iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Supplementary Material

Fig. S1 - Repeatability of the detection limit of the three Real-Time PCR assays. Experiments were performed by two different operators. Detection limit refers to the lowest quantity of *Ceratocystis platani* gDNA that is detected per PCR reaction (i.e. in-mycelium DQP-ASe). gDNA extracted from a pure culture directly grown on PDA. Each bar represents the mean of eight values. Letters indicate homogeneous groups (99.0% confidence level). Numbers indicate the independent statistical analyses. Vertical lines indicate standard error of the mean.

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Fig. S2 - Further validation for using the cycling protocol in conventional PCR. Agarose gel analysis of Real-Time PCR amplicons obtained from reactions charged with different volumes of wood extracts obtained from *Ceratocystis platani* naturally-infected trees. Amplicons are compared with a GeneRuler 50 bp DNA ladder (Thermo Fisher Scientific). We marked the 100 bp molecule with a white line where it was too faint to be visualized.

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Fig. S3 - The validation and implementation of Real-Time PCR carried out in this work.

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Fig. S3 (continued) - The validation and implementation of Real-Time PCR carried out in this work.

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Appendix 1 - Details on methods of Real-Time PCR for detection of *Ceratocystis platani*. DNA extraction, primer and probe sequences, reaction composition, thermal cycling conditions, fluorescence capture features, and cloning the PCR target into a plasmid.

Nucleic acid extraction and quantification

Regarding DNA extraction from pure fungal cultures, mycelium (100 mg) was collected with a sterile pipette tip by scraping from an actively growing culture directly cultured on the surface of a PDA medium (agar modality) or on sterile cellophane discs layered on PDA surface (cellophane modality).

The extraction from wood, either healthy or *C. platani*-infected, started from a 100 mg aliquot. Fungal and wood tissue aliquots were grinded to powder with liquid nitrogen using an autoclaved pestle and mortar and DNA was extracted using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) following the manufacturer's instructions.

DNA was quantified using a Thermo Scientific NanoDrop[™] 1000 Spectrophotometer.

Molecular target of the Real-Time PCR

Internal Transcribed Spacer 1 region (ITS1).

Amplicon location: from position 89 to 183 of the C. platani reference sequence DQ399853.

Expected size of the amplicon: 95bp (including primer sequences).

Primers and probe

Forward primer: C.P.Sn.For.I 5'-CGTACCTATCTTGTAGTGAGATGAATGC-3' (from position 89 to 116 of the *C. platani* reference sequence DQ399853).

Reverse primer: C.P.Sn.Rev.I 5'-GAGTTTACAGTGGCGAGACTATACTG-3' (from position 158 to 183). Taqman probe: C.P.TM.Pr. 5'-CGGTGCCCTTCAGAAGGGCCCTACCACC-3', (from position 123 to 150). The probe was labeled with FAM (6- carboxy-fluorescein) at 5' end, and contained Black Hole Quencher[™] 1 (BHQ-1) at 3' end.

Supermixes (BIO-RAD)

SsoFastTM EvaGreen[®] Supermix (EvaGreen assay)

SsoAdvancedTM Universal Probes Supermix (Taqman assay)

SsoAdvanced[™] Universal SYBR[®] Green Supermix (SYBR Green assay)

All three supermixes contain dNTPs, antibody-mediated hot-start Sso7d-fusion polymerase, MgCl₂, and stabilizers). In addition a blend of passive reference dyes, including ROX and fluorescein, is contained in the supermix for use in Taqman assay.

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Reaction assembly

Reagent	Working concentration	Volume per reaction (µl)	Final concentration
Molecular grade water ¹	N.A.	to make up to 20	N.A.
Supermix	2 x	10	1x
Forward Primer (C.P.Sn.For.I)	10 µmol 1-1	1	0.5 μmol 1 ⁻¹
Reverse Primer (C.P.Sn.Rev.I)	10 µmol 1-1	1	0.5 µmol 1 ⁻¹
Probe 1 (C.P.TM.Pr.)	20 µmol 1-1	0.3	0.3 µmol 1 ⁻¹
Subtotal		variable	
Diluted DNA sample		It is possible up to a maximum of 8 or 7.7 (if the probe is used)	variable
Total		20	

¹ Molecular grade water should be preferably used or prepared purified (deionised or distilled), sterile (autoclaved or 0.45 μ m filtered) and nuclease-free.

Fluorescence capture

EvaGreen has a maximum absorbance at 500 nm and a maximum emission at 530 nm. SYBR Green has a maximum absorbance at 497 nm, with a secondary excitation peak near 254 nm. Maximum emission is at 520 nm. 6-FAM (6-carboxy-fluorescein) has a maximum absorbance at 495 nm and a maximum emission at 518 nm.

For all three fluorophores the dedicated excitation led in CFX 96 was channel 1 (450-490 nm) and the photobody detector was channel 1 (515-530nm).

Cloning

The complete ITS region of *C. platani* was amplified using ITS5/ITS4 primers. The PCR product was analyzed by agarose gel electrophoresis, excised from gel, eluted and cloned into pCR[®]2.1 plasmid (Invitrogen) and sequenced, as previously described (Pilotti et al. 2010)

References

Pilotti M, Tizzani L, Brunetti A, Gervasi F, Di Lernia G, Lumia V (2010). Molecular identification of *Fomitiporia mediterranea* on declining and decayed hazelnut. Journal of Plant Pathology 92: 115-129.

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Tab. S1 - Statistical analysis to compare the different groups of Ct values. The groups represent different experiments (repeatability), different operators (reproducibility), extraction modalities and extraction events, as well as the different Real-Time PCR assays. Null hypotheses were the normal distribution of data, the homogeneity of variances (homoscedasticity), the lack of statistically significant difference among mean/median of data group. Acceptance of null hypothesis was at P-value > 0.05. In the post-hoc analysis, acceptance of null hypothesis was at a P-value > 0.01. Results of post-hoc analyses are depicted in figures 2, 3, 5, 6 and S1. ¹ EG = EvaGreen, Tq = Taqman, SG = SYBR Green. ² The column indicates which group data have a normal or non-normal distribution (+ and - respectively) for each comparison.

Statistical comparisons ¹		Normality test (Shapiro-Wilk) ²	Levene omogeneity of variance p-value	Test statistic (Mean/median comparison)	Statistic value	P-value	Post-hoc test (pairwise comparison)
per 18	Operator A EG 15fg	2+, 1-	0.7394	Kruskal-Wallis	H = 7.099	0.02857	Mann-Whitney Bonferroni corrected
eriments ity roup witl	Operator A EG 3fg	3+	0.6741	ANOVA	F = 1.44	0,2584	Student-Newman-Keuls
hree exp (A quant 1, each g s)	Operator A Tq 15fg	3+	0.9646	ANOVA	F = 4.192	0.02939	Student-Newman-Keuls
d per DN mparison fication Fig. 2	Operator A Tq 3fg	2+, 1-	0.2288	Kruskal-Wallis	H = 4.999	0.08169	Mann-Whitney Bonferroni corrected
7, compai rator an ta per co re	Operator A SG 15fg	3+	3.634E-09	Welch	F = 15.23	0.0006169	Tukey
eatability opo group da	Operator A SG 3fg	3+	0.2307	ANOVA	F = 0.3028	0.7419	Student-Newman-Keuls
Rep	Operator B EG 15fg	3+	0.6708	ANOVA	F = 0.2024	0.8184	Student-Newman-Keuls

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Statistical comparisons ¹		Normality test (Shapiro-Wilk) ²	Levene omogeneity of variance p-value	Test statistic (Mean/median comparison)	Statistic value	P-value	Post-hoc test (pairwise comparison)
	Operator B EG 3fg	3+	0.1071	ANOVA	F = 0.5973	0.5594	Student-Newman-Keuls
	Operator B Tq 15fg	3+	0.5196	ANOVA	F = 0.8965	0.423	Student-Newman-Keuls
	Operator B Tq 3fg	3+	0.05973	ANOVA	F = 3.349	0.05464	Student-Newman-Keuls
	Operator B SG 15fg	2+, 1-	0.04136	Kruskal-Wallis	H = 6.045	0.04862	Mann-Whitney Bonferroni corrected
	Operator B SG 3fg	3+	0.5722	ANOVA	F = 0.1725	0.8427	Student-Newman-Keuls
y, rmer- each	EG 15fg	2+	0.007303	Welch	F = 4.887	0.03291	Tukey
oducibilit JR-perfo Id B parison, lications)	EG 3fg	2+	0.1576	ANOVA	F = 0.97	0.3298	Student-Newman-Keuls
tor repre tween PC ator A ar per com Fig. 3	Tq 15fg	2+	0.8316	ANOVA	F = 0.04117	0.8401	Student-Newman-Keuls
ter-opera trison be opera oup data group wit	Tq 3fg	1+, 1-	0.4054	Kruskal-Wallis	H = 0.5821	0.4452	Mann-Whitney Bonferroni corrected
int compa (2 gr	SG 15fg	1+, 1-	0.4458	Kruskal-Wallis	H = 2.894	0.08888	Mann-Whitney Bonferroni corrected

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Statistical comparisons ¹		Normality test (Shapiro-Wilk) ²	Levene omogeneity of variance p-value	Test statistic (Mean/median comparison)	Statistic value	P-value	Post-hoc test (pairwise comparison)
	SG 3fg	2+	0.366	ANOVA	F = 2.08	0.156	Student-Newman-Keuls
rison of hree ays ays tp data er arison, group h 48 ations) . 4a	EG vs Tq vs SG 15 fg	2+, 1-	0.00793	Friedman	Chi^2 = 83.344	6.6042-19 Asymptotic	Wilcoxon Bonferroni corrected
Compa the t ass ass (3 grou p p compa each with replict Fig	EG vs Tq vs SG 3 fg	3+	0.5966	ANOVA	F = 304.9	6.272E-52	Student-Newman-Keuls
with one ungal each	CP 25	3+	0.5025	ANOVA	F = 14.44	0,00011	Student-Newman-Keuls
e assays strains, c nd per fi parison, ications)	CP 33	3+	0.12	ANOVA	F = 60.42	1.948E-09	Student-Newman-Keuls
of the thre <i>C. platani</i> er assay a strain a per comj Fig. 4b	CP 1176	2+, 1-	0.01554	Friedman	Chi^2 = 14.25	6.1E-05 (exact)	Wilcoxon Bonferroni corrected
parison (littional (iment po oup dats group w	CP 11292	3+	0.1524	ANOVA	F = 93.58	3.468E-11	Student-Newman-Keuls
Com adt exper (3 gr	CP 11259	2+, 1-	0.8794	Kruskal-Wallis	H = 17.78	0.0001378	Mann-Whitney Bonferroni corrected

