  t-test  with  Holm  correction)
(Fig.  S4A-B).  The  northward  shift  for  the
high  CO2 emission  scenario  of  2070
(2070he85)  was  significantly  greater  than
shifts  of  the corresponding 12  models for
other  climate  scenarios  (P  <  0.05;  paired
Welch  t-test  with  Holm  correction  – Fig.
S4A in Supplementary material). Under the
2070he85  climate  scenario,  most  of  the
northern  portion  of  the  current  native
range of the eastern hemlock is projected
as highly suitable for HWA. The mean esti-
mated HWA range shifts towards the north
varied  between  222.12  ±  92.45  km  (2050-
he26) and 467.64 ± 198.85 km (2070he085

– Fig. S4A). Mean eastward expansions in
suitability  ranged  from  110.32  ±  66.24  to
164.03  ± 152.99 km, respectively (Fig. S4B).
The  projected  suitable  area  for  HWA  did
not significantly differ among historical and
future  climate  scenarios,  being  especially
highly  variable  for  future  scenarios  (Fig.
S4C). The number of  climatic  variables in-
cluded in the MaxEnt models, ranging from
one to three of six variables, produced no
significant  linear  trend  in  the  amount  of
centroid shift northwards or eastwards (P
> 0.3; F-test of linear regression – Fig. S5).
The mean elevation of MaxEnt model areas
did  not  significantly  differ  among  the  fu-
ture climate scenarios in either the north-
ern or the southern portions of  the HWA
eastern  North  American  range (P  <  0.05,
paired Welch t-test with Holm correction –
Fig. S6 in Supplementary material).

Discussion

Feature selection
Soil features, followed by climatic and to-

pographic features, were the most influen-
tial  variables  in  our  introduced  eastern
North American range of HWA feature-se-
lected  niche  models.  Important  soil  fea-
tures  for  HWA,  such as proportion of  silt
from 0-5 cm and Ochrepts, probably reflect
important  variables  for  the  primary  HWA

host  of  T.  canadensis  in  eastern  North
America.  Earlier  studies  developing  ran-
dom forest niche models for  T. canadensis
identified climate, land cover (e.g.,  % agri-
culture), and soil  property features as im-
portant (Iverson et al.  2008,  Prasad et al.
2014). Important potential soil features for
T. canadensis  in these studies included soil
productivity (not utilized in this study) and
soil texture (% coarse soil), which relates to
the  silt  proportion  found  as  important  in
this study. Prasad et al. (2014) reported the
Inceptisols soil order as important in mod-
els  for  T.  canadensis,  which  corresponds
with our finding of the Ochrepts and Ud-
epts suborders of Inceptisols as among the
three most important soil suborders in the
HWA  models  (Tab.  S2  in  Supplementary
material). The most important climate vari-
ables previously identified for T. canadensis
models  were  July  mean  temperature  fol-
lowed by annual precipitation (Prasad et al.
2014),  which relates to the mean January
and February precipitation variables found
important for HWA in this study.

Although minimum winter  temperatures
have been previously  identified  as  an im-
portant limiting factor for HWA distribution
in  eastern  North  America  (Paradis  et  al.
2008, McAvoy et al. 2017, Tobin et al. 2017),
only the mean October minimum tempera-
ture was utilized among the 27 climate fea-
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Fig. 6 - Hemlock woolly adelgid future range shift in eastern North America (red: range addition; yellow: no change; blue: range
loss) represented by subtracting introduced range MaxEnt feature subset ensemble model for contemporary climate from corre -
sponding ensemble models of four future climate scenarios: (A) 2050he26; (B) 2050he85; (C) 2070he26; and (D) 2070he85. The
scale indicates change in the number of models in agreement on HWA suitability.
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tures  selected  in  our  12  six-variable  HWA
niche models, and it  was of minor impor-
tance (Tabs. S1-S2). In contrast, the feature
selection  method  in  our  study  identified
mean November PET and mean maximum
temperature for February as the most im-
portant  climate  variables  for  accurately
modeling HWA distributions  (Tab.  S2).  Al-
though  many  niche  modeling  studies  in-
clude only the 19 Bioclim variables for cli-
mate  indices,  the  monthly  AET/PET  and
temperature/precipitation  indices  were
much more important in our study.

