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Essential environmental variables to include in a stratified sampling 
design for a national-level invasive alien tree survey
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Thomas Seifert (2-3)

There is a direct relationship between the abundance of biological invasions
and their impact, which means that it is important to capture spatial patterns
in their abundance and use this  information to focus management actions.
However, protocols to objectively determine invasive alien plant (IAP) distri-
butions and abundance are lacking at a national level, resulting in the inability
to determine and monitor changes in spatial extent and density over time. A
complete inventory of IAP spatial distribution across an extensive area such as
South Africa is not possible and so requires an efficient sampling approach. A
simple random sampling design would not be efficient, so monitoring of IAP
species at a national level requires an appropriate sampling design such as a
stratified sampling. The selection of environmental variables to be included in
such a stratification should be based on the relationship between IAP species
and their physical  environment to successfully summarize variance in their
abundance within the different strata. A further objective is to obtain all pos-
sible combinations of environmental variables or a full rank design in the strat-
ification to allow for the comparison of different strata based on actual field
sampled data. This raises the question of which predictive environmental vari-
ables as well as how many to include in the stratification. For this purpose,
three invasive tree species, namely Acacia cyclops, Acacia mearnsii and Pro-
sopis glandulosa  were selected as they cover the maximum possible area at
the highest density with the least amount of geographic overlap. A total of 26
environmental variables that included climatic, soil and topographic type vari-
ables were tested with linear regressions against correlations with the abun-
dance of those tree species. The results showed that a combination of average
precipitation, soil depth, clay content in the B-horizon and terrain morphologi-
cal units will serve as a suitable stratification at a national level to explain IAP
abundance variation sufficiently well whilst retaining a full rank design. These
results will be applied as the first phase in the formation of a regional level IAP
monitoring programme for South Africa on a scientific basis.

Keywords:  Invasive  Alien  Plant  (IAP)  Species,  Monitoring,  Sampling  Design,
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Introduction
Alien plant invasions are known to have

severe disruptive impacts  on biodiversity,
ecosystems, plant and animal populations,
ecosystem  services,  agriculture,  forestry,
the economy and human welfare (Jeschke
et al. 2014,  Vilà & Hulme 2017). One of the

most important attributes of biological in-
vasions in terms of impact is invasive spe-
cies abundance (Kumschick et al. 2015). In
other words, the more there is of an inva-
sive  alien  plant  (IAP)  species,  whether
number of individual plants or biomass, the
greater the impact. Thus in particular inva-

sive tree species with their  large biomass
and their ability to change their local envi-
ronment  substantially  have  an  impact  on
ecosystems  and  ecosystem  services  (Le
Maitre et al. 2016). 

Mitigation  strategies  to  deal  with  alien
plant  invasions  have  been  implemented
across the world with noted successes in
the control of invasive species (Simberloff
et al. 2011). In South Africa, the long-term
Working  for  Water  Programme  was  initi-
ated in 1996 as an IAP control programme
sponsored by government (Van Wilgen et
al.  2012).  South Africa,  with its  rich  biodi-
versity  (Driver  et  al.  2012),  has  been  in-
vaded by many different IAP species, espe-
cially tree species (Nel et al. 2004), and the
ecological and economic impacts of these
invasions have been well documented (De
Lange & Van Wilgen 2010,  Le Maitre et al.
2016).  Further  to  this,  South  Africa  hosts
three  of  the  35  current  biodiversity  hot-
spots in the world (Mittermeier et al. 2011).
This makes the threat of IAP species to this
region  an  international  concern  (Mitter-

© SISEF https://iforest.sisef.org/ 418 iForest 12: 418-426

(1) Institute for Soil, Climate and Water, Agricultural Research Council, Private Bag X79, 
Pretoria, 0001 (South Africa); (2) Stellenbosch University, Department of Forest and Wood 
Science, Faculty of AgriSciences, Private Bag X1, Matieland, 7602 (South Africa); (3) Chair of 
Forest Growth, Albert-Ludwigs-University Freiburg, Tennenbachstraße 4, 79106 Freiburg (Ger-
many)

@@ Johann DF Kotze (kotzei@arc.agric.za)

Received: Feb 23, 2018 - Accepted: Jun 12, 2019

Citation: Kotze JDF, Beukes HB, Seifert T (2019). Essential environmental variables to include
in a stratified sampling design for a national-level invasive alien tree survey. iForest 12: 418-
426. – doi: 10.3832/ifor2767-012 [online 2019-09-01]

Communicated by: Francisco Lloret Maya

Research ArticleResearch Article
doi: doi: 10.3832/ifor2767-01210.3832/ifor2767-012

vol. 12, pp. 418-426vol. 12, pp. 418-426

http://www.sisef.it/iforest/contents/?id=ifor2767-012
mailto:kotzei@arc.agric.za


Kotze JDF et al. - iForest 12: 418-426

meier et al. 2011). Species abundance data
is essential in the effective management of
such control programmes and serves as an
important indicator in the measurement of
their success (Wilson et al. 2018). To priori-
tise intervention or mitigation strategies at
a national level, it is important to achieve
IAP distribution and abundance data at this
scale. Despite the success of many of these
initiatives,  they  still  lack  sound  protocols
for objectively determining IAP distribution
at a national level, with the obvious result
of not being able to measure and monitor
actual  IAP  spatial  extent  and  abundance
changes over time (Dehnen-Schmutz et al.
2018).