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Statistical comparisons ¹		Normality test (Shapiro-Wilk) ²	Levene omogeneity of variance p-value	Test statistic (Mean/median comparison)	Statistic value	P-value	Post-hoc test (pairwise comparison)
NA- ations)	Operator A agar 15 fg	3+	0.04837	Welch	F = 1.486	0.2643	Tukey
ts per D tity 8 replic	Operator A agar 3fg	2+, 1-	0.6387	Kruskal-Wallis	H = 3.571	0.1673	Mann-Whitney Bonferroni corrected
perimen AA quan up with	Operator C agar 15 fg	3+	0.3289	ANOVA	F = 0.4134	0.6667	Student-Newman-Keuls
three ex 1 per DN ach groi 6a	Operator C agar 3fg	3+	0.2583	ANOVA	F = 1.604	0.2247	Student-Newman-Keuls
rison of ator and arison, e Fig.	Operator A cellophane 15 fg	2+, 1-	0.5623	Kruskal-Wallis	H = 2.176	0.3364	Mann-Whitney Bonferroni corrected
, compai Tier-oper er comp	Operator A cellophane 3 fg	2+, 1-	0.5487	Kruskal-Wallis	H = 2.889	0.2353	Mann-Whitney Bonferroni corrected
eatability. purif	Operator C cellophane, 15 fg	3+	0.6519	ANOVA	F = 3.789	0.03935	Student-Newman-Keuls
Repo (3 grou	Operator C cellophane 3 fg	3+	0.1988	ANOVA	F = 0.1319	0.8771	Student-Newman-Keuls
tor lity, tween er- nd C nd C 24 24 s)	Agar A vs C 15 fg	2+	0.4865	ANOVA	F = 0.1376	0.7124	Student-Newman-Keuls
er-opera roducibil A-purifi ator A an oup data oup data parison, (Fig. 6b	Agar A vs C 3 fg	2+	0.4089	ANOVA	F = 0.2345	0.6305	Student-Newman-Keuls
Int repu DN DN 2 gr 2 gr 2 gr 2 gr 2 rej rej	Cellophane A vs C 15 fg	2+	0.9054	ANOVA	F = 1.928	0.1717	Student-Newman-Keuls

Lumia V, Modesti V, Brunetti A, Wilkinsons CL, Di Lernia G, Harrington TC, Pilotti M (2018).

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

	Cellophane A vs C 3 fg	1+, 1-	0.8446	Welch	F = 6.161	0.01679	Tukey
arison DNA DNA Ilities p data r a group t 148 t tions)	Agar vs Cell. 15 fg	2+	0.1042	ANOVA	F = 5.077	0.02658	Student-Newman-Keuls
Compe of the extra moda moda to ge compe each g vith vith replics Fig	Agar vs Cell. 3 fg	2+	0.6198	ANOVA	F = 12.47	0.000643	Student-Newman-Keuls
Repeatability, comparison of three experiments (3 group data each group with 8 replications) Fig. 8	Spiking experiments	3+	0.8191	ANOVA	F = 1.752	0.1979	Student-Newman-Keuls
Repeatability, comparison of the melting temperature of two DNA types, in EG [2 group data, each group with 20 replications (sum of 2 experiments)] see the text	gDNA vs pDNA	2-	0.3236	Kruskal-Wallis	H = 0.01829	0.8774	Mann-Whitney Bonferroni corrected
Repeatability, comparison of the melting temperature of two DNA types, in SG [2 group data, each group with 20 replications (sum of 2 experiments)] see the text	gDNA vs pDNA	2-	0.3867	Kruskal-Wallis	H = 0.08854	0.723	Mann-Whitney Bonferroni corrected
Comparison between the melting temperature of EG and SG assays (2 group data, each group with 40 replications) see the text	EG vs SG	2-	0.09582	Kruskal-Wallis	H = 59.26	1.658E-15	Mann-Whitney Bonferroni corrected

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Tab. S2 - Data groups used for the statistical analysis depicted in Tab. S1, in the figures 2, 3, 5, 6 and S1

and in the text.

Section 1 - Detection of 3 fg *Ceratocystis platani* gDNA. Repeatability: comparison among three experiment (Exp.) performed by Operator (Op) A and B. See Fig. S1. Inter-operator reproducibility. See Fig. 2. EvaGreen (EG) vs Taqman (Tq) vs SYBR Green (SG): See Fig. 3a. In bold (the third column of each dataset) mean, standard deviation and standard error of the replication series are reported.

EvaGreer	ı		Taqman			SYBR G	Freen	
I Exp.	35,16	35,66	I Exp.	34,02	34,31	I Exp.	34,2	33,10
I Exp.	35,95	0,51789	I Exp.	34,62	0,37133	I Exp.	32,71	0,78691
I Exp.	35,32	0,1831	I Exp.	34,39	0,13128	I Exp.	33,53	0,27821
I Exp.	36,45		I Exp.	34,13		I Exp.	32,53	
I Exp.	36,10		I Exp.	34,02		I Exp.	33,21	
I Exp.	35,76		I Exp.	34,06		I Exp.	31,66	
I Exp.	34,89		I Exp.	34,14		I Exp.	33,27	
I Exp.	35,64		I Exp.	35,07		I Exp.	33,69	
II Exp.	35,45	35,41	II Exp.	34,30	34,68	II Exp.	33,28	33,05
II Exp.	35,17	0,3854	II Exp.	34,62	0,40377	II Exp.	32,57	0,42725
II Exp.	35,11	0,13626	II Exp.	34,43	0,14275	II Exp.	33,46	0,15106
II Exp.	35,68		II Exp.	35,12		II Exp.	32,83	
II Exp.	35,51		II Exp.	35,18		II Exp.	33,01	
II Exp.	35,19		II Exp.	35,14		II Exp.	33,03	
II Exp.	36,17		II Exp.	34,21		II Exp.	32,49	
II Exp.	34,98		II Exp.	34,43		II Exp.	33,73	
III Exp.	35,48	35,79	III Exp.	35,25	34,76	III Exp.	32,7	32,88
III Exp.	36,00	0,43911	III Exp.	34,99	0,5468	III Exp.	32,7	0,4626
III Exp.	35,24	0,15525	III Exp.	35,34	0,19332	III Exp.	33,56	0,16355
III Exp.	35,63		III Exp.	35,36		III Exp.	33,12	
III Exp.	35,92		III Exp.	34,57		III Exp.	32,37	
III Exp.	35,60		III Exp.	34,39		III Exp.	32,22	
III Exp.	36,70		III Exp.	34,06		III Exp.	33,28	
III Exp.	35,70		III Exp.	34,10		III Exp.	33,12	

1. Repeatability, PCR-performer-operator A

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

EvaGree	en er s	•	Taqman			SYBR G	reen	
I Exp.	34,42	35,61	I Exp.	35,10	34,31	I Exp.	32,57	32,67
I Exp.	35,74	0,71393	I Exp.	33,65	0,70892	I Exp.	32,15	0,55904
I Exp.	34,88	0,25241	I Exp.	33,74	0,25064	I Exp.	32,23	0,19765
I Exp.	35,51		I Exp.	33,34		I Exp.	33,04	
I Exp.	36,47		I Exp.	34,61		I Exp.	33,29	
I Exp.	36,51		I Exp.	34,00		I Exp.	32,75	
I Exp.	35,78		I Exp.	34,81		I Exp.	33,43	
I Exp.	35,61		I Exp.	35,19		I Exp.	31,89	
II Exp.	35,31	35,96	II Exp.	34,59	35,01	II Exp.	33,62	32,77
II Exp.	36,01	0,39981	II Exp.	34,23	0,46479	II Exp.	32,35	0,58426
II Exp.	35,74	0,14135	II Exp.	35,35	0,16433	II Exp.	32,92	0,20657
II Exp.	36,67		II Exp.	35,76		II Exp.	33,23	
II Exp.	35,84		II Exp.	35,07		II Exp.	31,95	
II Exp.	35,84		II Exp.	35,01		II Exp.	32,32	
II Exp.	35,99		II Exp.	34,89		II Exp.	33,31	
II Exp.	36,28		II Exp.	35,19		II Exp.	32,47	
III Exp.	36,47	35,74	III Exp.	35,12	34,73	III Exp.	31,68	32,86
III Exp.	35,42	0,74634	III Exp.	34,78	0,42787	III Exp.	33,74	0,75661
III Exp.	36,72	0,26387	III Exp.	35,19	0,15128	III Exp.	32,26	0,2675
III Exp.	35,10		III Exp.	34,05		III Exp.	33,7	
III Exp.	34,78		III Exp.	34,62		III Exp.	32,8	
III Exp.	36,39		III Exp.	34,59		III Exp.	32,98	
III Exp.	35,06		III Exp.	34,27		III Exp.	33,46	
III Exp.	36,01		III Exp.	35,19		III Exp.	32,23	