Slope  was  the  most  important  topo-
graphic feature identified for HWA models
in this  study, being ranked as the second
most  important  feature  overall.  Higher
slopes  probably  represent  an  important
feature  of  T.  canadensis  habitats.  Finer
scale  (30  m  resolution)  topographic  fea-
tures,  such  as  elevation  and  distance  to
stream,  have  been  found  to  affect  the
landscape-level spatial pattern and perfor-
mance  of  both  HWA  and  hemlock  hosts
(Kantola  et  al.  2014).  However,  Trotter  &
Shields  (2009) found  that  elevation  ex-
plained only 2% of the variation in HWA sur-
vival in the eastern USA.

Introduced range distribution maps
The  12  feature-selected  HWA  MaxEnt

models for eastern North America covered
areas  with  minimum  values  for  minimum
temperature  of  the  coldest  month  and
mean temperature of  the coldest  quarter
of -15.80 °C and -7.97 °C, respectively. These
temperature  indices  correspond  well  to
the  corresponding  minimum  values  for
HWA occurrence observations of -15.00 °C
and  -7.20  °C,  respectively.  Skinner  et  al.
(2003) found  that  only  14%  of  the  most
northern  HWA  in  eastern  North  America
survived from exposure to -15 °C in March.
Tobin et al. (2017) also reported high HWA
mortality after exposure below -15 °C. The
-15 °C limit is also close to the value of -15.8
°C representing the minimum values for the
average minimum temperature of the cold-
est month found over the areas of MaxEnt
HWA  models  for  eastern  North  America.
Consequently, the current North American
range may be close to the northern limit
for HWA under contemporary climates, al-
though, over the course of time, HWA may
develop greater cold tolerance permitting
northern expansion in the future (Skinner
et al. 2003). Our historical climate data rep-
resents the years 1950-2000, and the mean
annual  temperature  has  already  elevated
since  2000  (Dukes  et  al.  2009).  Conse-
quently,  the  potential  suitable  range  of
HWA may have already slightly shifted to-
wards  north.  According  to  Parmesan
(2006), numerous species have already re-
sponded to the recent reasonably mild cli-
mate change.

The  current  projected  HWA  range  from
our  MaxEnt  models  covers  much  of  the
eastern hemlock distribution in the US and
minor areas in southern Canada, including
southern Nova Scotia. The projected range

extends  farther  north  along  the  Atlantic
coast than it does inland. Most of the mid-
continental region of the eastern hemlock
range  may  be  unsuitable,  except  south-
western Michigan, mainly along the coast
of  Lake  Michigan.  More  maritime climate
corresponds better to the native range of
the species and thus may be more suitable.
Under the historical climate, the northern-
most part of the range of eastern hemlock
above 45° N may be unsuitable for the spe-
cies.

The  maximum  value  for  the  maximum
temperature of the warmest month within
the projected HWA distribution was slightly
higher  than  the  maximum  temperature
found  for  HWA  occurrence  observations
(34.24  °C  versus 32.00  °C).  The  projected
range of HWA extends slightly south of the
range  of  eastern  hemlock,  and  the  host
species  distribution  is  already  restricting
the  southern  boundary  of  HWA  occur-
rence. The effect of heat exposure on HWA
populations is less studied. Mech (2015) ob-
served a cumulative effect of temperature
on HWA mortality, reaching up to 100 % at
temperatures above +30 °C, supporting our
projections for the southern range of HWA
distribution.

Reverse-casting to other regions
Similar climate between native and novel

environments  is  considered  as  basic  re-
quirement  of  successful  invasion (Thuiller
et al.  2005). Optimally,  models of the po-
tential range of HWA would also be devel-
oped from Asian occurrence observations.
However,  large  portions  of  the  native
range of HWA from China and westwards
had  inadequate  HWA  occurrence  data.
Menke et  al.  (2009) modeled  an invasive
ant  species  distribution  using  data  from
the invaded range, and found that dispari-
ties in sampling and regional variations in
the climatic  conditions can induce predic-
tion  errors  outside  the  occupied  invaded
area.

