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In order to consider forest biomass as a real alternative for energy production,
it is critical to obtain accurate estimates of its availability using non-destruc-
tive sampling methods. In this study, we estimate the biomass available in a
Scots pine-dominated forest (Pinus sylvestris L.) located in Spain. The biomass
estimates were obtained using LiDAR data combined with a multispectral cam-
era and allometric equations. The method used to fuse the data was based on
back projection, which assures a perfect match between both datasets. The
results present estimates for each of the seven different biomass components:
above  ground,  below  ground,  log,  needles,  and  large,  medium  and  small
branches. The accuracy of the models varied between R2 values of 0.46 and
0.67 with RMSE% ranging from 15.72% to 35.43% with all component estimates
below 20%, except  for  the model  estimating  biomass of big  branches.  The
models in this study are suitable for the estimation of biomass and demon-
strate that computation is possible at a fine scale for the different biomass
components. These remote sensing methods are sufficiently accurate to de-
velop biomass resource cartography for multiple energy uses.

Keywords:  Biomass Components,  Forest  Inventory,  Airborne Laser Scanning,
Multispectral Imagery, Data Fusion, Nearest Neighbor

Introduction
Forest biomass is a substantial source of

renewable  energy,  and  it  is  becoming in-
creasingly  important  for  environmental
and  economic  reasons  (Straub  &  Koch
2011).  Studies  have  addressed  various  as-
pects of the use of forest residue biomass
for energy production and the associated
carbon emissions and sequestration (Her-
nando  et  al.  2012,  Anderson  &  Mitchell
2016). Recent studies have shown that Eu-
ropean Union countries underuse their cur-
rent  potential  forest  biomass  production,
and  those  resources  are  unevenly  har-
vested across Europe (Verkerk et al. 2015).
The use of forest biomass requires a higher
mobilization  of  existing  resources,  using
different  forest  components  obtained
from  efficient  and  sustainable  manage-
ment (Straub & Koch 2011, Heiskanen et al.

2017). These forest components (branches,
treetops,  needles  and  even  stumps  and
roots) are generated through forest man-
agement,  and  they  are  not  usually  re-
moved  from  the  stand  because  of  their
small diameters.

Many  forest  inventories  currently  focus
mainly on timber volume for forest indus-
tries and they usually lack the quality char-
acteristics  demanded  by  regional  man-
agers  and  renewable  biomass  energy  in-
dustry (Riaño et al. 2004, García et al. 2010,
Hauglin et al. 2013). Some of those charac-
teristics are the stock of detailed tree bio-
mass components and the spatial location
of these resources at finer scales (Montero
et al. 2005, Mauro et al. 2016). In this sense,
the  contributions  of  remote  sensing  esti-
mates are becoming a valuable tool (Her-
nando  et  al.  2012,  Anderson  &  Mitchell

2016)  to  produce  accurate  and  cost-com-
petitive  estimates  at  the  landscape  level
(Zolkos  et  al.  2013).  However,  there  are
some limitations  for  certain  remote  sens-
ing techniques, such as satellite-borne opti-
cal  sensors  or  synthetic  aperture  radar,
that have shown signal saturation in forest
environments with very high biomass den-
sity (Cohen & Spies 1992). The use of LiDAR
sensors on-board airplanes,  known as air-
borne laser scanning, has proved to be the
best  option  for  biomass  accounting,  ap-
plied  separately  or  in  combination  with
other active or  passive sensors (Bright  et
al. 2012, Zolkos et al. 2013). Previous studies
have shown the reliability of LiDAR to ob-
tain  estimates  of  above-ground  biomass
(Patenaude et al. 2004), below-ground bio-
mass  (Naesset  2004,  Kristensen  et  al.
2015),  and  of  other  biomass  components
(Riaño  et  al.  2004,  García  et  al.  2010,
Hauglin et al. 2013). Additional studies have
also investigated techniques for fusion of
images  from  airborne  or  satellite-borne
multispectral (MS) sensors for the purpose
of  biomass  assessment  (Popescu  et  al.
2004).