2. Repeatability, PCR-performer-operator B

3. Inter-operator reproducibility

EvaGree	n		Taqman			SYBR	Green	
Op. A	35,16	35,62	Op. A	34,02	34,58	Op. A	34,2	33,01
Op. A	35,95	0,45943	Op. A	34,62	0,47253	Op. A	32,71	0,56397
Op. A	35,32	0,09378	Op. A	34,39	0,09646	Op. A	33,53	0,11512
Op. A	36,45		Op. A	34,13		Op. A	32,53	
Op. A	36,10		Op. A	34,02		Op. A	33,21	
Op. A	35,76		Op. A	34,06		Op. A	31,66	
Op. A	34,89		Op. A	34,14		Op. A	33,27	
Op. A	35,64		Op. A	35,07		Op. A	33,69	
Op. A	35,45		Op. A	34,30		Op. A	33,28	
Op. A	35,17		Op. A	34,62		Op. A	32,57	
Op. A	35,11		Op. A	34,43		Op. A	33,46	
Op. A	35,68		Op. A	35,12		Op. A	32,83	
Op. A	35,51		Op. A	35,18		Op. A	33,01	
Op. A	35,19		Op. A	35,14		Op. A	33,03	
Op. A	36,17		Op. A	34,21		Op. A	32,49	
Op. A	34,98		Op. A	34,43		Op. A	33,73	
Op. A	35,48		Op. A	35,25		Op. A	32,7	
Op. A	36,00		Op. A	34,99		Op. A	32,7	
Op. A	35,24		Op. A	35,34		Op. A	33,56	
Op. A	35,63		Op. A	35,36		Op. A	33,12	
Op. A	35,92		Op. A	34,57		Op. A	32,37	
Op. A	35,60		Op. A	34,39		Op. A	32,22	
Op. A	36,70		Op. A	34,06		Op. A	33,28	
Op. A	35,70		Op. A	34,10		Op. A	33,12	
Op. B	34,42	35,77	Op. B	35,10	34,68	Op. B	32,57	32,7654
Op. B	35,74	0,62795	Op. B	33,65	0,60166	Op. B	32,15	0,61593
Op. B	34,88	0,12818	Op. B	33,74	0,12281	Op. B	32,23	0,12573
Op. B	35,51		Op. B	33,34		Op. B	33,04	
Op. B	36,47		Op. B	34,61		Op. B	33,29	
Op. B	36,51		Op. B	34,00		Op. B	32,75	
Op. B	35,78		Op. B	34,81		Op. B	33,43	
Op. B	35,61		Op. B	35,19		Op. B	31,89	
Op. B	35,31		Op. B	34,59		Op. B	33,62	
Op. B	36,01		Op. B	34,23		Op. B	32,35	
Op. B	35,74		Op. B	35,35		Op. B	32,92	
Op. B	36,67		Op. B	35,76		Op. B	33,23	
Op. B	35,84		Op. B	35,07		Op. B	31,95	
Op. B	35,84		Op. B	35,01		Op. B	32,32	
Op. B	35,99		Op. B	34,89		Op. B	33,31	
Op. B	36,28		Op. B	35,19		Op. B	32,47	
Op. B	36,47		Op. B	35,12		Op. B	31,68	

EvaGreen Taqman **SYBR** Green 35,42 34,78 Op. B Op. B Op. B 33,74 35,19 36,72 Op. B Op. B Op. B 32,26 35,10 34,05 Op. B Op. B Op. B 33,7 34,78 34,62 Op. B Op. B Op. B 32,8 36,39 34,59 Op. B Op. B Op. B 32,98 35,06 34,27 Op. B Op. B Op. B 33,46 36,01 Op. B 35,19 Op. B Op. B 32,23

3. Inter-operator reproducibility

4.	EvaGreen	vs Tao	qman vs	SYBR	Green

	-	
EG	35,16	35,69
EG	35,95	0,54993
EG	35,32	0,07938
EG	36,45	
EG	36,10	
EG	35,76	
EG	34,89	
EG	35,64	
EG	35,45	
EG	35,17	
EG	35,11	
EG	35,68	
EG	35,51	
EG	35,19	
EG	36,17	
EG	34,98	
EG	35,48	
EG	36,00	
EG	35,24	
EG	35,63	
EG	35,92	
EG	35,60	
EG	36,70	
EG	35,70	
EG	34,42	
EG	35,74	
EG	34,88	
EG	35,51	
EG	36,47	
EG	36,51	
EG	35,78	
EG	35,61	
EG	35,31	
EG	36,01	
EG	35,74	
EG	36,67	
EG	35,84	
EG	35,84	
EG	35,99	
EG	36,28	
EG	36,47	
EG	35,42	

|--|

EG	36,72	
EG	35,10	
EG	34,78	
EG	36,39	
EG	35,06	
EG	36,01	
Tq	34,02	34,63
Tq	34,62	0,53751
Tq	34,39	0,07758
Tq	34,13	
Tq	34,02	
Tq	34,06	
Tq	34,14	
Tq	35,07	
Tq	34,30	
Tq	34,62	
Tq	34,43	
Tq	35,12	
Tq	35,18	
Tq	35,14	
Tq	34,21	
Tq	34,43	
Tq	35,25	
Tq	34,99	
Tq	35,34	
Tq	35,36	
Tq	34,57	
Tq	34,39	
Tq	34,06	
Tq	34,10	
Tq	35,10	
Tq	33,65	
Tq	33,74	
Tq	33,34	
Tq	34,61	
Tq	34,00	
Tq	34,81	
Tq	35,19	
Tq	34,59	
Tq	34,23	
Tq	35,35	
Tq	35,76	

II OIOSt	Diogeosciences and I orestry	uoi. 10.3032/1101232

4.	EvaGreen	vs	Taqman	vs	SYBR	Green

Tq	35,07	
Tq	35,01	
Tq	34,89	
Tq	35,19	
Tq	35,12	
Tq	34,78	
Tq	35,19	
Tq	34,05	
Tq	34,62	
Tq	34,59	
Tq	34,27	
Tq	35,19	
SG	34,2	32,89
SG	32,71	0,59726
SG	33,53	0,08621
SG	32,53	
SG	33,21	
SG	31,66	
SG	33,27	
SG	33,69	
SG	33,28	
SG	32,57	
SG	33,46	
SG	32,83	
SG	33,01	
SG	33,03	
SG	32,49	
SG	33,73	
SG	32,7	
SG	32,7	
SG	33,56	
SG	33,12	
SG	32,37	
SG	32,22	
SG	33,28	
SG	33,12	
SG	32,57	
SG	32,15	
SG	32,23	
SG	33,04	
SG	33,29	
SG	32,75	

4. EvaGreen	n vs	Taqman	vs	SYBR	Green

SG	33,43
SG	31,89
SG	33,62
SG	32,35
SG	32,92
SG	33,23
SG	31,95
SG	32,32
SG	33,31
SG	32,47
SG	31,68
SG	33,74
SG	32,26
SG	33,7
SG	32,8
SG	32,98
SG	33,46
SG	32,23

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Section 2 - Detection of 15 fg Ceratocystis platani gDNA. Repeatability: comparison among three experiment (Exp.) performed by Operator (Op) A and B. See Fig. S1. Inter-operator reproducibility. See Fig. 2. EvaGreen (EG) vs Taqman (Tq) vs SYBR Green (SG). See Fig. 3a. In bold (the third column of each dataset) mean, standard deviation and standard error of the replication series are reported.

EvaGreen			Taqman			SYBR G	reen	
I Exp.	33,19	33,42	I Exp.	32,82	32,64	I Exp.	30,25	30,00
I Exp.	33,69	0,25393	I Exp.	32,52	0,26679	I Exp.	30,16	0,22558
I Exp.	33,24	0,08978	I Exp.	32,79	0,09432	I Exp.	29,65	0,07975
I Exp.	33,14		I Exp.	32,82		I Exp.	30,06	
I Exp.	33,55		I Exp.	32,23		I Exp.	29,91	
I Exp.	33,33		I Exp.	32,69		I Exp.	30,11	
I Exp.	33,35		I Exp.	32,28		I Exp.	30,14	
I Exp.	33,85		I Exp.	32,96		I Exp.	29,68	
II Exp.	33,07	33,12	II Exp.	33,28	32,97	II Exp.	29,4	29,77
II Exp.	33,10	0,26569	II Exp.	33,18	0,25518	II Exp.	29,31	0,50782
II Exp.	33,08	0,09394	II Exp.	33,07	0,09022	II Exp.	30,25	0,17954
II Exp.	33,22		II Exp.	33,13		II Exp.	30,26	
II Exp.	33,07		II Exp.	33,01		II Exp.	30,26	
II Exp.	33,22		II Exp.	32,82		II Exp.	29,27	
II Exp.	33,59		II Exp.	32,74		II Exp.	29,22	
II Exp.	32,62		II Exp.	32,52		II Exp.	30,21	
III Exp.	33,38	33,44	III Exp.	33,40	32,96	III Exp.	30,37	30,42
III Exp.	33,98	0,35292	III Exp.	33,18	0,2532	III Exp.	30,35	0,10796
III Exp.	34,01	0,12478	III Exp.	32,71	0,08952	III Exp.	30,6	0,03817
III Exp.	33,17		III Exp.	32,86		III Exp.	30,45	
III Exp.	33,39		III Exp.	32,72		III Exp.	30,3	
III Exp.	33,10		III Exp.	33,04		III Exp.	30,53	
III Exp.	33,26		III Exp.	33,04		III Exp.	30,3	
III Exp.	33,26		III Exp.	32,71		III Exp.	30,43	