Although there is incomplete information
on the full range of HWA range in Asia, our
reverse cast projection to the native region
was in general  accordance with the HWA
distribution in Asia, especially for island re-
gions (Fig.  3).  All  12  of  the selected HWA
Maxent  models  developed  from  eastern
North America occurrences projected suit-
ability  in the Japanese islands,  where the
genotype originates. No hemlock or HWA
observations  have  been  published  from
the  most  northern  Hokkaido  Island,  and
most of this island was projected as unsuit-
able according to all  12 models. The Max-
Ent  ensemble  model  also  projected  high
suitability  for  other  known  HWA  popula-
tions, such as those in Taiwan and Ulleung
Island  of  Republic  of  Korea  (Havill  et  al.
2016). This successful projection of the in-
troduced range model to these portions of
the  native  range  may  also  indicate  that
HWA  is  at  or  close  to  equilibrium  in  the
eastern North America. The lower sensitiv-
ity  of  the eastern HWA model  for projec-

tions  to  continental  Asia  and  western
North  America  support  the  Asia  islands
origination of the eastern North American
population.

We  also  derived  the  temperature  ex-
tremes for  the  HWA occurrence  observa-
tions  in  Japan,  and  they  were  similar  to
those  within  the  eastern  North  America.
The minimum value for the minimum tem-
perature  of  the  coldest  month  (bio6)  in
Japan was -15.00 °C, and the maximum val-
ue  for  the  maximum  temperature  of  the
hottest  month  (bio5)  was  32.2  °C.  The
mean temperature of  the coldest  quarter
in Japan (bio11: -9.6 °C) suggests higher tol-
erance  for  cold  during the winter  season
than the  results  indicated by  the MaxEnt
models (-7.97 ± 0.63 °C). This may indicate
that HWA can tolerate colder winter tem-
peratures  in  eastern  North  America  than
estimated and could spread further north
than our models project under historical cli-
mate.

Expansive  occurrence  data  for  the  cur-
rent  HWA  distribution  in  western  North
America  was  not  available.  However,  the
area of suitable habitat projected by all 12
eastern  North  America  MaxEnt  models
generally matches much of the HWA occur-
rence observations in the region, especially
along the Cascade Mountains (Fig. 4). This
projected range includes most of the west-
ern portions of the native ranges of west-
ern  hemlock,  T.  heterophylla (Raf.)  Sarg.,
and  mountain  hemlock,  T.  mertensiana
(Bong.)  Carrière,  from northern California
to the southernmost part of British Colum-
bia (Fig. 4). However, only a portion of the
models project suitability around HWA oc-
currences in Idaho to the East.

The  reverse-cast  HWA  MaxEnt  models
project that Japan and the Cascade Moun-
tains  region  of  Washington  and  Oregon
best match environmentally with the inva-
sive HWA range in eastern North America.
These  areas  generally  match  with  the
sources  of  the  primary  predators  intro-
duced and established for HWA control in
eastern  North  America,  including  Larico-
bius  nigrinus (Coleoptera:  Derodontidae)
from  western  North  America  and  Sasajis-
cymnus tsugae  (Coleoptera:  Coccinelidae),
and  L.  osakensis from  Japan  (Havill  et  al.
2014). MaxEnt model projections could be
used  for  refining  collection  source  loca-
tions for approved or potential biocontrol
agents. For example, the success of intro-
ductions of more cold tolerant strains of L.
nigrinus  from more interior western US lo-
cations into New England (Havill et al. 2014,
Mausel et al. 2011) might benefit by collect-
ing from the southernmost distributions of
Tsuga  spp.  in  Idaho and Montana,  where
the environment may more closely match
that of the eastern HWA populations (Fig.
4).

Future MaxEnt projections
Future range shifts of forest insect pests

due  to  the  climate  change  in  northern
parts of North America and Europe are an-
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ticipated (Vanhanen et al.  2007,  Haughian
et  al.  2012).  Minimum  temperatures  in-
creased  by  3.3  °C  in  southeastern  US  be-
tween 1960 and 2004 (Dukes et al. 2009).
During that period, outbreaks of the south-
ern  pine  beetle  (Dendroctonus  frontalis
Zimmermann) extended towards north by
about 200 km. Vanhanen et al. (2007) sug-
gest a range shift of 500-700 km to north
for  the  nun  moth  (Lymatria  monacha  L.)
and  gypsy  moth  (Lymantria  dispar  L.)  in
similar  latitudes  in Europe,  by the end of
this century. The phenology of HWA has al-
ready  altered  in  western  North  Carolina
due  to  milder  winters  (Leppanen  &  Sim-
berloff 2017).