Forest  inventories  lack  information  on
tree biomass components and the precise
spatial location of these resources at finer
scales (Gómez et  al.  2010).  Current  meth-
ods  of  spatial  biomass  assessment  based
on national forest inventories present limi-
tations such as the lack of accuracy for effi-
cient  spatial  planning,  among  others  (Pa-
nichelli & Gnansounou 2008). Many predic-
tions of forest-based biomass have there-
fore been restricted to a regional scale, or
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have  been  spatially  interpolated  (López-
Rodríguez et al.  2009). Furthermore, thin-
ning and other partial treatments are wide-
ly used to reduce fire risk, remove non-na-
tive and invasive species, and restore for-
ests to historic reference conditions, often
at  high  net  cost  (Anderson  &  Mitchell
2016). In most cases, this forest waste gen-
erated by thinning and clearing is not used
for any purpose, because it is not included
in current inventories.

In  the  present  study,  we  introduce  a
novel  framework  for  predicting  biomass
based on the combination of  airborne Li-
DAR and multispectral cameras,  using ad-
vanced  techniques  of  sensor  fusion  and
non-parametric  imputation  (Brosofske  et
al.  2014,  Chirici  et  al.  2016)  that  minimize
noise and loss of information.

Material and methods

Study area and field information
The studied area (Fig. 1) was a Scots pine-

dominated (Pinus sylvestris L.) forest in Val-
saín (Spain; approx. coordinates: 41° 44′ N,
04° 39′ W; elevation 1300-1500 m a.s.l.). The
ground  data  included  37  plots;  each  plot
entailed two concentric circles with radii of

10 m and 20 m, respectively (Valbuena et
al. 2013). In the inner circle, all trees were
measured,  including  seedlings  and  sap-
lings, whereas in the outer circle only trees
with  diameter  at  breast  height  (dbh,  cm)
over 10 cm were measured. Corroborating
within-plot homogeneity in the field, infor-
mation sampled within the inner plot was
expanded to the outer plot (Valbuena et al.
2013).  Tree  top  height  (h,  m)  was  deter-
mined  with  a  Vertex  III  Hypsometer  (Ha-
glof,  Sweden).  Plot  centers  were  staked
out using a HiPer-Pro® (Topcon, California)
receiver set at 1-2 m above the ground for
differentially-corrected  global  navigation
satellite  systems  (GNSS)  positioning  (Val-
buena et al.  2010). Mean stand density (±
standard deviation) of the study area was
732.3 ± 559.2 stems ha-1,  mean basal  area
was 41.8 ± 11.2 m2 ha-1 and mean standing
volume was 390.7 ± 258.6 m3 ha-1. Locally-
adjusted tree allometry  specific  for  P.  syl-
vestris was  employed  to  derive  the  dry-
weight biomass components (Montero et
al.  2005). Equations were used for above-
ground  biomass  (agb,  kg),  root  biomass
(below-ground  biomass:  bgb,  kg),  log
biomass (lb, kg), needle biomass (nb, kg),
and branch biomass (bb) with diameter Ø >

7 cm (big-branch biomass: bbb, kg), 2 > Ø >
7  cm  (medium-branch  biomass:  mbb,  kg)
and Ø < 2 cm (small-branch biomass:  sbb,
kg), following (eqn. 1-7):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The forest stand attributes and character-
istics  were  calculated by  aggregating the
tree-level biomass estimates (in lower-case
letters,  kg)  into  per-hectare  totals  at  the
plot-level  (capital  letters,  Mg  ha-1).  The
biomass components were organized into
three  hierarchical  groups:  the  first  group
showed  components  of  total  biomass,
above-ground biomass (AGB, Mg ha-1) and
below-ground biomass (BGB, Mg ha-1), ob-
tained as aggregations of the values calcu-
lated with eqn. 1 and eqn. 2, respectively.
The second group disaggregated  AGB into
several components: log biomass (LB, Mg
ha-1),  needle  biomass  (NB,  Mg  ha-1)  and
branch  biomass  (BB,  Mg  ha-1).  LB and  NB
were obtained using eqn. 3 and eqn. 4, re-
spectively,  whereas  BB was  calculated  as
aggregation of  eqn.  5,  eqn.6,  and eqn.  7
separated  into  components,  namely:  big
(bBB, Mg ha-1), medium (mBB, Mg ha-1) and
small  (sBB,  Mg ha-1)  branch  biomass.  Bio-
mass  components  of  the  study  area,  de-
rived from the sample plots,  are given in
Tab. 1.