1. Repeatability, PCR-performer-operator A

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

EvaGreen		Taqman	Taqman			SYBR Green		
I Exp.	33,87	33,68	I Exp.	33,03	32,83	I Exp.	29,73	29,76
I Exp.	34,61	0,48255	I Exp.	32,91	0,33638	I Exp.	29,63	0,15267
I Exp.	33,76	0,17061	I Exp.	32,81	0,11893	I Exp.	29,77	0,05398
I Exp.	33,78		I Exp.	32,49		I Exp.	29,75	
I Exp.	33,28		I Exp.	33,34		I Exp.	29,6	
I Exp.	33,76		I Exp.	32,25		I Exp.	30,1	
I Exp.	33,35		I Exp.	32,82		I Exp.	29,78	
I Exp.	33,02		I Exp.	33,02		I Exp.	29,7	
II Exp.	33,08	33,52	II Exp.	32,93	32,79	II Exp.	30,47	30,12
II Exp.	32,99	0,51969	II Exp.	33,19	0,33628	II Exp.	29,86	0,26126
II Exp.	33,66	0,18374	II Exp.	32,65	0,11889	II Exp.	30,09	0,09237
II Exp.	33,98		II Exp.	32,64		II Exp.	30,33	
II Exp.	34,26		II Exp.	32,32		II Exp.	29,69	
II Exp.	32,88		II Exp.	33,28		II Exp.	30,05	
II Exp.	33,96		II Exp.	32,88		II Exp.	30,12	
II Exp.	33,34		II Exp.	32,47		II Exp.	30,35	
III Exp.	34,15	33,58	III Exp.	33,00	32,99	III Exp.	30,03	29,92
III Exp.	33,72	0,52471	III Exp.	32,86	0,23429	III Exp.	30,22	0,30649
III Exp.	33,37	0,18551	III Exp.	33,12	0,08284	III Exp.	29,64	0,10836
III Exp.	32,75		III Exp.	33,41		III Exp.	30,22	
III Exp.	34,05		III Exp.	33,07		III Exp.	29,62	
III Exp.	34,16		III Exp.	33,04		III Exp.	30,29	
III Exp.	33,29		III Exp.	32,71		III Exp.	29,53	
III Exp.	33,13		III Exp.	32,70		III Exp.	29,83	

2. Repeatability, PCR-performer-operator B

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

3. Inter-operator reproducibility

EvaGreen	l		Taqman			SYBR (Green	
Op. A	33,19	33,33	Op. A	32,82	32,86	Op. A	30,25	30,06
Op. A	33,69	0,31838	Op. A	32,52	0,29208	Op. A	30,16	0,41459
Op. A	33,24	0,06499	Op. A	32,79	0,05962	Op. A	29,65	0,08463
Op. A	33,14		Op. A	32,82		Op. A	30,06	
Op. A	33,55		Op. A	32,23		Op. A	29,91	
Op. A	33,33		Op. A	32,69		Op. A	30,11	
Op. A	33,35		Op. A	32,28		Op. A	30,14	
Op. A	33,85		Op. A	32,96		Op. A	29,68	
Op. A	33,07		Op. A	33,28		Op. A	29,4	
Op. A	33,10		Op. A	33,18		Op. A	29,31	
Op. A	33,08		Op. A	33,07		Op. A	30,25	
Op. A	33,22		Op. A	33,13		Op. A	30,26	
Op. A	33,07		Op. A	33,01		Op. A	30,26	
Op. A	33,22		Op. A	32,82		Op. A	29.27	
Op. A	33,59		Op. A	32,74		Op. A	29,22	
Op. A	32,62		Op. A	32,52		Op. A	30,21	
Op. A	33,38		Op. A	33,40		Op. A	30,37	
Op. A	33,98		Op. A	33,18		Op. A	30,35	
Op. A	34,01		Op. A	32,71		Op. A	30,6	
Op. A	33,17		Op. A	32,86		Op. A	30,45	
Op. A	33,39		Op. A	32,72		Op. A	30,3	
Op. A	33,10		Op. A	33,04		Op. A	30,53	
Op. A	33,26		Op. A	33,04		Op. A	30,3	
Op. A	33,26		Op. A	32,71		Op. A	30,43	
Op. B	33,87	33,59	Op. B	33,03	32,87	Op. B	29,73	29,9333
Op. B	34,61	0,49136	Op. B	32,91	0,30449	Op. B	29,63	0,28173
Op. B	33,76	0,1003	Op. B	32,81	0,06215	Op. B	29,77	0,05751
Op. B	33,78		Op. B	32,49		Op. B	29,75	
Op. B	33,28		Op. B	33,34		Op. B	29,6	
Op. B	33,76		Op. B	32,25		Op. B	30,1	
Op. B	33,35		Op. B	32,82		Op. B	29,78	
Op. B	33,02		Op. B	33,02		Op. B	29,7	
Op. B	33,08		Op. B	32,93		Op. B	30,47	
Op. B	32,99		Op. B	33,19		Op. B	29,86	
Op. B	33,66		Op. B	32,65		Op. B	30,09	
Op. B	33,98		Op. B	32,64		Op. B	30,33	
Op. B	34,26		Op. B	32,32		Op. B	29,69	
Op. B	32,88		Op. B	33,28		Op. B	30,05	
Op. B	33,96		Op. B	32,88		Op. B	30,12	
Op. B	33,34		Op. B	32,47		Op. B	30,35	
Op. B	34,15		Op. B	33,00		Op. B	30,03	

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

EvaGreen		Taqman		SYBR G	reen
Op. B	33,72	Op. B	32,86	Op. B	30,22
Op. B	33,37	Op. B	33,12	Op. B	29,64
Op. B	32,75	Op. B	33,41	Op. B	30,22
Op. B	34,05	Op. B	33,07	Op. B	29,62
Op. B	34,16	Op. B	33,04	Op. B	30,29
Op. B	33,29	Op. B	32,71	Op. B	29,53
Op. B	33,13	Op. B	32,70	Op. B	29,83

3. Inter-operator reproducibility

iForest - Biogeosciences	and Forestry - doi:	10.3832/ifor2527-011
--------------------------	---------------------	----------------------

EG	55,19	33,46
EG	33,69	0,4308
EG	33,24	0,06218
EG	33,14	
EG	33,55	
EG	33,33	
EG	33,35	
EG	33,85	
EG	33,07	
EG	33,10	
EG	33,08	
EG	33,22	
EG	33,07	
EG	33,22	
EG	33,59	
EG	32,62	
EG	33,38	
EG	33,98	
EG	34,01	
EG	33,17	
EG	33,39	
EG	33,10	
EG	33,26	
EG	33,26	
EG	33,87	
EG	34,61	
EG	33,76	
EG	33,78	
EG	33,28	
EG	33,76	
EG	33,35	
EG	33,02	
EG	33,08	
EG	32,99	
EG	33,66	
EG	33,98	
EG	34,26	
EG	32,88	
EG	33,96	
EG	33,34	
EG	34,15	
EG	33,72	

4. EvaGreen vs Taqman vs SYBR GreenEG33.1933.46

EG	33,37	
EG	32,75	
EG	34,05	
EG	34,16	
EG	33,29	
EG	33,13	
Tq	32,82	32,86
Tq	32,52	0,29526
Tq	32,79	0,04262
Tq	32,82	
Tq	32,23	
Tq	32,69	
Tq	32,28	
Tq	32,96	
Tq	33,28	
Tq	33,18	
Tq	33,07	
Tq	33,13	
Tq	33,01	
Tq	32,82	
Tq	32,74	
Tq	32,52	
Tq	33,40	
Tq	33,18	
Tq	32,71	
Tq	32,86	
Τq	32,72	
Τq	33,04	
Tq	33,04	
Τq	32,71	
Tq	33,03	
Tq	32,91	
Τq	32,81	
Τq	32,49	
Tq	33,34	
Tq	32,25	
Tq	32,82	
Tq	33,02	
Tq	32,93	
Tq	33,19	
Tq	32,65	
Τq	32,64	
Tq	32,32	

Tq	33,28	
Tq	32,88	
Tq	32,47	
Tq	33,00	
Tq	32,86	
Tq	33,12	
Tq	33,41	
Tq	33,07	
Тq	33,04	
Тq	32,71	
Tq	32,70	
SG	30,25	30,00
SG	30,16	0,35655
SG	29,65	0,05146
SG	30,06	
SG	29,91	
SG	30,11	
SG	30,14	
SG	29,68	
SG	29,4	
SG	29,31	
SG	30,25	
SG	30,26	
SG	30,26	
SG	29,27	
SG	29,22	
SG	30,21	
SG	30,37	
SG	30,35	
SG	30,6	
SG	30,45	
SG	30,3	
SG	30,53	
SG	30,3	
SG	30,43	
SG	29,73	
SG	29,63	
SG	29,77	
SG	29,75	
SG	29,6	
SG	30,1	
SG	29,78	
SG	29,7	

SG	30,47	
SG	29,86	
SG	30,09	
SG	30,33	
SG	29,69	
SG	30,05	
SG	30,12	
SG	30,35	
SG	30,03	
SG	30,22	
SG	29,64	
SG	30,22	
SG	29,62	
SG	30,29	
SG	29,53	
SG	29.83	

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Section 3 - Detection of 3 fg gDNA in different *Ceratocystis platani* (CP) strains: EvaGreen vs Taqman vs SYBR Green. Strains: 25, 33, 1176, 11292, 11259: See Fig. 3b. EG = EvaGreen; Tq= Taqman; SG = SYBR Green. In bold (the third column of each dataset) mean, standard deviation and standard error of the replication series are reported.