The  spatial  extent  of  the  study  area
(South Africa covers approximately 122 mil-
lion hectares), the environmental and eco-
logical  heterogeneity  (Driver  et  al.  2012),
and limited resources  to  conduct  surveys
(Ricciardi et al. 2017), make a complete IAP
inventory  not feasible to carry out  (Web-
ster & Lark 2013). The best alternative for
providing  unbiased  and  reliable  quantita-
tive  information  is  a  partial  estimation
based on sampling (Gitzen et al. 2012). An
example of this is the statistical or sample
based surveys which have been applied for
many years in most large scale forestry sur-
veys in many countries (Ståhl et al. 2016),
and are based on strict design-based princi-
ples  (Naesset  et  al.  2011).  The success  of
such  monitoring  programmes  is  deter-
mined by  the  underlying sampling design
(Gitzen  et  al.  2012).  Ideally,  the  sampling
strategy  should  effectively  represent  the
variability  of  the entire  target  population
with as few as possible sample points. The
simple random sampling design is  known
to be inefficient in providing an even repre-
sentative coverage of a study area, due to
the tendency of sample point locations to
cluster at low sampling intensities, result-
ing in large undetected areas (Webster &
Lark 2013). The result is that resource de-
mands such as costs, manpower and time
required for random sampling designs are
high (Kalkhan 2011) if the aim is to ensure
that  the  inherent  variation  in  the  target
population is represented (Webster & Lark
2013). An alternative is to use a pre-strati-
fied  sampling  design  which  improves  the
accuracy of the estimates and allows for a
better  efficiency  (Webster  &  Lark  2013).
The  objective  of  stratification  for  vegeta-
tion surveys is to incorporate those habitat
types that show the most meaningful asso-
ciation with the vegetation attribute of in-
terest, and so to ensure that all the possi-
ble  habitat  specific  variation that  contrib-
utes to the target species range and abun-
dance is included in the survey (Gitzen et
al.  2012).  The latter also provides well-de-
fined  strata,  which  allows  for  effective
comparisons  across  strata  for  valid  infer-
ence between field observations (Webster
& Lark 2013). The challenge in this context
is the selection of environmental variables
which adequately define spatial  units rep-
resenting homogenous  conditions  or  stra

ta  for  species  abundance.  These  strata
should  clearly  reflect  the  relationship  be-
tween IAP species and their physical envi-
ronment  and  thereby  summarize  this  un-
derlying  non-random  relationship  (Volis
2016). The main aim of stratification is thus
to minimise the variance within the strata
while  maximising  the  variance  between
them. All of which leads to the main ques-
tion:  which predictive environmental  vari-
ables and how many of them should be in-
cluded for defining the strata while main-
taining  a  full  rank  design.  Such  a  design
provides  the most  effective inference be-
tween species’ observations obtained from
actual field surveys.

Appropriate methods to model the corre-
lation between species’ occurrence and en-
vironmental variables such as climate, soil
and  terrain  are  predictive  vegetation  or
species distribution models (SDM – Hageer
et al. 2017). SDMs not only provide insights
into the species-environment relationships,
but they are also used to predict spatial dis-
tributions  of  target  species  by  means  of
maps of the correlated environmental pre-
dictor variables (Elith & Franklin 2017). Mul-
tiple  ways have been proposed to model
species  distribution and prominent  exam-
ples  include regression trees,  boosted re-
gression trees and random forests machine
learning algorithms that are used to com-
bine rules for species occurrence in an opti-
mum  way  (Franklin  2010).  Examples  for
rule-based  systems  are  GARP  (Stockwell
1999)  that  applies  a  genetic  algorithm or
MaxEnt (Anderson et al. 2003) that works
on a maximum entropy optimisation. Other
authors applied a traditional parametric al-
gorithm  such  as  regression  analysis
(Fahrmeir  et  al.  2013).  Most  methods are
known  to  provide  equally  good  results
(Aitor  &  Garcia-Viñas  2011,  Sahragard  &
Ajorloa  2018).  Species  distribution model-
ling has been widely applied in the field of
invasion biology for a range of objectives
(see Robinson et al. 2017 for a review). For
instance,  Rouget et  al.  (2015) used broad
scale predictor variables that included cli-
mate,  natural  biomes  and  anthropogenic
factors in relationship to the distribution of
IAP  species’  assemblages  in  an  effort  to
map wide-ranging alien plant biomes. Ap-
plications also include the use of models to
support  the  development  of  appropriate
sampling designs  and  includes  the  defini-
tion of appropriate strata (Särndal 2010). 