Remote sensing datasets and back-
projecting sensor fusion

Active  LiDAR  and  passive  MS  sensors
were  installed  together  on  a  gyro-stabi-
lized platform on-board a 404-Titan™ (Cess-
na, Kansas, USA) with double photogram-
metric window, in-flight GNSS and inertial
navigation  systems  (INS).  These  provided
the position and attitude of  each sensor,
which were used as external orientation in
the sensor fusion procedure (Valbuena et
al.  2011)  as  described  below.  The  LiDAR
sensor consisted of an airborne laser scan-
ner  ALS50-II® (Leica  Geosystems,  Switzer-
land) operating at a pulse frequency of 55
kHz. A maximum of four separate discrete
returns  were  obtained  from  an  approxi-
mate pulse footprint diameter of 0.5 m at
nadir (Baltsavias 1999). The flight took an
approximate height of 1500 m and ground
speed of 72 m s-1. These flight parameters
yielded a nominal average pulse density of
1.15 pulses m-2 (Baltsavias 1999). An approx-
imate total area of 800 ha was covered by
four scan lines with a swath width of 665 m
and a 40% side lap. Returns were classified
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Fig. 1 - Study area location (red rectangular frame) and field plot distribution (black
dots).

Tab. 1 - Summary of field plot reference data (Mean; Standard deviation, SD; Maxi-
mum,  Max;  Minimum,  Min;  Coefficient  of  Variation,  CV)  of  the different  observed
biomass components.

Components in Mg ha-1 Mean SD Max Min CV

Above-ground biomass (AGB) 211.313 58.140 318.798 106.474 0.275

Below-ground biomass (BGB) 61.140 18.426 94.528 27.623 0.301

Log biomass (LB) 175.830 54.707 274.803 76.653 0.311

Needle biomass (NB) 10.544 2.885 17.212 4.615 0.274

Big-branch biomass (bBB) 8.959 4.561 19.761 1.416 0.509

Medium-branch biomass (mBB) 18.763 4.630 27.878 9.286 0.247

Small-branch biomass (sBB) 13.977 3.824 22.816 6.118 0.274
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sbb=0.14323⋅dbh1.51001

mbb=0.02036⋅dbh2.1408

bbb=3.6999⋅10−7
⋅dbh4.80367

nb=0.108085⋅dbh1.50099

lb=0.0232141⋅dbh2.70808

bgb=0.01089⋅dbh2.62841

agb=0.08439⋅dbh2.41194
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as ground using a lowest elevation of 2 m
and threshold angle of 12-75° in Terrascan®

(Terrasolid, Finland). Ground returns were
interpolated  into  a  digital  terrain  model
(DTM) at a spatial resolution of 1 m. Based
on  ground  surveying  quality  control,  its
precision was calculated to be approxima-
tely  15  cm.  The  DTM  values  were  sub-
tracted from each individual return, obtain-
ing their heights above ground (H, m).

The MS sensor consisted of a digital map-
ping camera (DMC®, Zeiss-Intergraph, Ger-
many)  system  composed  of  four  charge-
coupled  device  (CCD)  heads  preceded  by
filters  providing  selective  sensitivity  for
red,  green,  blue  and  near-infrared  (NIR).
These were the original bands of narrower
spectral resolution and coarser spatial res-
olution (in comparison with the radiomet-
ric information registered by the panchro-
matic  lens  system)  which  was  dismissed
from this study in order to maintain the in-
tegrity  of  the irradiance recorded for  the
narrow  bands.  Digital  numbers  obtained
with  a  12-bit  radiometric  resolution  from
the spectral  bands for  red and NIR were
employed  to  obtain  (non-orthorectified)
images  containing  NDVI values  calculated
at pixel-level.