25 EG	34,46	34,75	33 EG	36,60	35,87	1176 EG	36,13	35,76
25 EG	34,51	0,4568	33 EG	35,31	0,4925	1176 EG	34,79	0,5759
25 EG	35,07	0,1615	33 EG	35,72	0,1741	1176 EG	36,15	0,2036
25 EG	35,05		33 EG	35,58		1176 EG	36,17	
25 EG	35,00		33 EG	35,82		1176 EG	36,47	
25 EG	34,32		33 EG	35,32		1176 EG	35,64	
25 EG	34,11		33 EG	36,17		1176 EG	35,15	
25 EG	35,44		33 EG	36,46		1176 EG	35,58	
25 Tq	34,37	34,05	33 Tq	33,38	33,50	1176 Tq	33,95	33,99
25 Tq	34,75	0,4985	33 Tq	33,29	0,2976	1176 Tq	33,48	0,2196
25 Tq	34,04	0,1763	33 Tq	33,69	0,1052	1176 Tq	34,08	0,0776
25 Tq	33,65		33 Tq	33,86		1176 Tq	33,97	
25 Tq	34,13		33 Tq	33,97		1176 Tq	34,04	
25 Tq	34,30		33 Tq	33,31		1176 Tq	34,08	
25 Tq	33,10		33 Tq	33,28		1176 Tq	34,15	
25 Tq	34,07		33 Tq	33,20		1176 Tq	34,15	
25 SG	32,69	33,27	33 SG	32,55	32,56	1176 SG	33,31	32,70
25 SG	34,2	0,67	33 SG	32,11	0,91	1176 SG	32,36	0,8716
25 SG	32,16	0,2369	33 SG	33,49	0,3217	1176 SG	34,1	0,3082
25 SG	33,45		33 SG	34,24		1176 SG	32,63	
25 SG	34,01		33 SG	32,45		1176 SG	31,56	
25 SG	33,5		33 SG	32,3		1176 SG	33,54	
25 SG	33,08		33 SG	31,33		1176 SG	32,08	
25 SG	33,07		33 SG	32		1176 SG	32,01	
11292 EG	34,87	35,36	11259 EG	36,01	35,53			
11292 EG	35,74	0,4225	11259 EG	35,22	0,6044			
11292 EG	36,11	0,1494	11259 EG	35,60	0,2137			
11292 EG	35,49		11259 EG	35,55				
11292 EG	35,45		11259 EG	35,94				
11292 EG	35,20		11259 EG	36,40				
11292 EG	35,01		11259 EG	34,58				
11292 EG	35,00		11259 EG	34,91				
11292 Tq	34,17	34,20	11259 Tq	34,42	33,58			
11292 Tq	33,82	0,2599	11259 Tq	33,26	0,5282			
11292 Tq	33,95	0,0919	11259 Tq	33,53	0,1867			
11292 Tq	34,41		11259 Tq	33,20				
11292 Tq	34,13		11259 Tq	33,50				
11292 Tq	34,66		11259 Tq	33,24				

iForest - Biogeosciences and Forestry - doi:	10.3832/ifor2527-011
--	----------------------

11292 Tq	34,26		11259 Tq	34,38	
11292 Tq	34,17		11259 Tq	33,10	
11292 SG	33,36	33,20	11259 SG	33,71	32,84
11292 SG	33,17	0,2324	11259 SG	33,46	0,704
11292 SG	33,38	0,0822	11259 SG	33,08	0,2489
11292 SG	32,96		11259 SG	32,69	
11292 SG	32,9		11259 SG	31,4	
11292 SG	32,99		11259 SG	32,46	
11292 SG	33,27		11259 SG	33,01	
11292 SG	33,55		11259 SG	32,88	

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Section 4 - Detection limit in relation to: (i) repeatability: comparison among three experiments (for each gDNA sample); (ii) reproducibility: different gDNA extraction events performed bydifferent DNA-purifier-operators; (iii) different modalities of collecting the fungal mycelium for DNA extraction - the agar modality (agar) and the cellophane modality (cell.). Performed with Taqman assay. In bold (the third column of each dataset) mean, standard deviation and standard error of the replication series are reported.

1. Repeatability					
15 fg gDNA Agar Op. A			3fg gDNA Agar	Op. A	
I Esp.	32,55	32,6225	I Esp.	34,58	34,54
I Esp.	32,42	0,21578759	I Esp.	34,19	0,4407603
I Esp.	32,88	0,07629244	I Esp.	34,66	0,1558323
I Esp.	32,35		I Esp.	34,42	
I Esp.	32,91		I Esp.	35	
I Esp.	32,66		I Esp.	34,17	
I Esp.	32,44		I Esp.	34,01	
I Esp.	32,77		I Esp.	35,3	
II Esp.	32,26	32,40125	II Esp.	34,06	34,14875
II Esp.	32,68	0,32511262	II Esp.	33,56	0,5670585
II Esp.	32,27	0,11494467	II Esp.	35,03	0,2004855
II Esp.	32,32		II Esp.	33,32	
II Esp.	32,03		II Esp.	34,2	
II Esp.	32,1		II Esp.	34,73	
II Esp.	32,54		II Esp.	33,93	
II Esp.	33,01		II Esp.	34,36	
III Esp.	32,49	32,61	III Esp.	34,22	34,65
III Esp.	32,55	0,12244532	III Esp.	34,73	0,369418
III Esp.	32,61	0,04329096	III Esp.	35	0,130609
III Esp.	32,72		III Esp.	34,96	
III Esp.	32,76		III Esp.	34,19	
III Esp.	32,59		III Esp.	34,24	
III Esp.	32,75		III Esp.	35,01	
III Esp.	32,43		III Esp.	34,84	

15 fg gDNA Agar Op. C			3 fg gDNA Agar	Op. C	
I Esp.	32,5	32,545	I Esp.	34,49	34,7425
I Esp.	32,98	0,23114621	I Esp.	34,08	0,4863787
I Esp.	32,49	0,08172253	I Esp.	34,8	0,1719609
I Esp.	32,55		I Esp.	35,18	
I Esp.	32,31		I Esp.	34,37	
I Esp.	32,33		I Esp.	35,36	
I Esp.	32,79		I Esp.	35,29	
I Esp.	32,41		I Esp.	34,37	
II Esp.	32,48	32,53	II Esp.	34,35	34,38625
II Esp.	32,46	0,23886637	II Esp.	33,87	0,5357755
II Esp.	32,2	0,08445202	II Esp.	34,47	0,1894252
II Esp.	32,89		II Esp.	34,68	
II Esp.	32,32		II Esp.	35,31	
II Esp.	32,74		II Esp.	33,5	
II Esp.	32,75		II Esp.	34,45	
II Esp.	32,4		II Esp.	34,46	
III Esp.	33	32,64	III Esp.	34,12	34,41
III Esp.	32,08	0,33354963	III Esp.	34,25	0,264251
III Esp.	32,85	0,1179276	III Esp.	34,74	0,0934268
III Esp.	33		III Esp.	34,24	
III Esp.	32,6		III Esp.	34,43	
III Esp.	32,82		III Esp.	34,39	
III Esp.	32,32		III Esp.	34,87	
III Esp.	32,48		III Esp.	34,24	

15 fg gDNA Cell. Op. A		3 fg gDNA Cell. Op. A				
I Esp.	32,58	32,73125	I Esp.	34,38	34,82375	
I Esp.	32,16	0,3244088	I Esp.	35,37	0,424363	
I Esp.	33,16	0,11469583	I Esp.	34,39	0,150035	
I Esp.	32,55		I Esp.	34,43		
I Esp.	32,65		I Esp.	35,22		
I Esp.	32,77		I Esp.	35,22		
I Esp.	32,87		I Esp.	34,56		
I Esp.	33,11		I Esp.	35,02		
II Esp.	32,95	32,4925	II Esp.	35,5	35,21375	
II Esp.	32,94	0,36861711	II Esp.	34,87	0,4607428	
II Esp.	32,89	0,13032583	II Esp.	34,98	0,1628972	
II Esp.	32,34		II Esp.	35,16		
II Esp.	32,12		II Esp.	35,04		
II Esp.	32,12		II Esp.	34,87		
II Esp.	32,27		II Esp.	35,05		
II Esp.	32,31		II Esp.	36,24		
III Esp.	32,43	32,66	III Esp.	34,42	34,82	
III Esp.	32,99	0,20704986	III Esp.	35,04	0,2948607	
III Esp.	32,49	0,07320318	III Esp.	34,51	0,104249	
III Esp.	32,77		III Esp.	35,03		
III Esp.	32,85		III Esp.	34,52		
III Esp.	32,5		III Esp.	35,02		
III Esp.	32,5		III Esp.	34,84		
III Esp.	32,76		III Esp.	35,18		

15 fg gDNA Cell. Op. C			3 fg gDNA Cell. Op. C		
I Esp.	32,67	32,58	I Esp.	35,51	34,59875
I Esp.	32,89	0,30060653	I Esp.	33,96	0,535362
I Esp.	32,36	0,10628046	I Esp.	35,12	0,1892791
I Esp.	32,55		I Esp.	34,84	
I Esp.	32,49		I Esp.	34,44	
I Esp.	33,05		I Esp.	34,59	
I Esp.	32,57		I Esp.	34,3	
I Esp.	32,08		I Esp.	34,03	
II Esp.	32,91	32,715	II Esp.	34,84	34,6875
II Esp.	32,46	0,21705825	II Esp.	34,67	0,2920739
II Esp.	32,48	0,07674168	II Esp.	34,27	0,1032637
II Esp.	32,89		II Esp.	34,99	
II Esp.	32,7		II Esp.	35,12	
II Esp.	32,97		II Esp.	34,62	
II Esp.	32,84		II Esp.	34,64	
II Esp.	32,47		II Esp.	34,35	
III Esp.	33,25	32,96	III Esp.	35,07	34,69
III Esp.	33,02	0,3133118	III Esp.	34,17	0,3559871
III Esp.	32,71	0,11077245	III Esp.	35	0,1258604
III Esp.	33,32		III Esp.	34,41	
III Esp.	32,51		III Esp.	34,42	
III Esp.	33,28		III Esp.	34,53	
III Esp.	32,97		III Esp.	34,81	
III Esp.	32,64		III Esp.	35,12	

