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Spatial modelling is a fundamental tool to support forest management strate-
gies. National Forest Inventories (NFIs) provide extensive and detailed data for
spatial analysis. In this study, the most recent Italian NFI (INFC2005) was used
to evaluate possible refinements on species distribution model  (SDM) tech-
niques and to derive the future scenarios for two target species (Fagus sylva-
tica L. and Abies alba Mill.) sharing a similar ecological environment and geo-
graphic  range. A weighted SDM and a provenance distribution model  (PDM)
were tested, based on tree-level selection of NFI plots using species basal area
as a filter. Two climate projections were analysed for 2050s according to the
IPCC  5th Assessment  Report  (AR5).  The  results  were  evaluated  as  possible
guidelines for management of the Italian region of the EUFGIS network, where
many marginal forest populations (MaPs) are currently included as genetic con-
servation units (GCUs). The uncertainty of coordinates of inventory points did
not affect the results of SDM. No statistical differences were found when com-
paring the niche realization for the two model species (ANOVA p>0.05) mainly
due to spatial autocorrelation between the environmental predictors. Based
on the classic SDM evaluation method (True Skill Statistic - TSS) little improve-
ments in predictions were observed when weighting each presence/absence
records, possibly due to the lack of adequate ancillary data but also to the
evaluation method. A higher accuracy of predictions (TSS>0.85) was obtained
when different “provenances” were modelled separately, due to the reduction
in the “background noise”. We showed that for classical SDM, the prevalence
of certain ecological features of some locations may drive algorithms to pro-
duce coarse averaged predictions. Provenance distribution modelling may rep-
resent a valuable step forward in spatial analysis, particularly for the detec-
tion of marginal peripheral populations. The exact spatial co-ordinates of plots
and additional information on site quality (e.g., stand age, site index, etc.) in
NFI data could greatly help in better weighting presence/absence data and
properly test the new evaluation methods.

Keywords:  INFC2005,  European  Beech,  Silver  Fir,  Modelling  Uncertainties,
Provenance Modelling, Climate Change, Mediterranean Area

Introduction
The  Mediterranean  region  is  nowadays

acknowledged as one of  the main “biodi-
versity  hotspots”  for  endemic  plants  and
trees  (Petit  et  al.  2003,  Noce et  al.  2016)
and  recognized  as  a  biogeographic  zone
whose  biodiversity  is  significantly  threat-
ened (Myers et al. 2000). Knowledge of the
existing genetic and adaptive potential  of
forest genetic resources (FGR) is needed to
safeguard  tree  species  of  the  Mediter-
ranean  region  and  help  forest  managers
mitigating the impact of climate change on
forest  ecosystems  (Williams  &  Dumroese
2013,  Orlovic et al. 2014). Genetic diversity
will play a key role in protecting forests un-
der  climate  change,  as  information  on
species  richness  and  genetic  diversity  is
considered essential  for the choice of  ro-

bust silvicultural systems (Fady et al. 2016).
The  maintenance of  a  high genetic  diver-
sity of forests can contrast with other ob-
jectives  such  as  timber  production  (King-
solver  &  Diamond  2011),  however the
trade-off  between productivity  and biodi-
versity  conservation is  a  key  requirement
of forest policy.

Endangered  gene  pools  may  require
transfer measures aimed at maintaining ge-
netic diversity through assisted gene flow
and assisted migration protocols based on
robust  data  and  models  (Hamann  et  al.
2015), as well as on the knowledge of adap-
tive traits and the spatial distribution of ge-
netic diversity (Kramer et al. 2017, Piotti et
al.  2017).  Recently, forest research has fo-
cused on the impact of climate change on
forest resources and their spatial distribu-
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tion (Isaac-Renton et al. 2014, Marchi et al.
2016), and on changes in the provision of
ecosystem goods and services (Castaldi et
al. 2017, Ray et al. 2017), in order to support
forest  management  strategies  under  cli-
mate change. For example, the “European
Atlas of Forest Tree Species” of the Euro-
pean Commission (San-Miguel-Ayanz et al.
2016) is  a key  resource aimed to support
forest management with a comprehensive
coverage at a European scale.