These  images  had  an  approximate
ground sampling distance of 60 cm, as can
be  deduced  from  the  given  flight  height
and the focal length of f = 30 mm of these
MS heads. The lenses of the matricial array
frame of the described DMC system, how-
ever,  direct  the  light  to  a  matrix  of  CCD
sensors  with  a  central  projection.  Due to
this  perspective,  equal  segments  within
the  NDVI image  represent  different  dis-
tances on the ground, depending whether
they are at nadir or close to the edge of the
image.  As  an  airborne  sensor,  while  the
low flying altitude yielded high spatial reso-
lutions, it also presented the shortcoming
that  anisotropy  and  within-picture  scale
differences  according  to  nadir  angles  are
larger  than  when  using  a  satellite-borne
sensor.  For  these  reasons,  we  chose  to
fuse sensor data using a projection proce-
dure,  since  this  assured  the  correspon-
dence between the H and NDVI information
(Valbuena et al. 2011). The procedure con-
sisted of projecting each first return from
the  LiDAR  dataset  into  the  most  nadiral
NDVI  image available,  retrieving the  NDVI
value of the pixel at that position, which ef-
fectively resulted in an NDVI-colored LiDAR
point cloud. In order to model the central
perspective of  the MS sensor and render
the  positions  of  LiDAR  returns  on  the
ground onto the location of the CCD frame
at the time of exposure, the three-dimen-
sional  geo-coordinates  of  each  LiDAR  re-
turn (X, Y, Z; m) were projected into two-di-
mensional photo-coordinates (Xph, Yph; mm)
according to the collinearity equations:

(8)

(9)

where the center of  the  NDVI image was
given by the principal point (Xpp,  Ypp; mm)
obtained, and the position of the plane at
the  time of  exposure  (Xo,  Yo,  Zo;  m)  was
given by the GNSS position of the platform
obtained  in-flight.  Likewise,  the  INS  pro-
vided  information  on  the  attitude  of  the
CCD frame axes with respect to the coordi-
nate system used as the plane’s roll, pitch
and yaw (ω, φ, κ; rad), i.e., rotation angles
around along-track, across-track and verti-
cal  axes  from  the  sensor’s  platform,  re-
spectively.  These  angle  parameters  were
used to define the rotation matrix  M3G3 =
(m11, …, m33) that was applied to eqn. 8 and
eqn. 9. The resulting root mean square er-
ror in co-registration of  the LIDAR-MS fu-
sion product was 0.54 m, therefore mainly
dependent on the spatial resolution of the
MS image (Valbuena et al. 2011).

Predictor computation and most similar
neighbor imputation

The  colored  ALS  returns  backscattered
from  the  measured  field  plots  were  ex-
tracted,  in  order  to  calculate  area-based
predictor variables from them (Manzanera
et al. 2016) using FUSION software (USDA
Forest Service – McGaughey 2012). In addi-
tion to the traditional H metrics describing
the  distribution  of  ALS  heights  (Naesset
2002,  Maltamo et al. 2014), we also calcu-
lated  descriptors  for  the  distribution  of
NDVI values, therefore obtaining NDVI met-
rics (henceforth indicated as either Hxxx or
NDVI.xxx,  where  xxx refers to each given
metric). All of these metrics were used as a
matrix of predictors including both  H and
NDVI metrics  (XH+NDVI – Manzanera  et  al.
2016) for the MSN (Most Similar Neighbor)
estimation  (Moeur  &  Stage  1995)  of  the
biomass  components  Y =  (AGB,  BGB,  LB,
NB, BB, bBB, mBB, sBB).  These were done
using the package “yaImpute” (Crookston
& Finley 2008) for k-NN imputation in the R
statistical environment (R Core Team 2011),
which  has  already  been demonstrated to
be useful in predicting forest variables us-
ing LiDAR data (Chirici et al. 2016) and mul-
tispectral data (Mura et al. 2018). The fea-
ture space X was modified into projections
obtained from a canonical correlation anal-
ysis (CCA), which compressed the original
multidimensionality into a few components
which  maximized  cov(X,Y).  Hence,  these
components  were  linear  combinations  of
the response (U) and predictors (V):