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

15 fg gDNA Agar Op. A vs C			3 fg gDNA Agar		
Agar Op.A	32,55	32,5454167	Agar Op.A	34,58	34,44625
Agar Op.A	32,42	0,24852573	Agar Op.A	34,19	0,4967005
Agar Op.A	32,88	0,0507301	Agar Op.A	34,66	0,1013886
Agar Op.A	32,35		Agar Op.A	34,42	
Agar Op.A	32,91		Agar Op.A	35	
Agar Op.A	32,66		Agar Op.A	34,17	
Agar Op.A	32,44		Agar Op.A	34,01	
Agar Op.A	32,77		Agar Op.A	35,3	
Agar Op.A	32,26		Agar Op.A	34,06	
Agar Op.A	32,68		Agar Op.A	33,56	
Agar Op.A	32,27		Agar Op.A	35,03	
Agar Op.A	32,32		Agar Op.A	33,32	
Agar Op.A	32,03		Agar Op.A	34,2	
Agar Op.A	32,1		Agar Op.A	34,73	
Agar Op.A	32,54		Agar Op.A	33,93	
Agar Op.A	33,01		Agar Op.A	34,36	
Agar Op.A	32,49		Agar Op.A	34,22	
Agar Op.A	32,55		Agar Op.A	34,73	
Agar Op.A	32,61		Agar Op.A	35	
Agar Op.A	32,72		Agar Op.A	34,96	
Agar Op.A	32,76		Agar Op.A	34,19	
Agar Op.A	32,59		Agar Op.A	34,24	
Agar Op.A	32,75		Agar Op.A	35,01	
Agar Op.A	32,43		Agar Op.A	34,84	
Agar Op.C	32,5	32,5729167	Agar Op.C	34,49	34,512917
Agar Op.C	32,98	0,2648458	Agar Op.C	34,08	0,4563035
Agar Op.C	32,49	0,05406142	Agar Op.C	34,8	0,0931426
Agar Op.C	32,55		Agar Op.C	35,18	
Agar Op.C	32,31		Agar Op.C	34,37	
Agar Op.C	32,33		Agar Op.C	35,36	
Agar Op.C	32,79		Agar Op.C	35,29	
Agar Op.C	32,41		Agar Op.C	34,37	
Agar Op.C	32,48		Agar Op.C	34,35	
Agar Op.C	32,46		Agar Op.C	33,87	
Agar Op.C	32,2		Agar Op.C	34,47	
Agar Op.C	32,89		Agar Op.C	34,68	
Agar Op.C	32,32		Agar Op.C	35,31	
Agar Op.C	32,74		Agar Op.C	33,5	
Agar Op.C	32,75		Agar Op.C	34,45	
Agar Op.C	32,4		Agar Op.C	34,46	
Agar Op.C	33		Agar Op.C	34,12	

2. Inter-operator reproducibility of the extraction event

iForest_	Riogeos	ciences	and	Forestry	doi	10	3832	/ifor?	>527	-011	
morest -	Diugeos	CICICCS	anu	roresuy –	u01.	10	.3032	11012	LJ Z T	-011	

Agar Op.C	32,08	Agar Op.C	34,25	
Agar Op.C	32,85	Agar Op.C	34,74	
Agar Op.C	33	Agar Op.C	34,24	
Agar Op.C	32,6	Agar Op.C	34,43	
Agar Op.C	32,82	Agar Op.C	34,39	
Agar Op.C	32,32	Agar Op.C	34,87	
Agar Op.C	32,48	Agar Op.C	34,24	

15 fg gDNA Cel	ll. Op. A vs C		3 fg gDNA Co	ell. Op. A vs	С
Cell. Op.A	32,58	32,6283333	Cell. Op.A	34,38	34,9525
Cell. Op.A	32,16	0,31130394	Cell. Op.A	35,37	0,4260154
Cell. Op.A	33,16	0,06354465	Cell. Op.A	34,39	0,08696
Cell. Op.A	32,55		Cell. Op.A	34,43	
Cell. Op.A	32,65		Cell. Op.A	35,22	
Cell. Op.A	32,77		Cell. Op.A	35,22	
Cell. Op.A	32,87		Cell. Op.A	34,56	
Cell. Op.A	33,11		Cell. Op.A	35,02	
Cell. Op.A	32,95		Cell. Op.A	35,5	
Cell. Op.A	32,94		Cell. Op.A	34,87	
Cell. Op.A	32,89		Cell. Op.A	34,98	
Cell. Op.A	32,34		Cell. Op.A	35,16	
Cell. Op.A	32,12		Cell. Op.A	35,04	
Cell. Op.A	32,12		Cell. Op.A	34,87	
Cell. Op.A	32,27		Cell. Op.A	35,05	
Cell. Op.A	32,31		Cell. Op.A	36,24	
Cell. Op.A	32,43		Cell. Op.A	34,42	
Cell. Op.A	32,99		Cell. Op.A	35,04	
Cell. Op.A	32,49		Cell. Op.A	34,51	
Cell. Op.A	32,77		Cell. Op.A	35,03	
Cell. Op.A	32,85		Cell. Op.A	34,52	
Cell. Op.A	32,5		Cell. Op.A	35,02	
Cell. Op.A	32,5		Cell. Op.A	34,84	
Cell. Op.A	32,76		Cell. Op.A	35,18	
Cell. Op.C	32,67	32,7533333	Cell. Op.C	35,51	34,659167
Cell. Op.C	32,89	0,31240535	Cell. Op.C	33,96	0,3920062
Cell. Op.C	32,36	0,06376947	Cell. Op.C	35,12	0,0800179
Cell. Op.C	32,55		Cell. Op.C	34,84	
Cell. Op.C	32,49		Cell. Op.C	34,44	
Cell. Op.C	33,05		Cell. Op.C	34,59	
Cell. Op.C	32,57		Cell. Op.C	34,3	
Cell. Op.C	32,08		Cell. Op.C	34,03	
Cell. Op.C	32,91		Cell. Op.C	34,84	
Cell. Op.C	32,46		Cell. Op.C	34,67	
Cell. Op.C	32,48		Cell. Op.C	34,27	
Cell. Op.C	32,89		Cell. Op.C	34,99	
Cell. Op.C	32,7		Cell. Op.C	35,12	
Cell. Op.C	32,97		Cell. Op.C	34,62	
Cell. Op.C	32,84		Cell. Op.C	34,64	
Cell. Op.C	32,47		Cell. Op.C	34,35	
Cell. Op.C	33,25		Cell. Op.C	35,07	
Cell. Op.C	33,02		Cell. Op.C	34,17	

Cell. Op.C	32,71	Cell. Op.C	35
Cell. Op.C	33,32	Cell. Op.C	34,41
Cell. Op.C	32,51	Cell. Op.C	34,42
Cell. Op.C	33,28	Cell. Op.C	34,53
Cell. Op.C	32,97	Cell. Op.C	34,81
Cell. Op.C	32,64	Cell. Op.C	35,12

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

15 fg Agar vs Cello	phane		3 fg Agar vs	s Cellophane	
Agar	32,55	32,56	Agar	34,58	34,48
Agar	32,42	0,25444837	Agar	34,19	0,4730299
Agar	32,88	0,03672646	Agar	34,66	0,068276
Agar	32,35		Agar	34,42	
Agar	32,91		Agar	35	
Agar	32,66		Agar	34,17	
Agar	32,44		Agar	34,01	
Agar	32,77		Agar	35,3	
Agar	32,26		Agar	34,06	
Agar	32,68		Agar	33,56	
Agar	32,27		Agar	35,03	
Agar	32,32		Agar	33,32	
Agar	32,03		Agar	34,2	
Agar	32,1		Agar	34,73	
Agar	32,54		Agar	33,93	
Agar	33,01		Agar	34,36	
Agar	32,49		Agar	34,22	
Agar	32,55		Agar	34,73	
Agar	32,61		Agar	35	
Agar	32,72		Agar	34,96	
Agar	32,76		Agar	34,19	
Agar	32,59		Agar	34,24	
Agar	32,75		Agar	35,01	
Agar	32,43		Agar	34,84	
Agar	32,5		Agar	34,49	
Agar	32,98		Agar	34,08	
Agar	32,49		Agar	34,8	
Agar	32,55		Agar	35,18	
Agar	32,31		Agar	34,37	
Agar	32,33		Agar	35,36	
Agar	32,79		Agar	35,29	
Agar	32,41		Agar	34,37	
Agar	32,48		Agar	34,35	
Agar	32,46		Agar	33,87	
Agar	32,2		Agar	34,47	
Agar	32,89		Agar	34,68	
Agar	32,32		Agar	35,31	
Agar	32,74		Agar	33,5	
Agar	32,75		Agar	34,45	
Agar	32,4		Agar	34,46	
Agar	33		Agar	34,12	

3. Agar-grown vs Cellophane-grown mycelium collection

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options

Agar	32,08		Agar	34,25	
Agar	32,85		Agar	34,74	
Agar	33		Agar	34,24	
Agar	32,6		Agar	34,43	
Agar	32,82		Agar	34,39	
Agar	32,32		Agar	34,87	
Agar	32,48		Agar	34,24	
Cell.	32,58	32,6908333	Cell.	34,38	34,805833
Cell.	32,16	0,31491865	Cell.	35,37	0,4312566
Cell.	33,16	0,04545459	Cell.	34,39	0,0622465
Cell.	32,55		Cell.	34,43	
Cell.	32,65		Cell.	35,22	
Cell.	32,77		Cell.	35,22	
Cell.	32,87		Cell.	34,56	
Cell.	33,11		Cell.	35,02	
Cell.	32,95		Cell.	35,5	
Cell.	32,94		Cell.	34,87	
Cell.	32,89		Cell.	34,98	
Cell.	32,34		Cell.	35,16	
Cell.	32,12		Cell.	35,04	
Cell.	32,12		Cell.	34,87	
Cell.	32,27		Cell.	35,05	
Cell.	32,31		Cell.	36,24	
Cell.	32,43		Cell.	34,42	
Cell.	32,99		Cell.	35,04	
Cell.	32,49		Cell.	34,51	
Cell.	32,77		Cell.	35,03	
Cell.	32,85		Cell.	34,52	
Cell.	32,5		Cell.	35,02	
Cell.	32,5		Cell.	34,84	
Cell.	32,76		Cell.	35,18	
Cell.	32,67		Cell.	35,51	
Cell.	32,89		Cell.	33,96	
Cell.	32,36		Cell.	35,12	
Cell.	32,55		Cell.	34,84	
Cell.	32,49		Cell.	34,44	
Cell.	33,05		Cell.	34,59	
Cell.	32,57		Cell.	34,3	
Cell.	32,08		Cell.	34,03	
Cell.	32,91		Cell.	34,84	
Cell.	32,46		Cell.	34,67	
Cell.	32,48		Cell.	34,27	
Cell.	32,89		Cell.	34,99	

iForest -	Biogeos	ciences	and]	Forestry –	doi:	10.38	32/ifor	2527	-011
11 01000	2105000					10.00			· · · ·

	-	
Cell.	32,7	Cell. 35,12
Cell.	32,97	Cell. 34,62
Cell.	32,84	Cell. 34,64
Cell.	32,47	Cell. 34,35
Cell.	33,25	Cell. 35,07
Cell.	33,02	Cell. 34,17
Cell.	32,71	Cell. 35
Cell.	33,32	Cell. 34,41
Cell.	32,51	Cell. 34,42
Cell.	33,28	Cell. 34,53
Cell.	32,97	Cell. 34,81
Cell.	32,64	Cell. 35,12

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Section 5 - Detection of 3 fg *Ceratocystis platani* gDNA in PCR reactions spiked with 6 µl DNA extract obtained from a necrotic wood infected with *Fomitiporia mediterranea* and uninfected with C. platani (SYBR Green assay) : See Figure 6. In bold mean, standard deviation and standard error of the replication series (the third column of the dataset) and of all data (the fourth column of the dataset) are reported.