In this  study we assessed the extent  to
which the modelled associations between
IAP  species  and  environmental  variables
were meaningful based on repeated corre-
lation patterns across extensive areas with
high levels of environmental variation. We
hypothesised that, although localized asso-
ciations between IAP species and different
environmental  variables might vary,  there
would be constant regional correlation pat-
terns with a limited number of specific vari-
ables.

The objective of the stratification process
was to obtain all possible combinations or

interactions between the different environ-
mental variables. This full rank design is ad-
vantageous from a statistical point of view
and easily obtained in a controlled environ-
ment  or  a  planned experiment.  The chal-
lenge is to obtain such a design within the
natural  environment  at  a  national  scale.
Thus the aim of this study was to combine
the unique and varying natural geographi-
cal distribution patterns of the underlying
deterministic  environmental  variables  to
effectively  summarise  IAP  species’  abun-
dance within these strata, whilst maintain-
ing a complete full rank design.

This paper presents an approach to firstly
filter  and  select  environmental  variables
most suitable for such a national-level de-
sign-based  stratification  in  South  Africa
and, secondly, to explore how many cate-
gories could realistically be included in such
a  stratification.  The  results  represent  the
first  phase in establishing a regional  level
IAP  monitoring  programme  for  South
Africa on a scientific and statistically rigor-
ous basis.

Materials and methods

Study area
The study area was the whole of  South

Africa  and the focus  was  on undisturbed
areas or rather natural and semi-natural ar-
eas  or  habitats  as  defined  by  Nel  et  al.
(2004), namely:  “natural  and semi-natural
ecosystems, that is, those that are still rea-
sonably intact, having most of their biodi-
versity structure and functioning, and with
primary  driving  forces  operating  within
natural/evolutionary limits”. These habitats
are most threatened by IAP species by hav-
ing the greatest impact on native biodiver-
sity  and  ecosystem  services  (Nel  et  al.
2004).

IAP distribution records
The most comprehensive set  of  records

of the spatial distribution of IAP species for
the study area is the Southern African Plant
Invaders Atlas (SAPIA) database that con-
tains records for more than 500 different
IAP  species  (Henderson  &  Wilson  2017).
SAPIA observed IAP species with no under-
lying statistical  basis  along road transects
of  5-10  km  long  and  within  the  adjacent
road area from a moving vehicle (Hender-
son & Wilson 2017). IAP species were most-
ly  recorded  per  quarter  degree  square
(QDS), a 15′ latitude × 15′ longitude square,
therefore the exact location of species was
related  to  a  total  area  of  approximately
25×27 km or 65,000 ha. As many as 120 dif-
ferent IAP species were recorded per QDS
and often with repetitive observations per
species.  An  abundance  value  is  provided
for each record based on the approximate
number  of  actual  plants  observed  per
unique IAP species within a 10 km transect.
A number of habitat classes are also pro-
vided  per  species  record  to  allow  for  a
species  to  be  classified  based  on  habitat
preference. Many of these species have a
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Sampling design for a national-level invasive alien tree survey

limited  distribution  and  abundance,  over-
lap in distribution and are biased towards
certain habitat classes, so the SAPIA data-
base  was  filtered  for  the  study  using  a
stepwise rule-based approach (for further
details  on  the  species  filter  process,  see
Appendix  1  and  Fig.  S1  in  Supplementary
material). Species were firstly selected on
the basis of having the maximum distribu-
tion  range  across  South  Africa  at  a  high
abundance. This captured the full environ-
mental gradient contributing to a particu-
lar IAP species’ observed distribution. Sub-
sequently,  species  with  minimum  overlap
in  spatial  extent  with  other  species  were
identified to create mutually exclusive ob-
servations  for  each  of  the  IAP  species
across geographic space. The combination
of maximum spatial distribution with mini-
mum overlap led to the selection of three
tree species, namely  Acacia cyclops, Acacia
mearnsii and  Prosopis  glandulosa  (Fig.  1).
Matrices produced for each of the species
consisted of the total abundance values for
that particular species in a given location.

Environmental variables
A set of physiologically relevant environ-

mental variables that have been shown to
correlate with species abundance were in-
cluded,  namely climatic,  topographic  (ter-
rain) and soil related variables (Williams et
al. 2012, Hageer et al. 2017, Fois et al. 2018).
The climatic variables were obtained from
the  WorldClim2  dataset  (Fick  &  Hijmans
2017).  Soil  variables  were  extracted  from
the South African Land Type Survey data-
base, which is based on detailed field sur-
veys published at  a 1:250,000 scale (Land
Type Survey Staff  2006).  Terrain variables
such as aspect were derived from the Shut-
tle Radar Topographic Mission (SRTM) digi-
tal  elevation data at  the 90 m resolution
(Farr et al. 2007).