Our  models  predict  a  range shift  in  the
potential distribution of HWA; 221-468 km
to the  north and 110-164 km to the  east.
The major consensus of MaxEnt model pro-
jections under the high emission scenario
for  2070  (2070he85)  indicates  HWA  suit-
ability  throughout  most  of  the  northern
limit of the eastern hemlock to about 46° N
(Fig. 5,  Fig. 6). Some of the model projec-
tions  extend northwards beyond the cur-
rent  hemlock  distribution.  Small  isolated
areas in the North may remain uninfested
by HWA according the MaxEnt projections.
Paradis et al.  (2008) estimated the future
HWA suitability in the northeastern US us-
ing a threshold of -5 °C of mean winter tem-
perature.  According  to  their  higher  emis-
sions scenario, by the end of this century,
all the northeastern states in the USA will
be potentially suitable for HWA. Our Max-
Ent projection estimates a similar range ex-
pansion.  Our  projected  northern  HWA
range under high emission 2050he85 sce-
nario roughly corresponds to the border of
USA and Canada in the northeast and the
latitude  of  ca.  35  degrees,  which  include
wide areas in the southern Canada (Fig. 5,
Fig. 6). Ellison et al. (2018) projected similar
northward  HWA spread in  2050 climates,
but they project further spread above Lake
Ontario to 46° N, which is only projected as
suitable  in our  later  2070he85 models.  In
addition,  they  projected  no  2050  HWA
spread into Nova Scotia, where HWA is cur-
rently found and which is projected as suit-
able in both our current and future climate
HWA models. Based upon winter tempera-
tures and related HWA mortality,  McAvoy
et al.  (2017) suggested that  HWA may al-
most reach the northern range of the east-
ern hemlock distribution, which extends to
about 46.5°–48° N. Further, they suggested
that winter survival of HWA would increase
in the northern latitudes amplifying the im-
pacts.

Future projections for HWA winter  mor-
tality in eastern North America indicate de-
creasing mortality to the north,  with  less
mortality  around  the  southern  tip  of  the
Southern  Appalachians  (McAvoy  et  al.
2017). Our future HWA distribution projec-
tions similarly indicate higher suitability to
the North, but they project slightly lower
suitability at the southern range limits (Fig.
5, Fig. 6). Warming climate increases insect

metabolism during the growing season and
reduces the risk of winter mortality to in-
sect populations (Bale et al. 2002). Fitness
may  decline if  a  species  encounters  tem-
peratures  beyond  its  thermal  optimum
level (Lemoine & Burkepile 2012). Heat ex-
posure  may  shift  the  southern  range  of
HWA range to  the north  and  upwards  in
the  Southern  Appalachians  with  climate
change (Fig. 6), although our models pro-
jected no apparent upward shift  in eleva-
tion  (Fig.  S6  in  Supplementary  material).
The Southern Appalachians remain suitable
within  the  southern  part  of  the  current
hemlock range even in  the high emission
projection  for  2070  (2070he85).  There  is
some evidence that the rapid adaptation of
insects to climate change can arise from al-
ready existing genotypes that are heat-tol-
erant (Parmesan 2006).  Sussky & Elkinton
(2015) proposed  that  adelgids  may  have
adapted  to  higher  temperatures  in  the
south similarly to their adaption to colder
temperatures in the north.

If ENM predictions are not coupled with
population  growth  and  dispersal  models,
they  may  reveal  little  of  the  extent  to
which the populations  may actually  cross
new  geographical  barriers.  Static  future
ENM  projections  are  more  suitable  for
mapping the potential range than estimat-
ing probability  or timing of  establishment
(Fitzpatrick et al. 2012). However, if the dis-
persal  potential  of  HWA is  taken into  ac-
count, this species may be able to occupy
the entire area of its projected ecological
niche (Trotter & Shields 2009). In addition,
the dispersal ability of species may evolve
at the range boundaries as a response to
the climate change (Parmesan 2006).

