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Culturable fungi associated with wood decay of Picea abies in subalpine
forest soils: a field-mesocosm case study
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Fungi are the principal wood decomposers in forest ecosystems and their ac-
tivity provides wood necromass to other living organisms. However, the wood
decay mechanisms and the associated microbial  community  are  largely un-
known, especially in Alpine areas. In this study, the culturable fraction of fun-
gal communities associated with the decomposition of Norway spruce (Picea
abies [L.] Karst) deadwood in subalpine forest soils were determined using mi-
crobiological methods coupled with molecular identification. Fungal communi-
ties were evaluated using in-field mesocosms after one year of exposition of P.
abies wood blocks along an altitudinal gradient ranging from 1200 up to 2000
m a.s.l. comprising eight subalpine sites, four of them located at north- and
other four at south-facing slopes. Although many saprotrophic species were
isolated from the wood blocks, several white-rot species as the pathogenic
fungi  Armillaria cepistipes and  Heterobasidion annosum,  along with soft-rot
fungi such as  Lecytophora sp. were identified. Our results further indicated
that the wood-inhabiting fungal community was mainly influenced by topo-
graphic features and by the chemical properties of the wood blocks, providing
first insights into the effect of different slope exposure on the deadwood my-
cobiome in the subalpine forest ecosystem.
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Introduction
In  forest  ecosystems,  a  wide  variety  of

wood-decaying fungi are saproxylic species
that  depend  on  deadwood  during  some
stages  of  their  life  cycle  (Speight  1989).
The  most  important  wood-decaying  spe-
cies  belong  to  Basidiomycota  and  have
generally  been  classified  into  two  main
groups,  white-rot  and  brown-rot  fungi,
based  on  the  cell  wall  component  de-
graded  (Riley  et  al.  2014,  Pramod  et  al.
2015). Another important form of wood de-

cay known as soft-rot includes several spe-
cies  belonging  to  mainly  Ascomycota,
which typically attack wood with a higher
moisture content and preservative-treated
wood (Rayner & Boddy 1988). The rate of
wood decomposition is  influenced by the
chemical properties and the cell structures
of  the  wood,  the  nature  and  the  abun-
dance  of  the  wood-decomposing  organ-
isms, as well as by different ecological and
climatic factors (Rajala et al. 2012, Hiscox et
al. 2016). In fact, the influence of slope ex-

posure  on  wood  decay  dynamics  has  re-
cently been demonstrated in subalpine en-
vironments (Fravolini et al. 2016, Petrillo et
al. 2016a, Petrillo et al. 2016b, Gómez-Bran-
dón et al. 2017) and in subtropical and trop-
ical forests (Geml et al. 2014,  Purahong et
al.  2017).  However,  it  is  so  far  unknown
how exposure and, in general,  climate af-
fect the wood-inhabiting microbiota. In this
context, we performed a study on the cul-
turable wood-inhabiting fungi (WIF) in-field
mesocosm experiment with the purpose of
evaluating  the  fungal  community  coloniz-
ing Norway spruce (Picea abies [L.] Karst)
deadwood after one year of exposition to
natural conditions in subalpine forests.

Material and methods
The investigation area is located in Val di

Rabbi in the south Alpine belt in northern
Italy between a rather warm Insubrien and
a cold Alpine climate. Eight sites along an
altitudinal  gradient  ranging  from  1200  up
to 2000 m a.s.l. were investigated (Tab. S1
and Fig. S1 in the Supplementary material);
four sites were positioned at north-facing
slopes (N1-4) and other four at south-fac-
ing (S6-9) slopes (Egli et al. 2006,  Bardelli
et al. 2017). At each study site a field exper-
iment using soil mesocosms was set up as
described in  Fravolini  et  al.  (2016).  Meso-
cosms (PVC tubes  having diameter =  10.2
cm and height = 25 cm) were installed into
the natural soil in August 2012, that is one
year  prior  to  the  addition  of  the  wood
blocks  of  P.  abies,  at  a  distance of  >  1  m
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from large trees and > 0.5 m from the adja-
cent mesocosms,  leaving at the surface a
border of  about 1 cm. Wood blocks from
the same  P. abies tree and with a uniform
size (2  × 5 × 5 cm) were placed on the soil
surface  in  each  of  the  mesocosm  tubes.
Three replicate mesocosms were installed
in each of the eight study sites (Fig. S2 in
the Supplementary material). P.abies wood
samples  and  soil  samples  (0-5  cm depth)
were  collected  from  each  mesocosm  in
June 2014, placed in polyethylene bags and
transported  on  ice  to  the  laboratory  for

their  physico-chemical  characterization
(Tab.  S2  in  the  Supplementary  material).
Wood and soil physico-chemical properties
were assessed as described by Fravolini et
al. (2016) and Bardelli et al. (2017), respec-
tively.