(10)

(11)

where  α and  γ were the canonical coeffi-
cients  of  Y and  X,  respectively.  Twenty
combinations of both  H and  NDVI metrics
were  selected  based  on  the  CCA  results

(Manzanera  et  al.  2016)  and  hypothesis
tests  (Valbuena  et  al.  2016),  eliminating
those that induced collinearity and redun-
dancy and keeping those providing higher
proportions  of  explained  variance.  The
MSN procedure then computed a matrix of
distances  among all  the field plots in the
modified feature space  V.  Setting a value
of k = 3 neighbors, on the basis of previous
experience (Valbuena et al. 2014), the near-
est  neighbors  were  searched  among  the
remaining of the plots under the criterion
of the shortest distances in V. MSN estima-
tion for each plot was finally done by im-
puting an inverse-distance weighted aver-
age of the values of  Y for its most similar
neighbors.

Accuracy assessment
Estimates  of  biomass  components  were

evaluated by means of leave-one-out cross-
validation,  so  that  each  field  plot  (i)  was
eliminated from the dataset prior to model
training for its own prediction. A predicted
value of Y (prei) was then obtained for that
plot,  which  was  compared  to  the  value
measured in the field (observed,  obsi). We
evaluated the estimation of forest biomass
components by means of the bias and pre-
cision of the mean of predictions, respec-
tively considered as the absolute and rela-
tive (in relation to the empirical mean, obs)
difference of means (bias) and root mean
squared differences (RMSD):

(12)

(13)

(14)

(15)

Also, with the aim of determining an indi-
cator of the degree of agreement between
the cross-validated predictions and the ob-
served  values,  we  calculated  their  coeffi-
cient  of  determination  (R2)  and  index  of
agreement (d) as:

 (16)

(17)

The coefficient of determination was re-
ported since it is the most customarily em-
ployed  statistic,  although  the  index  of
agreement has been suggested as a more
correct  means  to  compare  predicted  vs.
observed values (Willmott 1982). The cross-
validated  predictions  also  underwent  hy-
pothesis tests based on their regression to
the  observed  values  (Pineiro  et  al.  2008)
and a measure of over-fitting (Valbuena et
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X pp−X p h

f
=

m11 (X−X 0)+m12(Y−Y 0)+m13(Z−H 0)
m31 (X−X 0)+m32(Y−Y 0)+m33(Z−H 0)

Y pp−Y ph
f

=

m21(X−X 0)+m22 (Y−Y 0)+m23 (Z−H 0 )
m31(X−X 0)+m32 (Y−Y 0)+m33 (Z−H 0)

U=α⋅Y

V=γ⋅X

bias=pre−obs

bias%=100⋅
bias
obs

RMSD=√∑i=1
n

( prei−obsi)
2

(n−1)

RMSD%=100⋅
RMSD
obs

R 2=1−
∑i=1

n
( pre i−obsi )

2

∑i=1

n
(obsi−obs)

2

d=1−
∑
i=1

n

( prei−obsi)
2

∑
i=1

n

[( prei−obs)−(obsi−obs )]
2
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al.  2016),  so  that  whenever  these  tests
failed the model was rejected and the ini-
tial selection of predictors was further con-
strained (Valbuena et al. 2016).

Results

Above- and below-ground biomass
The hypothesis tests applied to the 1:1 fit

of  observed  vs. predicted  plots  corre-
sponding to above and below-ground bio-
mass  models  were  successful,  obtaining
unbiased predictions (obs = 39.9 + 0.822  ·
pre, and:  obs =  8.88 + 0.844  ·  pre, respec-
tively – Fig. 2). The relative precision of the
AGB  and  BGB  estimates  (RMSD%)  ranged
from 16.72% to 18.44% respectively and the
absolute precision of the estimates (RMSD)
from 35.340 Mg ha-1 for above-ground bio-
mass  to  11.276  Mg  ha-1 for  below-ground
biomass (Tab. 2). They reached an index of
agreement (d) of 81.9% and 81.1% between
observed  and  predicted,  with  64.3%  and
62.9%  of  explained  variance  (R2),  respec-
tively (Tab. 2).