Species distribution modelling (SDM) is a
promising technique commonly applied to
predict  the  impact  of  climate  change  on
species’ biodiversity and populations (Thu-
iller et al. 2015) and to support forest man-
agement  and  silvicultural  practices  (Reh-
feldt  et  al.  2014).  The  goal  of  such  tech-
nique  (often  referred  to  as  “ecological
niche  modelling”)  is  to  characterize  the
ecological requirements of a target (plant
or animal) species using statistical models.
Various algorithms are used (e.g., General-
ized  Linear  Models,  Generalized  Additive
Models,  Neural  Networks,  Regression
Trees,  etc.),  assuming  the  current  spatial
distribution of a species to be a proxy of its
ecological niche. Environmental predictors
such as temperature, precipitation and sev-
eral  bioclimatic  indices  are  generally  de-
rived from wide datasets by means of sta-
tistical tests (e.g., co-linearity), or using an
expert  knowledge  on  the  target  species
(Naimi et al. 2011, Vacchiano & Motta 2015).
New  opportunities  may  be  offered  from
using National Forest Inventory (NFI) ancil-
lary data, such as timber volume and spe-
cies  abundance.  Many  freely  available  or
restricted  spatial  European  datasets  and
empirical data of forest species have been
used in SDM studies, such as the EUFOR-

GEN (http://www.euforgen.org/species/) or
EFI distribution maps (Brus et al. 2012), but
local  databases  such  as  forest  types  are
generally thought to provide a higher level
of accuracy. All NFIs are characterized by:
(i)  high spatial  precision (metres);  (ii)  de-
tection  of  tree  species  and  their  relative
abundance; (iii)  availability of quantitative
data (such as basal area, site index, age, av-
erage height, etc.); (iv) national scale and
total  coverage  of  the  territory;  and  (v)
standardized methods and outputs. Conse-
quently, a NFI provides an important coun-
try-level  data  source,  due to  high-quality,
statistically  designed  geo-referenced  data
(Fattorini  2015).  In  many countries,  a  NFI
survey is regularly performed (e.g., every 5
years)  and  often  repeated  on  the  same
sampling points (Fridman et al. 2014) with
the aim of  collecting temporal  series  and
assessing local  growth trends.  In addition
to  using  robust  and  highly-performing  al-
gorithms  and  validated  datasets,  the  as-
sessment  of  uncertainty  is  an  important
step in such modelling techniques (Petr et
al.  2014). This includes uncertainties in cli-
mate data (and future projections) as well
as  positional  errors  in  presence/absence
data. Such step is especially needed when
small populations are studied, such as Mar-
ginal  and  Peripheral  forest  populations
(MaP), where a reduced part of the whole
distribution  of  a  forest  species  must  be
carefully  represented by using its  realised
niche (Marchi et al. 2016).

In  this  paper,  an  effort  to  improve  the
SDM approach using national forest inven-
tory data is proposed, with the aim of sup-
porting active adaptive management strat-
egies  for  maintaining  endangered  forest
gene pools and genetic diversity under pro-

jected  climate  change.  The  study  focuses
on the ecological niche of two target spe-
cies (Fagus sylvatica L. and Abies alba Mill.)
derived from the spatial distribution of in-
ventory  points.  Five  different  approaches
were evaluated to forecast possible effects
of climate change on a selected group of
populations included into the EUFGIS data-
base (http://www.eufgis.org/).  Two differ-
ent  climate  change  projections  (RCP4.5
and RCP8.5 of AR5, IPCC – http://www.ipcc.
ch/report/ar5/syr/)  were  used  to  explore
the  expected  shifts  in  the  fundamental
niche space of the study species.

Materials and methods

Presence/ absence datasets: the Italian 
National Forest Inventory

The last  Italian NFI (INFC2005) began in
2003 and  raw  data  has  been  recently  re-
leased (Borghetti & Chirici 2016). The sam-
pling  procedure was  developed following
three main phases in a “stratified sampling
approach” and 7,272 geo-referenced inven-
tory  points  were  available  in  the  WGS84
reference  system,  grouped into  23  forest
categories. From the 263 inventoried spe-
cies,  we selected European  beech (Fagus
sylvatica L.) and silver fir (Abies alba Mill.),
whose  Italian  ranges  are  both  character-
ised  by  the  presence  of  widely  disjoint
meta-populations.  Due  to  their  valuable
economic and ecological importance, both
species  are well  studied  at  the European
scale in terms of distribution of genetic di-
versity (Rose et al. 2009, Piotti et al. 2017),
adaptive traits (Kerr et al. 2015,  Kramer et
al. 2017), and impacts of climate change on
their  spatial  distribution  (Schueler  et  al.
2013,  Tinner et al. 2013). In addition, many
marginal forest populations (MaPs) of both
species do exist in Italy as possible target
of FGR management.