For  the  determination  of  the  cultivable
fungal  decomposers  all  the  wood  blocks
were surface sterilized by flaming and five
small samples were cut out and placed on
Petri  dishes  containing  Hagem  agar  (HA)
medium (Vasiliauskas & Stenlid 1998) with
addition  of  chloramphenicol  (0.035  g  L-1,

Sigma, MO, USA) and streptomycin (0.018
g L-1, Sigma) in three replicates. All the inoc-
ulated plates were incubated at room tem-
perature and continuously observed for 2
weeks. Soil samples were analysed by the
Dilution Plate Technique: 10 g of soil were
diluted  with  sterile  water  1:10  (w/v)  and
mechanically  shaken for  20  min.  The sus-
pensions were further diluted 1:10 and 1 mL
aliquots of the suspension 10-4 were homo-
geneously  distributed  and  incubated  at
room  temperature  and  continuously  ob-
served for 2 weeks.  Fungal  colonies were
afterwards sub-cultured and the species in
pure culture were identified based on clas-
sical morphological features using light mi-
croscopy. The fungal morphological identi-
fication was further confirmed by sequenc-
ing of the ITS2 region (Miller et al. 2016) us-
ing  the  ITS3  (5 -GCATCGATGAAGAACGCA′ -
GC-3 ) -  ITS4 (5’-TCCTCCGCTTATTGATATGC-′
3’)  primer  pair  (White  et  al.  1990)  as  de-
scribed by  Maresi et al. (2013). The ITS se-
quences were compared to those from the
NCBI  database  (http://www.ncbi.nlm.nih.
gov)  to  ascertain  closest  sequence
matches.  To visualize the WIF community
compositions,  we used three dimensional
non-metric  multidimensional  scaling  (3D-
NMDS)  analysis  based  on  the  Bray-Curtis
dissimilarity index calculated in R (R Core
Team 2015). Abiotic factors (including site,
altitude and exposure) and chemical prop-
erties of the soil and deadwood were fitted
to  the  NMDS  ordination  plots  using  the
“envfit” function in the “vegan” package
of  R,  and  goodness-of-fit  statistics  (R2)
were  calculated  with  P  values  based  on
999 permutations (Oksanen 2013).

Results and discussion
In total 215 fungal isolates were cultured

and  52  fungal  taxa  were  morphologically
identified and their identification was com-
plemented by molecular analysis based on
ITS  sequences.  The  isolates  on  BLAST
analyses  showed  97-100%  identity  to  the
available sequences  in  NCBI  (Tab.  S3  and
Fig. S3 in Supplementary material). Overall,
Ascomycota  was  the  dominant  phylum
(32/52  taxa),  followed  by  Zygomycota
(11/52),  Basidiomycota  (8/52)  and  sterile
mycelia. In particular, 42 taxa were isolated
from the soil samples in direct contact with
the wood blocks; 18 taxa were common to
both slopes, while 11 taxa were exclusively
isolated  from  north-  and  13  taxa  from
south-  facing  sites  (Fig.  1).  The  soil  cul-
tivable fungal population was mainly char-
acterized by Ascomycota (26 taxa) and Zy-
gomycota  (10  taxa)  with  a  lower  propor-
tion of Basidiomycota (5 taxa). Differences
in community composition among the dif-
ferent sites were also observed (Fig. 1, Fig.
2a, Fig. 2b), and total nitrogen (TN), electri-
cal  conductivity  (EC)  and  altitude  corre-
lated significantly with the soil fungal com-
munity  composition  (Tab.  1).  From  the
wood blocks, a total of 24 fungal species
were identified, of which 13 belong to As-
comycota, 6 to Zygomycota and 4 to Basid-
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Fig. 1 - Venn dia-
grams showing

specific and
common fungal

taxa between
the north- and

south-facing
sites isolated

from the wood-
and soil samples
in direct contact

with the wood
blocks.

Fig. 2 - 3D-Non-
metric multidi-

mensional scal-
ing (NMDS) ordi-

nation of a) soil
(stress = 0.11)
and b) wood

(stress = 0.14)
fungal commu-

nity structure at
the north- and

south-facing
sites using the

plot3d and ordigl
functions in R.