Components of above-ground biomass
The hypothesis tests applied to the 1:1 fit
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Tab. 2 - Summary diagnosis (bias, Mg ha-1; percentage of bias, %; root mean square dif-
ference, RMSD, Mg ha-1; percentage of RMSD, %; coefficient of determination, R2; index
of agreement,  d) of most similar neighbor (MSN) predictions for above and below-
ground fractions of total biomass.

Biomass components
bias

(Mg ha-1)
bias%

(%)
RMSD

(Mg ha-1)
RMSD%

(%) R2 d

Above-ground biomass
(AGB) -1.247 -2.635 35.34 16.724 0.643 0.819

Below-ground biomass
(BGB)

0.803 1.313 11.276 18.443 0.629 0.811

Tab. 3 - Summary diagnosis (bias, Mg ha-1; percentage of bias, %; root mean square dif-
ference, RMSD, Mg ha-1; percentage of RMSD, %; coefficient of determination, R2; index
of agreement, d) of most similar neighbor (MSN) predictions for separate fractions of
above-ground biomass: log, needle and branch biomass.

Biomass components
bias

(Mg ha-1)
bias%

(%)
RMSD

(Mg ha-1)
RMSD%

(%) R2 d

Log biomass
(LB) 4.683 2.664 32.599 18.54 0.668 0.843

Needle biomass
(NB)

0.198 1.882 2.108 19.99 0.493 0.725

Branch biomass
(BB) 0.654 1.708 6.967 18.205 0.462 0.736
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(cross-validated) values of 
above and below-ground 
biomass. The solid diagonal 
represents the 1:1 correspon-
dence. Dashed line is the linear 
regression fit for prei = α + β · 
obsi, expressed in the upper 
left corner.

Fig. 3 - Observed vs. predicted (cross-validated) values for separate components of above-ground biomass: log, needle and branch
biomass.  The solid diagonal  represents  the 1:1  correspondence.  Dashed line is  the linear  regression fit  for  prei =  α +  β  ·  obsi,
expressed in the upper left corner.
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of  observed  vs. predicted  plots  corre-
sponding to models for the separate com-
ponents of the AGB predicting the biomass
accumulated at the log, branch and needle
levels,  respectively  LB,  BB and  NB also
passed successfully, showing unbiased pre-
dictions (obs = 28.5 + 0.816 · pre; obs = 2.39
+ 0.759 ·  pre; and  obs = 5.41 + 0.844 ·  pre,
respectively  – Fig. 3). These models had a
RMSD% ranging between 18.21% and 19.99%
(Tab.  3).  They  reached  a  d ranging  from
84.3% to 72.5% between observed and pre-
dicted, with 46.2% and 66.8% of explained
variance.  The  highest  R2 values  corre-
sponded with the log biomass model and
the  lower  with  the  model  predicting  bio-
mass content for branches.

Different-sized components of branch 
biomass

The hypothesis tests applied to the 1: 1 fit
of  observed  vs. predicted  plots  corre-
sponding to models predicting biomass for
the  different  branch  sizes  (big,  medium
and  small)  also  showed  unbiased  predic-
tions (obs = 2.61 + 0.738 ·  pre;  obs = 3.75 +
0.792 ·  pre; and obs = 3.17 + 0.759 ·  pre, re-
spectively  – Fig.  4).  The model  predicting
biomass in big branches (bBB) had the big-
gest relative error 35.43% (Tab. 4). It is also
worth  to  mention  that  in  the  particular
case of the MSN estimation of biomass in
big branches, bBB, the CCA-based preselec-
tion  of  variables  with  hypothesis  test  re-
striction  showed  no  explanatory  capacity
for  any of  the  NDVI metrics  included.  Re-
garding the other two branch size models:
medium and small  branches,  their  RMSD%
ranged 15.72-19.99% and the index of agree-
ment  reached  81.4%,  and  the  model  pre-
dicting biomass for medium branches had
the highest R2.