In Italy beech forests cover 1,035,103 ha
corresponding to 9.89% of the total forest
cover. Almost 89% of these are pure beech
stands  and just  11%  is  a  mixture  between
beech and other conifers (mainly  Pinus ni-
gra or  Abies  alba).  Concerning  silver  fir,
68,460  ha  are  dominated  by  this  species
(0.65% of the Italian forests) with 75.5% as
pure or  beech-fir  mixed forest.  Both spe-
cies are mainly distributed along the Apen-
nines chain (Fig. 1), but also in parts of the
Alps. While the beech range is almost con-
tinuous along the whole Italian peninsula,
silver fir  is  scattered and concentrated in
Calabria,  Abruzzo,  Tuscany,  Piedmont and
North-eastern  Alps.  Both  species  are  ab-
sent in Sardinia while some beech popula-
tions  are  located  in  Sicily.  In  addition  to
their shared ecological features, beech and
silver  fir  were  selected  as  examples  of
managed forest tree species representing:
(i)  a  dominant  species  which  forms  pure
stands (Fagus sylvatica) with an almost sta-
ble fundamental niche; (ii) a shade-tolerant
species (Abies alba) often planted outside
its native range and able to grow under a
close canopy cover  in mixed forests  with
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Fig. 1 - The Italian
National Forest Inven-

tory (INFC 2005) points
(grey dots), the spatial

distribution of European
beech (green dots) and
silver fir (blue crosses).
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an expanded niche.
Spatial  co-ordinates  in  the  Italian  NFI

dataset  are subject  to  privacy  restriction,
and  presence/absence  data  are  provided
with the co-ordinates of the south-western
corner of a 1-km grid. To deal with this,  a
preparatory analysis was performed to test
possible biases in niche estimation.

Spatial climate data pre-processing and 
coordinate uncertainty test

The choice of environmental predictors in
spatial modelling needs care, as the exclu-
sion of real drivers may lead to unreliable
results,  whereas  the  use  of  a  wide  spec-
trum  of  highly  correlated  (co-linear)  vari-
ables can affect the importance of predic-
tors and lengthen the computational time.
The  WorldClim  database  (Fick  &  Hijmans
2017) has often been used for climatic data
and indices in SDM applications (Molyneux
et al. 2014, Vacchiano & Motta 2015). These
data are provided as a global raster with a
maximum resolution of 30 arc-seconds (ap-
proximately  1  km  at  the  equator).  How-
ever, the use of WorldClim in local studies
has been often criticised due to its global
coverage (Bedia et al. 2013). Therefore, we
used  the  ClimateEU  software,  an  online
tool freely available at the website of the
University of Alberta (Alberta, Canada). Cli-
mateEU provides 36 climatic variables suit-
able for predicting local climate conditions
in dendrochronological studies and simula-
tions in Europe and Italy (Isaac-Renton et
al. 2014,  Marchi et al. 2015). Fifty monthly,
seasonal, and annual variables are available
using  this  software,  including  many  eco-
nomically or biologically relevant variables
such as growing and chilling degree days,
heating  and  cooling  degree  days,  Harg-
reave’s  moisture  deficit  and  reference
evaporation. Future projections are based
on 15 Global Circulation Models referenced
in  the  IPCC  Fifth  Assessment  Report  for
two  emission  scenarios  (RCP4.5  and
RCP8.5)  and  three  standard  time-slices
(2020s, 2050s, 2080s). The use of multiple
custom queries in the ClimateEU software
allowed us to create 36 raster maps of the
main climatic variables and indices over the
Italian  territory  with  spatial  resolution  of
250 m. For this study, the current average
normal climate period 1981-2010 was used
as reference. Two emission scenarios were
also  computed  (RCP4.5  and  RCP8.5)  for
the 2050s time-slice, using the IPSL-CM5A-
MR model from the European Union imple-
mented into ClimateEU. The full list of cli-
matic variables calculated by ClimateEU is
reported  in  Tab.  S1,  Tab.  S2  and  Tab.  S3
(Supplementary  material).  In  addition,  a
soil map of Italy (Costantini et al. 2014) was
included in the dataset. 

Principal  Component Analysis (PCA) was
carried  out  on  a  total  of  37  factors.  To
avoid  the  problem  of  different  scales
among  different  variables  (temperatures,
precipitation, potential evapo-transpiration
indices,  soil  categories  etc.),  the  dataset
was centered and scaled. Calculated com-

ponents  up to  99% of  the  cumulative  ex-
plained variance were used as predictors.