The NMDS ordi-
nation plots

were fitted with
the significant

soil physico-
chemical and

topographic fac-
tors using the

envfit command
in “vegan”.
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iomycota, while for one isolate no match in
the NCBI database was found (Tab.  S3 in
the Supplementary material). These results
are in line with  the study by  Rajala et al.
(2012) and  Kazartsev et al. (2018), who re-
ported  that  Ascomycota  was  the  most
dominant  fungal  phylum  during the  early
stages  of  P.  abies wood  decay  in  boreal
forests.  Although  Ascomycota  are  gener-
ally  weak  lignin  decomposers,  as  the  en-
zyme systems of most ascomycetes do not
contain  the  typical  lignin-modifying  en-
zymes  (with  the  exception  of  laccases),
they  may  regulate  the  wood  decomposi-
tion  rate  by  interacting  and  competing
with  Basidiomycota  in  the  early  stage  of
decomposition (Mäkelä et al. 2015,  Hoppe
et  al.  2016).  Among  the  WIF  isolated,  7
were common to both slopes, 7 were iso-
lated  only  at  the  north-facing  site  and
other 10 exclusively at the south-facing site
(Fig.  1).  These  differences  in  community
composition among the north- and south-
facing sites (R = 0.31, p <0.05) were also re-
flected in  the NMDS ordination plot  (Fig.
2a, Fig. 2b) as the WIF clustered mainly as a
function  of  slope  exposure.  Indeed,  the
WIF  community  composition  correlated
significantly with exposure, wood moisture
and total carbon (TC), while lignin and cel-
lulose contents did not  contribute signifi-
cantly in shaping the structure of WIF com-
munity (Tab. 1). Permutational Multivariate
Analysis  of  Variance  (PERMANOVA)  con-
firmed that the soil and wood communities
were significantly affected by altitude and
exposure (Tab. 2). In line with our results,
slope, elevation and wood physicochemical
properties  such  as  water  content  have
been reported as  determinant drivers  for
WIF richness and community composition
in forest ecosystems (Rajala et al. 2012, Pu-
rahong et al. 2014, 2017, Hoppe et al. 2016,
Gómez-Brandón et al.  2017).  Parallel  stud-
ies conducted on the same  P. abies wood
blocks (in-field mesocosm experiment) in-
vestigated in this  work reported that  the
deadwood  mass  decay  dynamics  was  re-
lated to wood pH and moisture,  soil  tex-
ture,  temperature  and  topographic  fea-
tures including exposure and altitude (Fra-
volini  et  al.  2016,  Gómez-Brandón  et  al.
2017),  corroborating  the  considerable  ef-
fect of abiotic and climatic factors on WIF
community  and  consequently  on  P.  abies
deadwood  degradation.  Furthermore,
about  60%  of  the  WIF  isolated  from  the
wood blocks were also found in the top 5
cm soil layer, suggesting that soil biotic at-
tributes are also important drivers of initial
deadwood  decay  in  sub-alpine  Norway
spruce forests. However, 10 taxa were iso-
lated  only  from  the  wood  samples,  and
among them,  we identified  several  decay
fungi commonly associated with wood de-
composition  such  as  Armillaria  cepistipes
(at sites S7 and S8), Bjerkandera adusta (at
site  S6)  and  Athelia  decipiens and  Heter-
obasidion annosum (at site N3). These fungi
were  also  identified  in  a  recent  study on
the WIF population associated with P. abies

deadwood using culture-independent mol-
ecular  techniques  on  forest  plots  of  the
German Biodiversity Exploratories in south-
western Germany (Hoppe et al. 2016). Fur-
thermore,  these  species  represent  necro-
trophic  and  saprotrophic  fungi  including
some of  the most  detrimental  pathogens
in conifer forests, which are capable of de-
grading  wood,  infecting  the  roots  and
stems and causing root white-rot (Keča &
Solheim 2011, Gori et al. 2013, Pramod et al.
2015).  Lecytophora sp.  and  Humicola sp.
were isolated from the wood blocks at site
N1  and  from  soil  at  site  S6,  respectively,
and  species  affiliated  with  these  genera
have already been associated with soft-rot
decay of treated wood (Bugos et al. 1988).
Interestingly, we found that three WIF taxa
affiliated  with  the  Trichoderma genus  (T.
viridescens,  T.  atroviride,  T.  citrinoviride)
were  also  isolated  in  a  recent  study  on
wood decay fungi across European forest
ecosystems  (Blaszczyk  et  al.  2016).  Al-
though they are frequently isolated in de-
caying wood and plant material (Longa et
al.  2009),  Trichoderma spp.  are  weak  de-
composers of non-decayed wood, but the
delignification performed by white-rot fun-
gi improves the accessibility of the woody
material (Fukasawa et al. 2011). The basid-