In  regards  to  projecting  species  range
shifts,  two  main  concerns  have  been
raised: (1) species occurrence data do not
have  a  stable  relationship  with  environ-
mental factors across space and time; and
(2) future suitable environmental combina-
tions cannot be adequately sampled (Men-
ke et al. 2009, Elith et al. 2010). In addition,
adaptation during range expansion can be
especially  rapid  in  the  case  of  invasive
species (Butin et al. 2005). Climate change
influences  the  host  plant  species  as  well.
These potential effects are concerning for
both eastern and Carolina hemlock due to
their slow growth rate, restricted environ-
mental preferences, and weak seed disper-
sal (Hastings et al. 2017).

Interactions and impacts
Menke et al. (2009) observed that abiotic

climatic variables tend to be more relevant
predictors  over  biotic  variables,  such  as
habitat related or anthropogenic variables,
at  coarser  spatial  scales.  However,  other
factors,  such  as  dispersal,  competition,
species interactions, and landscape change
with various human impacts also influence
distributions.  Climate not  only directly  af-
fects  herbivorous  insect  populations,  but
may indirectly affect them by altering host
plant  nutrient  balance  and  levels  of  sec-

ondary metabolites (Bale et al. 2002). Pop-
ulation  dynamics  of  insect  herbivores  re-
spond to a multitude of  complex interac-
tions between the insects and their natural
enemies and it can be assumed that these
interactions are also sensitive to tempera-
ture (Björkman et al. 2011).

Our  projected  suitable  areas  for  HWA
may not fully correspond to the conditions
where the species can survive and persist.
Parmesan  (2006) concluded  that  the  ef-
fects of genetic constraints and asymmet-
ric gene flow are more pronounced close
to the borders of distributions, which could
also lead to lower survival. On the northern
edges of our projected distribution, lower
survival may give rise to isolated local HWA
populations  with  much  lower  impacts  on
hemlock communities and ecosystems.

Introduced  invasive  species  are  difficult
to  eradicate  (Rejmanek  et  al.  2005),  and
prevention of introduction of these species
is the most effective form of forest health
protection –  Thuiller et al. 2005). Manage-
ment of HWA to mitigate negative impacts
is challenging. Trotter & Shields (2009) out-
lined four reasons for the rapid spread rate
and high impacts of HWA in eastern North
America:  (1) the species has bivoltine and
parthenogenic life cycle,  which allows for
more rapid reproduction and reduces the
Allee effect since the population is not de-
pendent on sexual reproduction; (2) HWA
is  lacking  native  predators  and  parasites,
despite major biocontrol efforts with intro-
duced enemies; (3) HWA has many vectors
increasing the dispersal  potential;  and (4)
eastern and Carolina hemlocks have overall
very poor resistance against the species, al-
though increased density of HWA in a tree
can decrease the suitability of a host hem-
lock.  Although the HWA in eastern North
America originates from a single genotype
reproducing by parthenogenesis (Havill  et
al. 2016), the introduced population seems
to have a high spreading potential and abil-
ity for rapid adaptation (Parmesan 2006).
These factors may indicate that the chang-
ing climate may not have high negative im-
pacts on HWA.  Impacts of  HWA on hem-
lock  communities  may  even  be  pro-
nounced  in  the  future  taking  the  slow
adaptation of the hemlock species into ac-
count.

Significant impacts of invasive species are
determined by more than only their pres-
ence  in  an area  (Bradley  et  al.  2012).  Im-
pacts of non-native species are difficult to
predict  and  the  intensity  of  impacts  may
vary greatly within the invaded area (Kul-
hanek et al. 2011). Impacts can be assumed
less severe at the edge area of suitability.
However,  lower  suitability  of  the  condi-
tions for the host species may increase the
risk of  high impacts. ENM techniques can
be used for modeling risk of invasion using
locations with high abundance of an inva-
sive  species  (Kulhanek  et  al.  2011).  High
abundance  correlates  more  strongly  with
the  high  impact  risk  than  simple  occur-
rence data. In the case of HWA, this kind of
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abundance data is not available. Adequate
abundance data for ENM modeling is rarely
collected,  especially  for  invasive  species
(Bradley  et  al.  2012).  More  research  is
needed  on  factors  affecting  HWA  abun-
dance at a local scale, including anthropo-
genic factors, to estimate the risk of high
impacts.