Once climatic surfaces were prepared, a
set of “artificial niches” were simulated to
test for possible biases due to co-ordinates
uncertainty. Given that the co-ordinates of
the NFI dataset were those of the south-
ern-western  corner  of  1-km  grid,  all  NFI
points were firstly virtually modified, mov-
ing each point in the centre of each NFI lo-
cation cell (+500 m to both X and Y co-ordi-
nates).  This  layer was then spatially  over-
laid onto four climatic raster layers and the
values  of  the  climatic  variables  at  each
modified  NFI  point  were  extracted.  The
original 250-m rasters were then upscaled
to 500 m, 750 m and 1 km, and a simulation
was  performed. A  random  sequence  of
spatial  co-ordinates was generated across
all the 1-km cells covered by each species in
the NFI dataset. The total number of ran-
domly-generated co-ordinates was equiva-
lent to the real NFI points for each species
(1316 for beech, 348 for silver fir). Such ran-
dom extraction was repeated 10,000 times,
and  the  results  averaged  across  extrac-
tions. Using this approach, a set of “artifi-
cial”  ecological  niches  was  created  and
compared with the basic niche correspond-
ing to the current position of the NFI plot
(south-western  edge)  by  non-parametric
ANOVA (Kruskal & Wallis 1952), in order to
test whether the variance among artificial
ecological niches was higher than the vari-
ance within them.

SDM algorithms and modelling 
procedure

It is well known that different modelling
techniques which use similar inputs could
lead to divergent predictions of climate or
species distributions, mainly in cases of lo-
cal  studies or reduced datasets (Araújo &
New  2007).  SDMs  have  been  often  criti-
cised as suitable for modelling the proba-
bility of detection, whilst providing poorly
predictions of species performance (Isaac-
Renton et al. 2014). In this study, the avail-
ability  in  the  Italian  NFI  dataset  of  tree-
level data (e.g., diameter at breast height
and total height of each tree in each plot)
allowed us to test for five different model-
ling approaches (in terms of presence/ab-

sence extraction)  characterized by  an ex-
pectedly increasing degree of complexity:
(1) The ecological niche of the target spe-

cies was derived and modelled using all
the records belonging to the most suit-
able  NFI  forest  category  (hereafter  de-
fined as forest category approach – FCA)
included  into  the  INFC2005  database
(e.g.,  silver  fir  forests  to  model  Abies
alba,  beech  forests  to  model  Fagus  syl-
vatica).

(2) A  tree-level  selection  of  inventory
points was performed using a basal area
approach (BAA), thereby including all the
NFI points where the species contributed
to basal area by more than 1%, irrespec-
tive of the NFI forest category the corre-
sponding point is included.

(3) A novel provenance distribution model
approach (PDM) was devised.  First,  NFI
points  detected  for  each  species  using
BAA  were  grouped  based  on  environ-
mental  characteristics  using hierarchical
clustering prior to modelling. Then an ad-
equate number of clusters (groups) was
selected and modelled separately.

(4) A weighted BAA and PDM were com-
puted  (wBAA  and  wPDM),  weighting
each  presence  point  differently  accord-
ing to the proportion of basal area of the
target species in each. 

Differences  among  methods  were  then
evaluated  by  non-parametric  ANOVA  and
post-hoc tests  (Friedman  1937,  Kruskal  &
Wallis  1952)  applied  to  True  Skill  Statistic
(TSS) values. The aim was not to assess the
best modelling procedure for each species
but to test for differences among methods
in modelling the distribution of two species
which  share  a  similar  ecological  environ-
ment.

The five approaches of presence/absence
selection  and  the  number  of  NFI  points
used  in  each  approach  are  presented  in
Tab. 1. Due to the different numeric consis-
tency (i.e., absence points were always al-
most  six  times  more  abundant  than  the
presence points),  the prevalence parame-
ter  was  always  set  to 0.5  to  balance the
predictions (Allouche et al. 2006). A set of
nine  different  algorithms  from  the  litera-
ture were tested and averaged to build a
consensus  map  using  the  software  pack-
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Tab.  1 -  Modelled  species  and  inventory  (NFI)  points  considered  for  the  tested
methodology.  (FCA):  Forest  Category  Approach;  (BAA):  Basal  Area  Approach;
(wBAA): weighted Basal Area Approach; (PDM): Provenance Distribution Modelling;
(wPDM):  weighted Provenance Distribution Modelling;  (GCUs):  number of  genetic
Conservation Units available from the EUFGIS database.