Discussion
The  present  study  assessed  forest  bio-

mass components using a remote sensing
technique  that  combines  LiDAR  metrics
with NDVI computed from a multispectral
camera, complementing previous research

on  the  estimation  of  forest  biomass
through  the  fusion  of  active  and  passive
sensors  (Ediriweera  et  al.  2014).  The  bio-
mass  assessment  was  carried  out  sepa-
rately for the different forest biomass com-
ponents in order to provide detailed infor-
mation  useful  for  bioenergy  production
purposes.  The results  were generated us-
ing allometric equations developed for the
region  and  targeted  at  different  species
(Montero et al. 2005).

The added value of the results presented
in  this  study  lies  in  the  improvements
achieved in comparison to previous studies
using similar or alternative methodologies.
Previous biomass studies using airborne Li-
DAR have used indirect calculations by ex-
tracting the forest variable values from Li-
DAR data and then using them as an input
in the biomass allometric equations (Kota-
maa et al. 2010). Other studies have calcu-
lated biomass directly from LiDAR data but
focusing  only  on  above  ground  biomass
(Naesset  2004,  García  et  al.  2010)  or  on
some of the components to estimate their
contribution  to  carbon  stocks  (Monteale-
gre-Gracia  et  al.  2017),  but  not  for  the
whole  tree  with  roots  included.  There  is
also an added value for the combination of
LiDAR  data  with  multispectral  sensors
(Straub & Koch 2011), and in particular for

the  data  fusion  improvements  imple-
mented in this study (Valbuena et al. 2011),
and the feasibility of the estimation meth-
od for the assessment of  forest variables
(Moeur  &  Stage  1995,  Packalén  et  al.
2009).

The assessment of separate components
of  above-ground  biomass  provides  forest
managers  with  greater  flexibility  in  deci-
sion-making, since not all the components
are considered for the same purpose, de-
pending on wood quality and market prices
(Solberg et al.  2014). Logs are usually the
main  product,  and  other  parts  like  small
branches  and  treetops  are  left  on  the
ground  for  environmental  reasons,  but
they can also be used for energy purposes,
providing an added value (Asikainen et al.
2008).  The  estimation  of  all  the  above
ground  biomass  components  is  therefore
fundamental to correctly assess the energy
potential of a certain area or region (Verk-
erk et al. 2011). On the other hand, foliage
should not be included as biomass for en-
ergy, due to the ecologic role it plays in the
nutrient cycle (Straub & Koch 2011). The re-
sults  obtained  in  this  study  showed  that
these remote sensing methods have great
potential  for  reliably  estimating  below-
ground  biomass,  and  not  only  above-
ground biomass. Their estimation is there-

iForest 12: 207-213 211

Tab. 4 - Summary diagnosis (bias, Mg ha-1; percentage of bias, %; root mean square dif-
ference, RMSD, Mg ha-1; percentage of RMSD, %; coefficient of determination, R2; index
of agreement, d) of most similar neighbor (MSN) predictions for branch biomass frac-
tions separated by size.  Biomass in branches with diameter  >  7  cm (big branches,
bBB),  2  >  diameter  >  7  cm  (medium  branches,  mBB)  and  diameter  <  2  cm  (small
branches, sBB).