Environmental variables were resampled
to a 400 × 400 m spatial resolution where
required (Tab. 1). Multicollinearity (Franklin
2010) amongst predictor variables was as-
sessed by means of the pair-wise correla-
tion  coefficient  between  variables  (Wil-
liams et  al.  2012).  Pairwise correlation ex-

ceeding  a  threshold  collinearity  of  more
than 0.75 (Dormann et al.  2013) was used
to exclude variables.

Spatial combination of species presence
with environmental variables

Each of the three species’ layers was spa-
tially intersected with the overlapping envi-
ronmental  variable  matrices  to  create
three  unique  species/environmental  data-
sets by means of ArcGIS® Desktop software
(ESRI  2017).  The application  of  the  South
African  tertiary  catchment  delineation  as
an  aggregation  unit  supplied  replications
across geographic space for each of these
three  layers.  Catchment  delineation  was
applied as an aggregation unit for it is de-
fined  by  topography.  Catchments  there-
fore captures the full range of terrain mor-
phological  units  which  ensures  that  soil
and  climatic  gradients  are included.  Adja-
cent  catchments  have  closely  matching
gradients  of  these variables which makes
them  reasonable  replicates  for  determin-
ing strata. Further to this, catchment delin-
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Fig. 1 - A description and
distribution of the three

identified species,
namely Acacia cyclops,

Acacia mearnsii and
Prosopis glandulosa.
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eation  is  also  applied  to  define  manage-
ment units in the Working for Water Pro-
gramme.

The most detailed or highest order catch-
ment delineation for the country is repre-
sented by quaternary catchments of which
there  are  approximately  1845.  Most  of
these quaternary catchments were simply
too  small  to  include  a  sufficient  species
abundance  gradient.  For  this  reason,  the
next  level  of  catchment  delineation  was
chosen,  namely  tertiary  catchment  delin-
eation.  There are 274 tertiary catchments
which provided a  sufficient  species  abun-
dance gradient  due to a much larger sur-
face area (mean area: 455,520 ha).

Environmental modelling
Species  abundance  served  as  the  re-

sponse variable,  whilst  the environmental
variables  were  applied  as  predictor  vari-
ables. Relationships between the response
variables and each predictor variable were
investigated by means of visual inspection
of  the  resulting  graphs  to  determine  the
type of correlation models to use from the
wide  range  of  techniques  available  for
modelling  species-environment  associa-
tions.  Data  distribution  guides  the  selec-
tion of the type of modelling approach to
apply  (Dormann  2011).  The  relationships
were linear, resulting in opting for a more
traditional modelling approach, namely lin-

ear  regression  models  (Dormann  2011).
These were developed based on the gener-
alized  linear  model  (GLM)  framework
(Fahrmeir et al. 2013). GLM’s are extensive-
ly applied in species distribution modelling
due to  their  strong  statistical  foundation
and ability to realistically model species-en-
vironment  associations  (Elith  &  Franklin
2017).

Data outliers  were identified and subse-
quently  removed  for  each  environmental
variable  per  tertiary  catchment  based  on
set  cut-off  limits  applied  to  the  left  and
right of  the normal  distributions per  vari-
able. Cut-off limits were based on the vari-
able’s coefficient of variation (CV). For in-
stance,  for  a  CV<10 the applied  cut-off  z-
value is 1.96, whilst for a CV<20 the applied
cut-off z-value was decreased to 1.65.

The three IAP species were investigated
and  analysed  independently  per  tertiary
catchment.  Statistical  analysis  was  con-
ducted  by  means  of  Matlab® software
(MathWorks 2017). The environmental pre-
dictor variables were added one at a time
to  the  model,  and  all  possible  combina-
tions of the number and type of variables
were  explored  for  their  effect  on  model
performance.  This  resulted in a  multitude
of models per tertiary catchment for each
species.  Akaike’s  Information  Criterion
(AIC)  was  used  to  evaluate  models  per
catchment and select the most appropriate

model  with  its  associated  predictor  envi-
ronmental variables (Symonds & Moussalli
2011).

Stratification simulation
Environmental variables were reclassified

into three classes each based on a gradient
ranging  from  low  to  medium  and  finally
high for two aggregation levels  or spatial
scales,  namely  the  complete  study  area
(South Africa) and the tertiary catchment
delineation.  Interaction  classes  between
variables were created by intersecting the
different variables in geographic space for
these two aggregation  levels  by  progres-
sively  increasing  the  number  of  environ-
mental  variables  in  subsequent  intersec-
tions  (see  Appendix  2  in  Supplementary
material for an explanation on the stratifi-
cation procedures). The number of interac-
tion classes created at the two aggregation
levels at each intersection level were com-
pared with the number of classes required
for  an  ideal  theoretical  full  rank  design.
This comparison provided an indication of
an appropriate number of variables to be
included in such a stratification exercise to
achieve a design as close as possible to, if
not a complete factorial design.