Modelled 
species

Method
Presence

points in NFI
Proportion

of NFI points
Absence

points in NFI
GCUs

European 
beech

FCA 796 10.95% 6,476 47

BAA & wBAA 1316 18.10% 5,956

PDM & wPDM 1316 (6 groups) Variable Variable

Silver fir FCA 131 1.80% 7,141 48

BAA & wBAA 348 4.79% 6,924

PDM & wPDM 348 (6 groups) Variable Variable
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age “biomod2” (Thuiller  et  al.  2016)  in  R
ver. 3.3.3 (R Core Team 2017). The set was
comprised  of:  Generalized  Linear  Model
(GLM),  Generalized  Boosted-regression
Model (GBM), Generalized Additive Model
(GAM), Classification Trees Analysis (CTA),
Artificial  Neural  Networks  (ANN),  Flexible
Discriminant  Analysis  (FDA),  Multivariate
Adaptive Regression Splines (MARS), Ran-
dom Forest (RF) and the classical  version
of MAXimun ENTropy (MAXENT). 

To evaluate the quality of predictions de-
livered by each model, the dataset was ran-
domly  split  into  a  training subset  (75%  of
observations) and a testing subset (25% of
observations). The splitting procedure was
repeated 50 times and the average value
and the standard deviation of the TSS in-
dex  were  calculated  for  each  model  (Al-
louche et al. 2006).

We used the best set of modelling proce-
dure  (ensemble)  to  map European beech
and  silver  fir  in  Italy.  A  consensus  model
was calculated using the full-model predic-
tions (i.e.,  using 100% of the available NFI
points)  and  no  TSS  threshold  was  intro-
duced  to  filter  model  before  averaging.
This  analysis  produced  three  distribution
maps for each target species, one for the
current  baseline  climate  and  conditions,
and two maps showing the predicted dis-
tribution for future climate projections for
the period centred on the 2050s for RCP4.5
and  RCP8.5,  respectively  (Fig.  2).  Finally,
the consensus maps were included in a GIS
and indications for the management of the
Italian  Genetic  Conservation Units  (GCUs)
were derived for the two studied species
included into the EUFGIS database (http://
www.eufgis.org/).

Results
The  results  of  PCA  on  climate  variables

showed that the 99% of the environmental
variability could be summarized into seven
uncorrelated  PCA axes  components  (Tab.
2).  The  first  component  (PC1)  accounted
for  most  of  the  variance  (77.82%)  with  a
well  balanced contribution of  37  environ-
mental  predictors. As expected, no single
environmental  variable  prevailed  on  the
others. On  PC1,  the  average  (absolute)
eigenvector was 0.16o with a standard de-
viation of 0.039, demonstrating a high de-
gree  of  co-linearity  between  the  environ-
mental  predictors.  The range (in absolute
values) was between 0.017 (winter precipi-
tations) and 0.185 (average temperature of
the autumn) with a median value of 0.177.
The remaining proportion of variance was
distributed  between  six  other  compo-
nents, with more than 95% included in the
first four principal components. As a conse-
quence,  we used  seven  predictors  in  the
biomod2 calculation (see below).

Concerning niche simulations, no statisti-
cal differences were observed between the
ecological  niche  used  for  modelling  (i.e.,
using the original co-ordinates provided by
INFC) and any of the “artificial niches” we
simulated (Tab. 3) with p-values >0.05.
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Tab. 2 - Summary statistics of the PCA eigenvectors for the 37 predictive variables con-
sidered.

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7

MIN Eigenvector 0.016 0.001 0.003 0.001 0.001 0.002 0.002

MEDIAN Eigenvector 0.177 0.118 0.087 0.061 0.085 0.067 0.093

MEAN Eigenvector 0.160 0.134 0.112 0.113 0.119 0.109 0.122

Eigenvectors SD 0.039 0.097 0.122 0.121 0.115 0.125 0.112

MAX Eigenvector 0.185 0.356 0.560 0.545 0.478 0.703 0.519

Explained standard 
deviation

5.365 1.822 1.602 0.947 0.611 0.548 0.467

Proportion of variance 0.778 0.090 0.069 0.024 0.011 0.008 0.006

Cumulative proportion of 
variance (%)

77.82 86.79 93.73 96.16 97.17 97.98 99.3

Tab. 3 - Statistical differences between covered niches.

Group A Group B ANOVA p-value

Raster 250 m Average 500 m >>0.05
Raster 250 m Average 750 m >>0.05

Raster 250 m Average 1 km >>0.05
Raster 250 m Random 250 km Average >>0.05 ± 0.003
Raster 250 m Average 500 m >>0.05

Raster 250 m Average 750 m >>0.05
Raster 250 m Average 1 km >>0.05

Raster 250 m Random 250 km Average >>0.05 ± 0.001

Fig. 2 - Spatial
distribution of

the Italian
Genetic Conser-

vation Units
(GCUs) for the

two studied
species (Euro-

pean beech and
silver fir).