Biomass components bias
(Mg ha-1)

bias%
(%)

RMSD
(Mg ha-1)

RMSD%
(%)

R2 d

Big-branch biomass
(bBB)

-0.158 -1.768 3.174 35.432 0.545 0.701

Medium-branch biomass
(mBB) 0.180 0.958 2.950 15.721 0.617 0.814

Small-branch biomass
(sBB)

0.263 1.882 2.794 19.988 0.493 0.725
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Fig. 4 - Observed vs. predicted (cross-validated) values of components of branch biomass separated by size. The solid diagonal rep-
resents the 1:1 correspondence. Dashed line is the linear regression fit for prei = α + β · obsi, expressed in the upper left corner.
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fore more practical for ecological purposes
(Montealegre-Gracia  et  al.  2017).  Though
the accuracy of our models was not as high
as in other studies (García et al. 2010), we
can still  conclude that LiDAR is a suitable
tool to assess branch biomass, and branch
biomass  is  better  assessed  from  the  air
than from field measurements (Hauglin et
al. 2013). In the case of below-ground bio-
mass  components,  these  presented  a
higher  predictive  power  taking  into  ac-
count that this component is retrieved by
surrogating relations, and there is no direct
relation  with  LiDAR  returns  or  with  the
multispectral camera.

Previous  studies  have  included  treetop
estimates as a part of the big-branch bio-
mass estimates (Jenkins et al. 2003). In this
study, it was not possible to consider this
fact as a separate component due to the
lack of available allometric equations con-
sidering tree tops as a separate part of the
branches or stem. Treetops are a common
logging waste, often used for energy pur-
poses, and although they represent a small
percentage of the trees biomass, they can
result  in  an  average  annual  potential  ca.
0.27  million  m3 of  biomass  for  energy.  It
would  therefore be interesting to devote
further studies to the development of spe-
cific allometric  equations for this biomass
component in particular. Although the use
of allometric equations as reference values
present  limitations,  they  are  considered
the most available source for ground data,
since  it  would  be unfeasible  to  apply  de-
structive sampling in every separate study
(Hauglin et al. 2013). It would also be inter-
esting to apply the same methodology in
other forest  stands with different charac-
teristics  (species  and  ages)  to  develop  a
sensitive  analysis  observing  how  the
biomass  estimation  changes  under  other
conditions.

Estimates of available biomass resources
should  be  accurate,  especially  when  re-
lated to management decisions and plan-
ning of biomass supply (for new or existing
energy plants),  and previous studies have
recommended a threshold of 20% require-
ment for  RMSE% when estimating biomass
from LiDAR (Zolkos et al. 2013). Our results
fulfill  this  recommended  threshold  in  all
the  components  except  for  big-branch
biomass  (bBB).  A  general  comparison  of
our results with similar studies (García et al.
2010,  González-Olabarria  et  al.  2012)  de-
monstrates  higher  accuracy  in  our  ap-
proach: lower error, better R2 and better in-
dex  of  agreement.  These  improvements
are related to the combined use of LiDAR
and  multispectral  sensors  (Manzanera  et
al.  2016)  and the perfect  match between
both  datasets  achieved  by  the  back-pro-
jecting data fusion method (Valbuena et al.
2011).

Considering  these  sensor-fusion  tech-
niques (combination of airborne LiDAR and
multispectral camera) that minimize noise
and  loss  of  information,  we  recommend
that  future forest  inventories  include  for-

est  biomass  mapping  for  renewable  bio-
mass  energy (Heiskanen et  al.  2017).  Fur-
ther research could use this type of cartog-
raphy to optimize transportation, which is
the  most  expensive  operational  phase  in
this process (Kizha & Han 2016), and evalu-
ate derived trade-offs accounting for trans-
portation costs as well (Gómez et al. 2010).

Conclusions
From our  results,  we can conclude that

the combination of LiDAR and NDVI from a
multispectral camera is a valid approach to
estimate the different forest biomass com-
ponents. The combined use of adequate al-
lometric  equations,  back-projection  data
fusion and Most Similar Neighbor methods
provided an estimate using the latest  ad-
vances  in  the  state-of-the-art  of  multi-
source  assessment  of  biomass  for  bioen-
ergy purposes. The methods adopted here
represent a useful tool for applications of
forest biomass availability and spatial distri-
bution where more detailed information of
the  different  components  is  required.  It
also  demonstrates  that  computation  can
be done at  a  fine scale,  for  the  different
forest biomass components, and that it is
sufficiently  accurate  to  develop  cartogra-
phy for bioenergy resources management.
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