The  three  IAP  species  were  then  com-
bined with the created strata at the maxi-
mum  identified  intersection  level  before
actual stratification started to deviate from
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Tab. 1 - Environmental variables used in the analysis.

Type Description
Resolution

(m) Source

Climate Annual Mean Temperature 1000 × 1000 Fick & Hijmans 2017

Mean Diurnal Range (Mean of monthly [Max Temp - Min Temp]) 1000 × 1000

Isothermality (Mean Diurnal Range / Temperature Annual Range) (×100) 1000 × 1000

Temperature Seasonality (standard deviation ×100) 1000 × 1000

Max Temperature of Warmest Month 1000 × 1000

Min Temperature of Coldest Month 1000 × 1000
Temperature Annual Range (Max Temperature of Warmest Month - Min Temperature 

of Coldest Month)
1000 × 1000

Mean Temperature of Wettest Quarter 1000 × 1000
Mean Temperature of Driest Quarter 1000 × 1000

Mean Temperature of Warmest Quarter 1000 × 1000

Mean Temperature of Coldest Quarter 1000 × 1000

Annual Precipitation 1000 × 1000

Precipitation of Wettest Month 1000 × 1000

Precipitation of Driest Month 1000 × 1000
Precipitation Seasonality (Coefficient of Variation) 1000 × 1000

Precipitation of Wettest Quarter 1000 × 1000
Precipitation of Driest Quarter 1000 × 1000

Precipitation of Warmest Quarter 1000 × 1000
Precipitation of Coldest Quarter 1000 × 1000

Soil Soil depth (mm) 400 × 400 Land Type Survey Staff
2006Percentage clay in the A-horizon 400 × 400

Percentage clay in the B-horizon 400 × 400

Terrain Terrain morphological units 
(valley bottom, footslope, midslope, scarp and crest)

90 × 90 Land Type Survey Staff
2006

Elevation (m a.s.l.) 90 × 90 Farr et al. 2007
Aspect 90 × 90

Slope (%) 90 × 90
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the ideal full rank design. The effectiveness
of  the  identified  environmental  variables
and the subsequent stratification to reduce
the variation of IAP distribution and abun-
dance within strata was compared to the
overall variation without any form of stra-
tification  at  a  tertiary  catchment  level.
Should  the  stratification  be  meaningful,
IAP abundance variation at a stratum level
would be significantly less than at  an un-
stratified level on a repetitive basis across
tertiary catchments. An analysis of variance
(ANOVA) was then applied to the data to
simulate a data analysis using the data as if
it came from an actual IAP survey to see if
there  was  a  significant  association  be-
tween IAP distributions and the respective
strata. Should there be no association be-
tween  IAP  distribution  and  respective
strata,  therefore IAP abundance varied at
random across strata, the use of strata as
categories to describe IAP distributions as
a response variable within them would be
meaningless.

Results

Environmental modelling
Fourteen  variables  from  the  original  26

remained after testing for multicollinearity
among predictors. A threshold was applied
to select environmental variables most fre-
quently  associated  with  the  three  IAP
species, namely those variables repetitively
observed more than 75% per species across
tertiary  catchments.  In  the  case of  A.  cy-
clops these  variables  included  soil  depth,
percentage clay in the A-horizon, percent-
age clay in the B-horizon, slope and the ter-
rain  morphological  units.  Variables  most
frequently  associated  with  A.  mearnsii
were the terrain morphological units, per-
centage clay in the A-horizon, percentage
clay in the B-horizon, soil depth, long-term
mean annual precipitation and isothermal-
ity.  P.  glandulosa was  mostly  associated
with clay in the B-horizon, soil  depth and
long-term mean annual precipitation (Tab.
2).  The  total  percentage  association  be-
tween  environmental  variables  and  the
three  species  combined  was  then  deter-
mined to provide an overall  indication of
association per variable across all  species.
(Fig.  2).  Further  filtering of  variables  was
based on a combination of ecological rea-
soning (Dormann et al.  2013) and the fre-
quency  of  occurrence  of  variables  for  all
three IAP species.

Stratification simulation
The stratification of  the complete study

area up to the spatial  intersection of five
environmental  variables  generated  243
classes, which was similar to the total num-
ber of  possible  classes at  that level  for a
full rank design within a controlled experi-
ment (Fig. 3).  Stratification at the smaller
aggregation  level,  namely  the  tertiary
catchment delineation,  started to  deviate
from a full  rank design with the intersec-
tion of between three and four variables,

therefore between 27 and 81 classes. When
this was done with five or more variables
with three levels each, the stratification at

a tertiary catchment level started to devi-
ate substantially from the total amount of
all possible class combinations (Fig. 3). The
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Tab.  2 -  Environmental  variables associated the most frequently with the different
species (>75%).