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

http://www.eufgis.org/
http://www.eufgis.org/


Ecological modelling and National forest inventories

Regarding  the  different  modelling  ap-
proaches,  the FCA showed low predictive
performances,  with  a  mean  TSS  always
lower than 0.7 for all algorithms (a thresh-
old  generally  accepted as  satisfactory  for
environmental models – Swets 1988), with
an average TSS value of 0.642 ± o.058 (Tab.
4)  and  a  coefficient  of  variation  always
lower than 9.06%. The Generalized Boost-
ed-regression Model  (GBM) was the best
performing algorithm (TSS = 0.679), being
statistically  different from the other algo-
rithm applied.

No  significant  improvements  were  ob-
served in the prediction of species distribu-
tion using the BAA approach. However, a
lower variability was detected among runs
and  algorithms  (the  global  coefficient  of
variation was 7.15%), indicating a more sta-
ble prediction among runs. Using BAA, RF
was  the  best  performing  model  (TSS  =
0.661), being statistically different from the

others.  The  weighted  version  of  this  ap-
proach (wBAA) did not show any improve-
ment in the predictions.  On the contrary,
TSS values calculated for wBAA were much
lower  and  statistically  different  from  the
others  (average  TSS  =  0.557),  indicating
that wBAA was the worst model.

The  best  model  performances  were  ob-

tained  using  the  PDM  approach.  This
method was based on the result of a hier-
archical  clustering where six groups were
selected for both species as fair  trade-off
between environmental variability and spa-
tial  fragmentation.  Hierarchical  clustering
allowed for the whole ecological niche to
be  split  into  several  clearly-defined  sec-
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Tab. 4 - Average TSS values for each extraction method and statistical groups accord -
ing to non-parametric ANOVA. (*): Average value of the 6 ecological provenances for
each species.

Method Average TSS
Standard
Deviation Groups

PDM 0.830* 0.184 a
wPDM 0.643 0.244 b
FCA 0.642 0.058 b
BAA 0.636 0.046 b
wBAA 0.557 0.123 c

Fig. 3 - Provenance distribution model (PDM) for (a) European beech and (b) silver fir for 2050 climate projections driven by the two
selected green-house gas emissions scenarios RCP4.5 and RCP8.5.
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tions with a strong “ecological signal”. Us-
ing  this  procedure,  models’  calculations
were fitted on a smaller and more homoge-
neous part of the realized ecological niche.
The predictions obtained by this approach
were significantly improved, with an aver-
age TSS of 0.830 and maximum values of
about 0.9 using GLM, GBM, RF and MARS
algorithms.  However,  very  low and unex-
pected values were found using MAXENT,
with TSS close to 0.3. Similarly, the TSS for
wPDM  also  decreased  as  compared  with
PDM, though the observed average values
were not statistically different from using
either the FCA and BAA approaches. 

The results of the comparisons (ANOVA)
among all models and algorithm combina-
tions are reported in Tab. S4 (Supplemen-
tary material).

An  ensemble  model  was  built  for  each
provenance of each species (Fig. 3) and fu-
ture scenarios using the software biomod2.
A consensus map was implemented in GIS
showing the probability of detection of Eu-
ropean  beech  and  European  silver  fir  for
each Italian GCU of the EUFGIS database,
i.e.,  the  probability  of  detection  of  each
ecological provenance in each GCU. Given
the structure of PDM, six different suitabil-
ity values were available in each GCUs for
both  species.  To  deal  with  this,  the  best
performing provenance in each GCUs was
extracted in each analysed time slice.  The
results  of  this  analysis  are summarised in
Fig.  4  which  shows  the  boxplots  of  the
probability  of  detection  (i.e.,  survival)  for
each  species  in  each  climate  projection.
Based on model predictions, a reduction of
suitable habitats is expected under future
climate projections in all GCUs, as well as a
range shrinking for both beech and silver
fir.

Discussion
Despite  a  possible  bias  in  niche  estima-

tion  stemming  from  positional  uncertain-
ties of the NFI dataset, the use of ancillary