Repeatability: con	Repeatability: comparison among three experiment (Exp.).			
I Exp.	33,08	32,61375	32,46833	
I Exp.	32,53	0,317577	0,321216	
I Exp.	32,22	0,112281	0,065568	
I Exp.	32,38			
I Exp.	32,59			
I Exp.	32,43			
I Exp.	33,1			
I Exp.	32,58			
II Exp.	32,34	32,46875		
II Exp.	33	0,338376		
II Exp.	32,03	0,119634		
II Exp.	32,11			
II Exp.	32,59			
II Exp.	32,53			
II Exp.	32,31			
II Exp.	32,84			
III Exp.	32,51	32,3225		
III Exp.	32,19	0,274213		
III Exp.	31,98	0,096949		
III Exp.	32,34			
III Exp.	32,82			
III Exp.	32,49			
III Exp.	32,09			
III Exp.	32,16			

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Section 6 - Melting temperature of the amplicon in EvaGreen (EG) and SYBR Green (SG) assays. Use of the *Ceratocystis platani* genomic DNA (gDNA) and the PCR-target-containing plasmid (pDNA) See the text. In bold (the third column of each dataset) mean, standard deviation and standard error of the replication series are reported.

1. gDNA vs pD	NA in E	vaGreen and S	YBR Green		
EG gDNA	81,5	81,355	SG gDNA	83,4	83,43
EG gDNA	81,4	0,060481	SG gDNA	83,4	0,047016
EG gDNA	81,4	0,013524	SG gDNA	83,4	0,010513
EG gDNA	81,4		SG gDNA	83,4	
EG gDNA	81,4		SG gDNA	83,4	
EG gDNA	81,4		SG gDNA	83,4	
EG gDNA	81,4		SG gDNA	83,4	
EG gDNA	81,4		SG gDNA	83,4	
EG gDNA	81,4		SG gDNA	83,5	
EG gDNA	81,4		SG gDNA	83,5	
EG gDNA	81,3		SG gDNA	83,5	
EG gDNA	81,3		SG gDNA	83,4	
EG gDNA	81,3		SG gDNA	83,5	
EG gDNA	81,3		SG gDNA	83,4	
EG gDNA	81,3		SG gDNA	83,4	
EG gDNA	81,3		SG gDNA	83,5	
EG gDNA	81,3		SG gDNA	83,4	
EG gDNA	81,3		SG gDNA	83,4	
EG gDNA	81,3		SG gDNA	83,5	
EG gDNA	81,3		SG gDNA	83,4	
EG pDNA	81,4	81,35	SG pDNA	83,4	83,425
EG pDNA	81,4	0,051299	SG pDNA	83,3	0,071635
EG pDNA	81,4	0,011471	SG pDNA	83,4	0,016018
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,4		SG pDNA	83,5	
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,4		SG pDNA	83,4	
EG pDNA	81,3		SG pDNA	83,3	
EG pDNA	81,3		SG pDNA	83,4	
EG pDNA	81,3		SG pDNA	83,4	
EG pDNA	81,3		SG pDNA	83,5	
EG pDNA	81,3		SG pDNA	83,4	
EG pDNA	81,3		SG pDNA	83,4	
EG pDNA	81,3		SG pDNA	83,5	
EG pDNA	81,3		SG pDNA	83,5	
EG pDNA	81,3		SG pDNA	83,6	
EG pDNA	81,3		SG pDNA	83,5	

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

		0
EG	81,5	81,3525
EG	81,4	0,055412
EG	81,4	0,008761
EG	81,4	
EG	81,3	
EG	81,4	
EG	81,3	
SG	83,4	83,4275
SG	83,4	0,059861
SG	83,4	0,009465
SG	83,4	
SG	83,4	
SG	83,4	

2. EvaGreen vs SYBR Green

iForest – Biogeosciences and Forestry – doi:	10.3832/ifor2527-011
--	----------------------

SG	83,4
SG	83,4
SG	83,5
SG	83,5
SG	83,5
SG	83,4
SG	83,5
SG	83,4
SG	83,4
SG	83,5
SG	83,4
SG	83,4
SG	83,5
SG	83,4
SG	83,4
SG	83,3
SG	83,4
SG	83,5
SG	83,4
SG	83,4
SG	83,4
SG	83,3
SG	83,4
SG	83,4
SG	83,5
SG	83,4
SG	83,4
SG	83,5
SG	83,5
SG	83,6
SG	83,5

iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Tab. S3 - Performance parameters of EvaGreen, Taqman and SYBR Green assays evaluated through the inference of standard curves. The curves were generated using 5-fold serial dilutions of *Ceratocystis platani* gDNA (eight serial dilutions at 4.685 pg μ l⁻¹ \rightarrow 60 ag μ l⁻¹ corresponding to 9.37 pg \rightarrow 120 ag *per* PCR reaction). As the two lowest dilutions were not detected repeatedly or were not detected, we excluded them in the analysis of the performance parameters. Thus, the lowest dilution included was 1.5 fg μ l⁻¹ (3 fg *per* PCR reaction). gDNA was extracted from a pure culture directly grown on PDA. ¹ In bold are the experiments depicted in figure 1. ² E = PCR efficiency, 100% is the maximum theoretical value, which means perfect doubling of molecules at each cycle; ³ R \wedge 2 is a measure of data linearity among technical replicates of the same and the different serial dilutions, 1 is the best fit; ⁴ the slope is the angular coefficient (m) of the equation for the standard curve (y = mx + b), 3.32 is the best fit.

Experiment ¹	Method	E ² (%)	$R \wedge 2^{-3}$	Slope ⁴	Int.
1	EvaGreen	98.5	0.991	3.359	47.285
2	EvaGreen	98.4	0.992	3.360	47.449
3	EvaGreen	98.6	0.990	3.356	47.715
1	Taqman	107.8	0.996	3.149	46.056
2	Taqman	100.9	0.995	3.300	46.186
3	Taqman	102.9	0.975	3.253	46.359
1	SYBR Green	100.2	0.990	3.317	44.060
2	SYBR Green	99.5	0.994	3.335	44.618
3	SYBR Green	97.3	0.997	3.388	44.956

Real-Time PCR for *Ceratocystis platani* detection: in-depth validation to assess the diagnostic potential and include additional technical options iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Tab. S4 - Mean (standard deviation and standard error) of C*t* values obtained in the validation experiments. Validation regarded: (a) repeatability and reproducibility of the detection limit meant as the lowest *C. platani* gDNA quantity detectable in a PCR reaction (referred to in the paper as: inmycelium DQP-ASe). Genomic DNA was extracted from a pure culture directly grown on PDA. ¹ The upper values in the cells refer to the detection of 15 fg fungal gDNA, the lower values refer to 3 fg gDNA *per* PCR reaction. ² Values refer to the detection of 3 fg fungal gDNA *per* PCR reaction. (b) repeatability of the detection limit meant as the lowest *C. platani* gDNA quantity (3 fg) spiked with 6 μ l of extract from *C. platani* uninfected necrotic wood, which is detectable in a PCR reaction (referred to in the paper as: in-necrotic-wood DQP-ASe). SYBR Green assay. Genomic DNA was extracted from a pure culture directly grown on PDA.

	``	
• •	щ,	
	u)	

Methods	EvaGreen		Taq	man	SYBR Green	
Operator Experiments	А	В	А	В	А	В
Exp. I (C.P. 32) ¹	33.4 (0.25 - 0.09)	33.7 (0.48 - 0.17)	32.6 (0.27 - 0.09)	32.8 (0.34 - 0.12)	30.0 (0.23 - 0.08)	29.8 (0.15 - 0.05)
	35.7 (0.52 - 0.18)	35.6 (0.71 - 0.25)	34.3 (0.37 - 0.13)	34.3 (0,71 - 0.25)	33.1 (0.79 - 0.28)	32.7 (0.56 - 0.20)
Exp. II (C.P. 32) ¹	33.1 (0.27 - 0.09)	33.5 (0.52 - 0.18)	33.0 (0.25 - 0.09)	32.8 (0.34 - 0.12)	29.8 (0.51 - 0.18)	30.1 (0.26 - 0.09)
	35.4 (0.38 - 0.14)	36.0 (0.40 - 0.14)	34.7 (0.40 - 0.14)	35.0 (0.46 - 0.16)	33.0 (0.43 - 0.15)	32.8 (0.58 - 0.21)
Exp. III (C.P. 32) ¹	33.4 (0.35 - 0.12)	33.6 (0.52 - 0.18)	33.0 (0.25 - 0.09)	33.0 (0.23 - 0.08)	30.4 (0.11 - 0.04)	29.9 (0.31 - 0.11)
	35.8 (0.44 - 0.15)	35.7 (0.75 - 0.26)	34.8 (0.55 - 0.19)	34.7 (0.43 - 0.15)	32.9 (0.46 - 0.16)	32.9 (0.76 - 0.27)
Ct mean of all the experiments for each operator ¹	33.3 (0.32 - 0.06)	33.6 (0.49 - 0.10)	32.9 (0.29 - 0.06)	32.9 (0.30 - 0.06)	30.1 (0.41 - 0.08)	29.9 (0.28 - 0.06)
	35.6 (0.46 - 0.09)	35.8 (0.63 - 0.13)	34.6 (0.47 - 0.10)	34.7 (0.60 - 0.12)	33.0 (0.56 - 0.11)	32.8 (0.62 - 0.13)
Ct mean of all the experiments for each method ¹	33.5 (0.4	3 - 0.06)	32.9 (0.2	9 - 0.04)	30.0 (0.3	6 - 0.05)
	35.7 (0.5	5 - 0.08)	34.6 (0.5	4 - 0.08)	32.9 (0.6	0 - 0.09)
Ct (3fg) - Ct (15fg)	2.	2	1	7	2.	9

Lumia V, Modesti V, Brunetti A, Wilkinsons CL, Di Lernia G, Harrington TC, Pilotti M (2018).