Environmental Variables
IAP Species

A. cyclops A. mearnsii P. glandulosa

Annual precipitation - × ×
Percentage clay in the A-horizon × × -
Percentage clay in the B-horizon × × ×
Soil depth × × ×
Isothermality - × -
Slope × - -
Terrain morphological units × × -

Fig. 2 - The total percentage association between the specific predictor environmental
variables and the three tree species combined for all tertiary catchments.
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Fig. 3 - The number of unique strata created by means of intersecting environmental
variables. The graph only includes up to the intersection of seven variables with three
even area classes each for thereafter the difference in number of obtained intersec-
tion classes only increases.
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further  testing  of  the  feasibility  of  the
stratification was based on a stratification
done at  a  tertiary  catchment  level  by  in-
cluding  four  variables  with  three  levels
each and thereby 81 possible unique inter-
action  combinations  or  strata  per  catch-

ment.  The variance in IAP abundance per
stratified  tertiary  catchment  was  signifi-
cantly  lower  than  the  variance  in  related
tertiary catchments without any stratifica-
tion across all tertiary catchments (Fig. 4),
indicating that stratification had a substan-

tial effect. The results of the analysis of var-
iance applied to the same dataset showed
significant  differences  in  mean  IAP  abun-
dance variation as summarized by the stra-
tification  for  each  of  the  three  species
(Tab. 3, Tab. 4).

Discussion
The results of this study are a method for

stratified  sampling  as  a  base  for  a  large
scale inventory of invasive tree species or
other  invasive  alien  plants  at  a  national
level. The proposed coherent and objective
method provides a means to use edaphic,
climatic  and  geomorphologic  variables  to
choose adequate strata in order to gain the
necessary sampling efficiency for larger ar-
eas. It closes an obvious gap in IAP moni-
toring, where the current methods lack a
statistical rigorous design-based approach
and  have  mainly  relied  on  either  oppor-
tunistic recording of IAPs along accessible
pathways such as roads (Henderson & Wil-
son 2017) or have been used to get pres-
ence/absence information based on expert
knowledge,  literature  and  herbarium  re-
cords (Vinogradova et al. 2018).

Although species distribution modelling is
a standard tool to predict potential IAP dis-
tribution (Robinson et al. 2017), the objec-
tive of this study was not to map potential
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Tab. 4 - ANOVA table with all possible levels of intersection up to the 3rd order. IAP species abundance served as response variable
and the environmental variables as predictor variables (level of significance applied was p<0.05). (df): degrees of freedom.

Variables Sum of squares df Mean square F-value P

Intercept 10420581217 1 10420581217 12306.99 <0.001
Rainfall × Soil depth 570818379 4 142704595 168.54 <0.001
Rainfall × Clay B-hor 526171140 4 131542785 155.36 <0.001
Soil depth × Clay B-hor 458571226 4 114642806 135.40 <0.001
Rainfall × Terrain morphology 2993017343 4 748254336 883.71 <0.001
Soil depth × Terrain morphology 808312529 4 202078132 238.66 <0.001
Clay B-hor × Terrain morphology 959066426 4 239766606 283.17 <0.001
Rainfall × Soil depth × Clay B-hor 1096535396 8 137066925 161.88 <0.001
Rainfall × Soil depth × Terrain morphology 949042946 8 118630368 140.11 <0.001
Rainfall × Clay B-hor × Terrain morphology 884723287 8 110590411 130.61 <0.001
Soil depth × Clay B-hor × Terrain morphology 504441130 8 63055141 74.47 <0.001
Rainfall × Soil depth × Clay B-hor × Terrain morphology 2446333516 16 152895845 180.57 <0.001
Error 89812467726 106071 846720 - -

Fig. 4 - Comparison of IAP abundance variation, measured as coefficient of variation
(CV) per tertiary catchment without stratification and thereafter with stratification
(level of significance: p<0.05) for each of the three tree species associated with the
respective tertiary catchments in which they occur.
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Tab. 3 - ANOVA summary including main effects and the intersection of the predictor environmental variables up to the 1 st order. IAP
species abundance served as the response variable (level of significance applied was p<0.05). (df): degrees of freedom.