McClure (1997) observed higher densities
of HWA in Japan on ornamental hemlocks
than in hemlocks growing in forests, which
he attributed to forests having less optimal
conditions for HWA and higher abundance
of  natural  enemies.  Morin  et  al.  (2009)
found that the abundance of host trees ap-
pears to be a  major  factor  in the rate of
spread of HWA. Nutritional value and resis-
tance ability,  i.e., quality of the host trees
may be another important factor for suc-
cessful HWA invasions. For example, trees
in  mountainous  areas,  where  they  are
stressed by climate, may be more vulnera-
ble (Niemelä et al.  1987). The interactions
between HWA and hemlocks as well as ef-
fects of host tree quality on risk of invasion
and  intensity  of  the  impacts  should  be
studied further.

Conclusions
The  hemlock  woolly  adelgid  is  a  signifi-

cant mortality agent threatening hemlock
species and related ecosystems of eastern
North America. Eradication of  the species
is  difficult  and forest health planning and
prevention from introduction are the most
effective methods to mitigate the impacts
of  HWA.  MaxEnt  models  for  the  invasive
range of HWA in eastern North America are
influenced by a combination of edaphic, cli-
matic, and topographic variables. The mini-
mum values of -15.8 °C for the mean mini-
mum  temperature  of  the  coldest  month
over  the  range  of  MaxEnt  model  projec-
tions closely aligns with the minimum -15 °C
value  for  HWA  occurrences  and  the  ob-
served field cold tolerance of around -15 °C.
In addition, sensitivity of HWA projections
are  fairly  high  in  the  Asian  native  range
with  reverse-casted  MaxEnt  models  for
eastern North America,  especially  for  the
region of the source population in Japan.
Consequently,  the  HWA  distribution  may
be  nearing  equilibrium  in  eastern  North
America. Significant range shifts of 221-468
km northwards and 110-164 km eastwards
were projected by 2050 to 2070. By 2070,
most  of  the  northeastern  range  of  the
eastern hemlock may be suitable for HWA
infestation.
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Supplementary Material

Appendix 1 - GIS data sources. 

Tab.  S1 -  One  hundred  nineteen  environ-
mental predictor indices (1 km resolution)
used  in  developing  12  selected  MaxEnt
hemlock woolly adelgid niche models with
six of 119 variables. 

Tab. S2 - MaxEnt model variable permuta-
tion importance for 42 of 119 variables used
in top 12 six-variable hemlock woolly adel-
gid models selected by random subset fea-
ture selection algorithm. 

Tab. S3 -  Hemlock woolly adelgid feature-
selected MaxEnt model environmental var-
iables. 

Fig.  S1 -  Hemlock  woolly  adelgid  MaxEnt
model evaluation statistics. 

Fig. S2 - Hemlock woolly adelgid single-vari-
able  MaxEnt  model  variable  response
curves (logistic output probability of pres-
ence  vs. variable)  for  the  six  top  ranked
variables from feature-selected models. 

Fig. S3 - (A) Sensitivity of introduced hem-
lock  woolly  adelgid  mean  Maxent  model
projections  for  introduced  (East  North
America) range and native ranges of  Asia
continental,  Asia  island,  and  West  North
America;  (B)  Sensitivity  reverse  transfer-
ability  index  from  introduced  range  to
native  ranges;  (C)  relationship  between
sensitivity  of  introduced  model  for  Asia
island region and sensitivity of introduced
model  in  introduced  region  (East  North
America);  (D)  relationship between  sensi-
tivity  of  introduced model  for  Asia  island
region  and  percent  of  climate  variables
used in model. 

Fig. S4 - Characteristics of introduced hem-
lock  woolly  adelgid  mean  Maxent  model
projections under historical and future cli-
mate scenarios in eastern North America. 

Fig. S5 -  Relationship between northward
(A) and eastward (B) shifts of centroids of
introduced hemlock woolly adelgid MaxEnt
model projections from historical to future
2070HE85 climates and the ratio of climate
variables  to  the  number  of  total  variable
per model. 

Fig.  S6 -  (A)  North  and  South  regions
(divided at 39.721° N) for introduced hem-
lock woolly adelgid MaxEnt model projec-
tions  with  elevation for  MaxEnt historical
climate model 1 in two regions.
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