iomycete  Coprinellus  radians was  isolated
from the wood blocks  at  sites  S7  and S8
and from the soil samples at N2 and S8 and
it  has  been  hypothesized  that  Coprinoid
species  might  have  abilities  of  white-rot
fungi on pre-decayed wood (Badalyan et al.
2011).  Moreover,  several  saprotrophic  as-
comycetes species found in this study like
Aspergillus sp.,  Penicillium sp.,  Cladospo-
rium sp.  and  Epicoccum sp.,  along  with
members of the phylum Zygomycetes may
influence the decay process in large woody
debris, but in general they play a subordi-
nate role as direct agents of wood decay
(Stenlid et al. 2008) because they primarily
utilize compounds derived from the action
of  wood  degraders  (Lindahl  &  Olsson
2004).

In summary,  the study of cultured fungi
associated with the early stage of  P. abies
deadwood decay in  subalpine forest  soils
resulted in a large number of species main-
ly belonging to the phyla Ascomycota and
Zygomycota,  which  are  generally  sapro-
trophs with low impact as direct wood de-
cay agents. Most of the isolates could be
cold-adapted  as  they  belong  to  species
that are reported in periglacial soil at about
2500 m a.s.l.  (Rodolfi  et al.  2016). In fact,
methods based on culturing are known to
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Tab. 1 - Goodness-of-fit statistics (R2) for factors fitted to the three dimensional non-
metric multidimensional scaling (3D-NMDS) ordination of the soil  and wood fungal
community composition. The significance was based on 999 permutations. (nd): not
detected; (EC): electrical conductivity; (TC): total carbon; (TN): total nitrogen; (Ptot):
total phosphorous; (Pav): available phosphorous; (*): P < 0.05; (**): P < 0.01; (***): P
< 0.001.

Variable
Soil Wood

R2 P R2 P

Exposure 0.209 0.168 0.358 0.025*
Altitude 0.305 0.045* 0.184 0.378

Moisture 0.168 0.284 0.303 0.048*

Volatile solids 0.199 0.218 0.095 0.585

pH 0.136 0.389 0.018 0.943

EC 0.410 0.013* 0.0210 0.924

TC 0.205 0.206 0.461 0.006**
TN 0.427 0.009** nd nd

NH4
+ 0.248 0.116 - -

NO3
- 0.279 0.077 - -

Ptot 0.089 0.617 - -
Pav 0.086 0.629 - -

Cellulose - - 0.182 0.227

Lignin - - 0.095 0.588

Tab. 2 - PERMANOVA table showing differences in community composition (based on
a Bray-Curtis dissimilarity matrix) among altitude and exposure, for the soil and wood
fungal communities. (*): P < 0.05; (**): P < 0.01; (***): P < 0.001.

Variable
Soil fungi Wood fungi

R2 P R2 P

altitude 0.18 0.001*** 0.07 0.05*

exposure 0.06 0.05* 0.2 0.001***

altitude : exposure 0.11 0.01** 0.12 0.01*
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favor  rapidly-growing  fungi  (like  sapro-
trophs), and on the contrary, obliged plant
pathogens or  mutualistic  biotrophic fungi
such  as  ecto-mycorrhizal  species  are  no-
toriously  difficult  or  impossible  to  isolate
(Bonito  et  al.  2016).  However,  several
white-rot species affiliated with Basidiomy-
cota  – that  have  been  previously  associ-
ated with the decay process of deadwood
in forest  ecosystems  – were isolated and
identified with the cultivation method used
in the present study. Some of these species
were  only  isolated  from  wood  blocks  at
particular  sites,  indicating  that,  besides
deadwood  chemical  properties,  altitude
and exposure are important drivers for WIF
community composition in subalpine forest
ecosystems. A further step in the identifi-
cation of  the fungal  taxa associated with
deadwood decay processes would consist
in  a  taxonomical  characterization  of  the
fungal  community  of  the  studied  wood
blocks using high-throughput next genera-
tion sequencing technologies.
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sites at north- and south-facing slopes (N1-
4  and  S6-9,  respectively)  in  Val  di  Rabbi
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Tab. S2 - Physico-chemical properties of soil
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Tab. S3 - Fungal taxa isolated from soil (So)
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Fig. S1 - Overview of the study area (Tren-
tino, Italy) with major vegetation units.

Fig. S2 - Example of the destructive in-field
mesocosm sampling (wood and soil).

Fig. S3 -  Number of fungal taxa identified
for each site for the wood (a) and soil (b)
samples (n=3) along an altitudinal gradient
in a subalpine forest in Val di Rabbi (Tren-
tino, Italy).
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