Variables Sum of squares df Mean square F-value P

Intercept 10211609823 1 10211609823 11883.68 <0.001
Rainfall 776469154 2 388234577 451.80 <0.001
Soil Depth 1680298283 2 840149141 977.72 <0.001
Clay B-hor 155313015 2 77656508 90.37 <0.001
Terrain morphology 1602866749 2 801433375 932.66 <0.001
Rainfall × Soil depth 1538399235 4 384599809 447.57 <0.001
Rainfall × Clay B-hor 232806813 4 58201703 67.73 <0.001
Rainfall × Terrain morphology 3132974317 4 783243579 911.49 <0.001
Soil depth × Clay B-hor 444560606 4 111140151 129.34 <0.001
Soil depth × Terrain morphology 259746046 4 64936512 75.57 <0.001
Clay B-hor × Terrain morphology 1227720920 4 306930230 357.19 <0.001
Error 91180877400 106111 859297 - -
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IAP distribution, but rather to use model-
ling to support the development of a strati-
fication that  could  be used in  a sampling
design (Särndal 2010) in order to quantify
IAP abundance based on a representative
grid  of  empirical  sampling  points.  Similar
approaches have been used to guide sur-
veys for example where field surveys are
limited due to a lack of resources (Fois et
al.  2018).  In  these  cases  post-model  field
surveys  were  targeted  on  where  a  high
probability  of  occurrence  was  predicted
but  without  pre-model  field  data  (Peter-
man et al. 2013). In other studies, this ap-
proach has been used to improve the as-
sessment and  verification  of  the  distribu-
tion of scarce species and to optimise re-
sources  by  focusing  surveys  on  localities
where a high probability of occurrence of
such rare species was predicted (Peterman
et al. 2013). This study, based on three inva-
sive tree species of  major ecological  rele-
vance, serves as the first step in the estab-
lishment  of  a  scientifically-based  regional
level IAP monitoring programme for South
Africa.  Such  a  monitoring  programme re-
quires  that  actual  IAP  distribution  and
abundance data is sampled in the field and
the resulting data should be used to itera-
tively  refine  and  optimize  future  national
level surveys (Volis 2016, Fois et al. 2018).

The results of this study revealed distinct
species-specific  differences  in  the  occur-
rence  patterns  of  the three  invasive  tree
species  under  consideration,  which  may
point  to  their  ecological  differences  and
optimum  habitats.  These  three  IAP  tree
species  were  introduced  to  South  Africa
with specific objectives and thereby estab-
lished  on  a  non-random  basis.  Acacia
mearnsii was  planted  on  a  wide  scale  by
the commercial forestry sector for its high
tannin content in the bark.  Acacia cyclops
was used to stabilize drift sands along the
coast and Prosopis glandulosa was planted
extensively  in  the arid  regions  for  animal
fodder.  Although  all  these  species  have
had a residence time well in access of a 100
years  in  South  Africa,  it  is  possible  that
they have not reached their full geographic
extent  and  their  distribution  is  therefore
not yet in equilibrium, which could cause
problems for correlative models as pointed
out by  Robinson et al. 2017. This is an un-
known and was mitigated for by selecting
those species with the largest possible ge-
ographical extent.

Although  a  wide  range  of  variables  are
available for such correlative investigations
between  species  and  the  environment  in
which  they  occur,  the  emphasis  of  this
study was on physical  parameters,  for in-
stance soil depth and clay content. There-
fore,  chemical  attributes  such  as  soil  pH
that could significantly affect the distribu-
tion of IAP species (Soti et al. 2015) were
not directly  investigated.  However,  it  can
be reasoned that for instance soil clay con-
tent serves as a surrogate or indicator for
soil pH. Sandy soils are usually more prone
to acidic conditions due to leaching, whilst

soils with a high clay content are typically
more  alkaline  due  to  the  combination  of
basic  cations  absorbed  by  clay  particles
and a  lack of  leaching (Cronin  2018).  The
size and geographic location of the aggre-
gation area to be stratified plays an impor-
tant role in the realisation of classes. The
smallest aggregation unit showed that the
intersection up to a maximum of four vari-
ables with three levels each does not devi-
ate substantially from the maximum num-
ber of achievable combinations, hence the
number of variables for stratification could
be limited. Designs with six and more vari-
ables became impractical and this was also
confirmed by other studies (Keppel 1982).
It  proved  to  be  more  effective  to  rather
use fewer environmental variables within a
stratification because this created the best
opportunity to realise all  possible classes,
so four variables were finally selected. This
selection was based on ecological reason-
ing  and  repetitive  high  associations  be-
tween species and variables.  Terrain mor-
phological  units  were  highly  correlated
with A. cyclops and A. mearnsii. A. cyclops is
preferential to lower lying areas, especially
coastal  flats  and  seldom  occurs  within
higher  lying  more  mountainous  areas.  A.
mearnsii is  preferential  to  valley  bottoms
and  foot  slopes  rather  than  higher  lying
landscape positions. Many pine species on
the other hand are prolific invaders of mid-
slopes and higher lying areas which further
supports  a  distribution  gradient  between
IAP tree species  and the terrain  morpho-
logical units. Tree species need soil of suffi-
cient  depth  to  establish  and anchor  their
root systems to harvest nutrients and wa-
ter  which  supports  the  high  correlation
with rainfall and soil depth. Clay content in
the B-horizon was associated with all three
species compared to clay content in the A-
horizon,  which  was  associated  with  only
two species. P. glandulosa was preferential
to  clay  in  the  B-horizon,  that  correlates
with  the  typical  high  abundance  of  this
species on alluvial soils in arid regions. The
survival of trees in low rainfall areas is de-
pendent on the water storage capacity of
soils which is determined by clay content.
Clay content in the B-horizon is  the main
water storage layer of soil, and some corre-
lation between the occurrence of perenni-
als  and soils  with a  higher water  storage
capacity  is  expected  in  a  predominantly
low rainfall region such as South Africa, re-
sulting in the B-horizon being more signifi-
cant  in  the  survival  of  evergreen  trees.
Collinearity  between  these  four  chosen
variables was minimal. The analysis of vari-
ance (Tab. 3,  Tab. 4) applied to the abun-
dance  of  the  respective  species  as  re-
sponse variable serves as confirmation of
the viability of the selected environmental
variables and their respective levels to be
applied in a stratification and the resulting
categories  to  reduce  variation  and distin-
guish between IAP abundance levels (Fig.
4).