tree-level data derived from the Italian NFI
and the use of more sophisticated models
did not  significantly  improve SDM perfor-
mances  in  this  study.  Both  the  applied
weighting procedures (wBAA and wPDM)
showed a reduction in performance com-
pared  to  unweighted  methods  (BAA  and
PDM). Although model complexity and per-
formances have often been demonstrated
to  be  uncorrelated  in  ecological  analysis
(Merow et al. 2014, Marchi et al. 2017), such
differences  between  weighted  and  un-
weighted  models  may  be  explained  by
pure  modelling  aspects  and  evaluation
methods.  Indeed,  the  True  Skill  Statistic
(TSS)  was  developed to  improve  Cohen’s
kappa  dependence  on  prevalence  (Al-
louche et al. 2006) and is the most widely
used measure for SDM performances and
for  models  generating  presence/absence
predictions in general (Barbet-Massin et al.
2012). However, results demonstrated this
index might be unreliable when a weighted
SDM is performed. The TSS is typically used
for  binomial  response  variables  (1/0),  in-
volving  the  calculation  of  sensitivity  and
specificity. In this study, weighted models
were  applied  to  calculate  a  smoothed
value,  corresponding  to  the  performance
of  the  species  in  any  environmental  (i.e.,
geographic)  location.  All  presence  points
are  evaluated  from  biomod2  input  (i.e.,
presence=1,  absence=0),  and values equal
to 1 are likely to be obtained for the ecolog-
ical optimum in predicting species perfor-
mance. This could likely explain the lower
TSS  values  obtained  using  wBAA  and
wPDM,  as  compared  with  classical  un-
weighted models.

With  BAA  modelling  no  differences  in
SDM  performance  were  detected  when
compared to the more general FCA meth-
od. The use of a hierarchical clustering be-
fore the biomod2 analysis in the PDM ap-
proach  highly  improved  the  SDM  results,
leading to a more precise niche estimation.
When many points are used for modelling

(as in the case for presence/absence data-
sets),  a  strong  “background  noise”  is  in-
cluded  in  the  calculation,  and  a  “coarse”
ecological niche is obtained, thereby losing
some  species-specific  ecological  features,
such as those held in marginal and periph-
eral  forest populations,  which are charac-
terized by a limited number of NFI points
(Eckert et al. 2008). This aspect was obvi-
ous in our study where a TSS value of 0.83
was  calculated  using  the  PDM  approach,
which was much higher than that obtained
using FCA and BAA (0.642  and 0.636,  re-
spectively).  The  average  value  for  PDM
was highly  influenced by  results  of  MAX-
ENT, whose TSS value was surprisingly low
(≈0.3).  A  TSS  value  of  approximately  0.9
was calculated for PDM when averaging all
the  algorithms  except  MAXENT,  whose
prediction  was  probably  affected  by  the
use of a low-memory version of the algo-
rithm. MAXENT is widely used and well-ref-
erenced  in  the  literature  (Merow  et  al.
2013),  but  the  evaluation  of  its  perfor-
mance was out of the scope of this study.

The  PDM  approach  presented  here  has
rarely been implemented in the literature.
Researchers often use the whole distribu-
tion  range  of  forest  species  (San-Miguel-
Ayanz et al.  2016), and a similar approach
was recently developed by Isaac-Renton et
al.  (2014) with  Douglas-fir,  where  a  SDM
was used to clip a RandomForest classifica-
tion of  the European environment,  based
on the ecological features of Douglas-fir in
the  Pacific  North West.  New insights  can
be achieved using provenance distribution
models,  which  could  be  integrated  with
the classical use of forecasting range shifts,
such  as  replacing  local  provenances  with
better  adapted  material  from  lower  lati-
tudes  or  lower  elevations  (O’Brien  et  al.
2007, Marchi et al. 2016). Indeed, using the
provenance distribution model indirect hy-
potheses can be made on the genetic  di-
versity distribution of a species, assuming a
connection  between  ecological  and  ge-
netic diversity as a result of long term-evo-
lutionary  processes  and  local  adaptation
(Eckert et al. 2008, Lira-Noriega & Manthey
2014, Fady et al. 2016). However, forest ge-
netic diversity is not directly included into
NFIs data, and it needs spatially explicit in-
formation to infer genetic variation param-
eters.

NFI data and the provenance 
distribution modelling method in a 
European context

At  a  wider  scale,  merging  all  the  Euro-
pean NFIs could lead to the construction of
an  important  dataset  of  species  distribu-
tion. NFIs are often difficult to harmonized
due  to  differences  in  national  inventory
definitions, sampling designs, plot size and
density, measured variables, and measure-
ment  protocols  (McRoberts  et  al.  2009).
The  use  of  NFI  data  at  a  European  scale
would  have  great  impact  on SDM results
due to  the  possibility  of  excluding  broad
envelopes or statistical maps and correctly
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Fig. 4 - Box-plots of probability of detection in the Genetic Conservation Units (GCUs) 
with basal area approach (BAA) for the two studied species.
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detecting the true absence of species. With
such data, the reliability of SDM and PDM
for the whole Europe would be improved.
Indeed, while many studies in species dis-
tribution  modelling  have  focused  on  the
importance  of  presence  points  (Manel  et
al.  2001),  the reliability  and availability  of
true  absence  points  is  rarely  discussed.
Presence points are fundamental to derive
ecological  niches  and  are  treated  as  the
most  relevant  issue  in  SDM  approaches.
However, a much higher degree of uncer-
tainty lies in the absence of a given species
at a particular location, whether is due to
ecological or human-related reasons. Such
information is fundamental to set an “ex-
clusion threshold” of each species for bet-
ter  modelling  its  distribution.  Many  tools
have been tested to describe and simulate
absence  data  (e.g.,  pseudo-absences  or
background points),  for example: random
spatial  selection,  regular  grids,  ecological
distance (also known as Surface Range En-
velope method) and spatial distance from
presence  records  (Barbet-Massin  et  al.
2012). The use of NFI datasets could reduce
the problem of  the lack of  quality  of  ab-
sence data.