Real-Time PCR for Ceratocystis platani detection: in-depth validation to assess the diagnostic potential and include additional technical options
iForest – Biogeosciences and Forestry – doi: 10.3832/ifor2527-011

Other fungal strain ²						
Exp. I (C.P. 25)	34.7 (0.46 - 0.16)	-	34.0 (0.50 - 0.18)	-	33.3 (0.67 - 0.24)	-
Exp. I (C.P. 33)	35.9 (0.49 - 0.17)	-	33.5 (0.30 - 0.10)	-	32.6 (0.91 - 0.32)	-
Exp. I (C.P. 1176)	35.8 (0.58 - 0.20)	-	34.0 (0.22 - 0.08)	-	32.7 (0.87 - 0.31)	-
Exp. I (C.P. 11259)	35.5 (0.60 - 0.21)	-	33.6 (0.53 - 0.19)	-	32.8 (0.70 - 0.25)	-
Exp. I (C.P. 11292)	35.4 (0.42 - 0.15)	-	34.2 (0.26 - 0.09)	-	33.2 (0.23 - 0.08)	-

(b)

Assay: SYBR GreenDetection of 3 fg C. platani gDNA spiked with 6 µl C. platani-uninfected necroticwood extractExp. IExp. IIExp. IIExp. IIIthree experiments

-	•	*	three experiments
32.6 (0.32 - 0.11)	32.5 (0.34 - 0.12)	32.3 (0.27 - 0.10)	32.5 (0.32 - 0.07)

iForest - Biogeosciences and Forestry - doi: 10.3832/ifor2527-011

Tab. S5 - Detection of samples from naturally and artificially-infected trees by Real-Time PCR and microscope observation. ¹ Samples from naturally-infected trees are from 1 to 28. Samples from artificially-infected trees are marked with T (time-point). The DNA samples corresponding to artificially-infected trees were those previously tested for diagnostic sensitivity in Pilotti et al. (2012) (wood sampling after plant death, at different time-points). In the code of T samples, the first number refers to the time-point in term of months passed after death at the moment of sampling; the second number refers to the sample. All samples with asterisks were tested in triplicate, the others in duplicate. ² N.D. = negative detection. ³ The data regarding the presence of aleuroconidia in T samples are from Pilotti et al. (2012).

G 1 1	EvaG	reen ²	SYBR	Green ²	Taqı	man ²	Presence of
Sample ¹	2 µl	6 µl	2 µl	6 µl	2 µl	6 µl	aleurioconidia ³
1	14.2 (0.08)	13.6 (0.80)	12.3 (0.11)	10.3 (0.08)	14.3 (0.31)	15.9 (1.0)	-
2	18.7 (0.04)	17.7 (0.05)	17.3 (0.06)	15.6 (0.05)	18.9 (0.15)	17.5 (0.29)	-
3	17.6 (0.06)	16.3 (0.18)	15.9 (0.13)	13.9 (0.28)	17.6 (0.01)	16.0 (0.15)	-
4	18.2 (0.04)	16.6 (0.24)	16.6 (0.08)	14.8 (0.03)	18.1 (0.00)	16.5 (0.21)	-
5	36.3 (0.08)	36.2 (0.21)	37.2 (0.46)	33.4 (0.09)	37.8 (0.32)	35.8 (0.08)	-
6	36.0 (0.03)	34.7 (0.20)	33.2 (0.53)	33.6 (0.39)	35.9 (0.72)	33.7 (0.52)	-
7	36.0 (0.02)	35.3 (0.05)	35.0 (0.39)	34.0 (0.45)	37.1 (0.00)	35.0 (0.43)	-
8	35.5 (0.14)	33.4 (0.02)	33.3 (1.41)	32.1 (0.03)	36.1 (1.0)	33.6 (0.47)	-
9	23.4 (0.12)	22.3 (0.13)	21.4 (0.06)	19.6 (0.05)	23.5 (0.07)	22.2 (0.29)	-
10	37.0 (0.10)	35.6 (0.08)	35.3 (0.36)	33.8 (1.30)	36.7 (0.09)	35.9 (0.10)	-
11	34.3 (0.03)	34.1 (0.13)	32.7 (0.34)	30.9 (0.11)	34.1 (0.44)	32.7 (0.33)	-
12	36.2 (0.35)	35.9 (0.04)	34.2 (0.04)	32.2 (0.09)	35.2 (1.4)	33.9 (0.54)	-
13	34.7 (0.17)	32.7 (0.02)	32.2 (0.43)	30.8 (0.01)	33.3 (0.50)	32.2 (0.75)	-
14	35.2 (0.08)	33.0 (0.08)	32.0 (0.05)	30.0 (0.07)	32.8 (0.04)	31.3 (0.04)	-
15	33.1 (0.03)	31.8 (0.42)	31.3 (0.35)	29.0 (0.03)	32.1 (0.08)	N.A.	-
16	35.8 (0.13)	33.7 (0.08)	33.0 (0.18)	30.8 (0.23)	34.1 (0.17)	33.7 (0.08)	-
17	18.3 (0.07)	16.7 (0.29)	16.8 (0.11)	14.9 (0.15)	17.6 (0.32)	16.1 (0.17)	-
18	36.6 (0.08)	36.5 (0.46)	34.9 (0.22)	32.8 (1.50)	37.6 (0.98)	36.0 (1.42)	-
19	20.2 (0.13)	20.7 (0.26)	18.0 (0.01)	16.1 (0.02)	19.8 (0.1)	19.8 (1.1)	+
20	37.2 (1.51)	36.2 (0.38)	33.7 (0.10)	31.6 (0.42)	28.0 (0.84)	31.5 (0.18)	-
21	36.0 (1.08)	35.5 (0.45)	34.4 (0.23)	33.0 (0.65)	34.3 (0.39)	33.7 (0.37)	-
22	34.2 (0.66)	32.8 (0.12)	32.1 (0.56)	30.3 (0.15)	31.9 (0.32)	31.3 (0.12)	-
23	18.4 (0.04)	17.0 (0.03)	16.5 (0.02)	14.9 (0.12)	16.5 (0.09)	15.7 (0.14)	-
24	31.6 (0.08)	30.4 (0.12)	29.6 (0.26)	27.9 (0.23)	29.5 (0.18)	28.8 (0.13)	-
25	35.1 (0.48)	34.3 (0.15)	33.2 (0.81)	32.4 (0.21)	35.4 (1.71)	33.2 (0.69)	-
26	33.9 (0.66)	33.2 (0.27)	31.7 (0.24)	30.4 (0.39)	32.6 (0.37)	31.2 (0.19)	-
27	35.1 (0.24)	34.9 (0.55)	33.0 (0.88)	32.0 (0.59)	34.9 (0.28)	33.6 (0.39)	-
28	36.4 (0.44)	32.7 (0.12)	31.8 (0.86)	30.6 (0.27)	31.7 (0.59)	31.3 (0.23)	-
T0.1	15.1 (0.11)	13.5 (0.10)			15.0 (0.41)	13.2 (0.11)	+
T0.2	15.6 (0.22)	14.3 (0.27)			16.5 (0.17)	15.0 (0.18)	+

Samela 1	EvaGreen ²		SYBR Green ²		Taqman ²		Presence of
Sample	2 µl	6 µl	μl 2 μl 6 μl 2 μl 6 μl		6 µl	aleurioconidia ³	
T0.3	14.3 (0.21)	13.0 (0.28)			13.8 (0.17)	13.2 (0.10)	+
T0.4	14.9 (0.14)	14.0 (0.28)			15.2 (0.14)	14.1 (0.12)	+
T0.5	17.4 (0.15)	17.1 (0.24)			16.3 (0.10)	16.1 (0.13)	+
T5.1	10.3 (0.14)	N.D.			22.2 (0.73)	N.D.	+
T5.2	19.1 (0.05)	23.5 (0.75)			19.9 (0.09)	N.D.	+
T5.3	18.5 (0.14)	18.9 (0.34)			18.9 (0.18)	N.D.	+
T5.4	22.5 (0.16)	N.D.			21.0 (0.38)	N.D.	+
T5.5	20.1 (0.21)	19.6 (0.13)			19.4 (0.08)	20.3 (0.30)	+
T27.1	24.5 (0.20)	N.D.			23.7 (0.26)	N.D.	-
T27.2	21.1 (0.11)	35.7 (0.27)			21.8 (0.20)	N.D.	-
T27.3	24.5 (0.04)	N.D.			22.3 (0.11)	N.D.	-
T27.4	24.4 (0.12)	24.8 (1.16)			27.1 (0.19)	N.D.	-
T27.5	24.4 (0.22)	N.D.			22.9 (0.33)	N.D.	-