Data availability  and detail  differs at  na-

tional, continental and global levels. Some
data  sets,  such  as  digital  surface  models
and climate data that were also used in this
study,  are easily  accessible  at  continental
and global scales. Detailed data sets such
as soil information are not available at con-
tinental and global scales because data ac-
quisition standards differ largely between
countries. Since decision making is typically
conducted at the political entity of the na-
tional or regional scale, the use of national
and regional data is an advantage since the
level of inventory matches the level of deci-
sion  making  and  thus  makes  use  of  the
best available data set.  By identifying sig-
nificantly  contributing  factors  from  those
national  data  sources,  a  need for  a  stan-
dardised assessment of  those variables  is
highlighted to improve the inventory of in-
vasive  tree  species  also  at  larger  scales,
where  invasive  species  have  spread  be-
yond  national  borders.  Our  methodology
was  set  up  specifically  for  South  Africa,
however, with small modifications it can be
transferred to other countries.

Most studies carried out on IAPs in other
countries rely on listing species, describing
their  occurrence  in  a  geographic  context
and  sometimes  correlating  species  occur-
rence with further variables that can be de-
rived from remote sensing sources or from
ground borne data (Xu et al. 2012, Vinogra-
dova et al. 2018). Concise large scale stud-
ies  with  a  sound statistical  sampling that
enables an assessment not only of IAP oc-
currence  but  also  an  estimation of  abun-
dance remain the exception in applied IAP
inventories. Only a few studies undertake it
to  establish  a  statistically  sound  and  effi-
cient sampling system as a base of a repre-
sentative  inventory  of  invasive  trees.  An
example is the national forest inventory in
the  USA (Smith  2002).  However,  non-for-
ested areas which are the vast majority in
water limited countries such as South Afri-
ca, and might still host invasive trees, were
not part of  the inventory.  Statistically de-
rived habitat suitability models (HSMs) and
species  distribution  models  (SDMs)  have
been previously successfully applied to de-
velop sampling designs that enable an effi-
cient sampling of  IAPs of  large areas.  Ex-
amples  are  Lemke  &  Brown  (2012) and
Wang et al. (2014). Our approach is similar
in some ways since it is making use of envi-
ronmental variables that correlate with the
occurrence and abundance of  IAPs but  is
also distinct in other ways since it focused
on  an  optimisation  of  selecting  the  opti-
mum  spatial  resolution  for  the  stratifica-
tion and not only selecting the best set of
different influence variables. This provided
a  sound  base  for  choosing  the  best  IAP
sampling design for South Africa.

Conclusion
The study resulted in a stratified sampling

procedure as a base for an invasive tree in-
ventory at a national scale. Through detect-
ing and minimising the full  range of  envi-
ronmental  variability  within  the  defined
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population by means of grouping a contin-
uous  varying  landscape  into  discrete
classes  or  strata of  similar  variability,  the
sample variance was significantly reduced
and sampling efficiency was increased to a
level  where large scale  inventories are vi-
able. The objective of this study was to de-
termine  which  environmental  variables
most  effectively  summarize  invasive  tree
abundance variability  as  well  as  to deter-
mine the number of strata to be included in
such a stratification. These variables are to
be applied in a future national level stratifi-
cation by  demarcating habitat  types  con-
tributing  the  most  to  IAP  occurrence  in
South Africa. This will ensure that all differ-
ent habitat types are sufficiently included
in a national level survey, as well as an opti-
mized  sample  point  allocation.  It  was
shown that ideally not more than 81 unique
strata should be created to obtain a stratifi-
cation  that  does  not  deviate  significantly
from  a  statistically  desirable  full  rank  de-
sign.  The number  of  variables  included is
obviously related to their levels and in this
case  it  was  shown  that  four  variables  at
three different levels each can be used. Se-
lected variables were identified based on a
combination  of  correlation  with  species,
replication across  species  as  well  as  geo-
graphic  space,  and  finally  explained  by
means of biological reasoning. These vari-
ables included average rainfall, soil depth,
clay content in the B-horizon and a form of
landscape position such as terrain morpho-
logical units.
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