PDM in the framework of marginal 
forest populations and climate change

Robust models and tools are essentials to
drive  forest  practice,  forest  management
and the use and transfer of  forest repro-
ductive  materials  (Williams  &  Dumroese
2013). Even when gene pools are artificially
moved or transferred (e.g.,  assisted gene
flow or migration) the use of well-adapted
seed and forest reproductive material is a
fundamental issue under the projected cli-
mate change (Ivetić et al. 2016). In this con-
text,  the  conservation  of  MaPs  and  en-
demic species should be seen as a priority
(Fady et  al.  2016).  Novel  SDM techniques
and approaches in combination with moni-
toring efforts of European networks (e.g.,
EUFGIS  or  ICP-Forests)  will  help  forest
managers to develop mitigation and adap-
tation  strategies.  Novel  methods  to  pre-
serve  and  connect  endangered  and  frag-
mented rear-edge meta-populations across
the Mediterranean basin have to be devel-
oped.

The  rear-edge  of  many  Mediterranean
forest species represented by fragmented
habitats in southern Europe is  a  strategic
area of research to detect marginal popula-
tions  and  their  precise  niche  using  SDM
techniques.  An effective approach should
integrate range-wide analysis with data on
adaptive traits and phenotypic plasticity of
provenances from comparative field trials.
In fact,  combining the information on ge-
netic  variation  and  adaptive  potential  of
species  in  NFI  datasets  would  provide  a
very useful tool to detect marginality, pos-
sibly useful MaPs, and help their manage-
ment.  For  instance,  all  forest  populations
lying close to the boundary of suitable/un-
suitable  niche  space  in  suitability  maps
(e.g.,  5%-10%-20%  of  probability  of  detec-

tion) may be studied as candidates for eco-
logical marginality. 

The Italian peninsula is widely recognized
as a forest biodiversity hotspot (Petit et al.
2003, Noce et al. 2016) based on studies of
the  environment  and  climate  conditions
developed for PDM at a regional scale. The
genetic  resources  of  mesophilic  species
will  be increasingly endangered under  cli-
mate change,  and the probability of  their
retreat or disappearance is high. Moreover,
because of their adaptive potential and/or
phenotypic  plasticity,  southern  popula-
tions may be transferred to more northerly
latitudes for conservation purposes and/or
to improve the resilience of northern and
central-European  forests  under  climate
change. In this context, a typical example is
the European silver fir from Serra S. Bruno
(Calabria, Italy – Kerr et al. 2015).

New  interesting  scenarios  may  be  ex-
plored using the PDM approaches,  which
could  help  establish  effective  recommen-
dations  and  guidelines  to  face  climate
change.  On  the  one  hand,  local  models
(i.e.,  ecological  groups)  may be more ap-
propriate to predict small endangered pop-
ulations  recognized  as  ecologically  mar-
ginal.  On  the  other  hand,  MaP  conserva-
tion  protocols  may  be  studied,  including
gene  pool  improvement  using  material
from different ecological zones that is pre-
dicted to  grow and adapt well  in  the  se-
lected MaP. The possible introduction into
endangered populations of new genotypes
from  different  ecological  regions  already
adapted to forest ecosystems in projected
climates,  will  require  additional  informa-
tion which is not provided in NFIs, but that
can be inferred through the projected spa-
tial  distribution  of  genetic  diversity  (Lira-
Noriega & Manthey 2014).

Conclusions
The PDM approach used in this study may

represent a valuable step forward for spa-
tial  analysis,  thanks  to  the  possibility  of
modelling each group separately. Although
statistically-designed and characterized by
a wide range of ancillary data, the informa-
tion from NFIs can improve the high-resolu-
tion  species  distribution  models  and  the
provenance  suitability  models,  going  be-
yond  the  simple  concept  of  “ecological
suitability”.  All  the  unweighted  methods
presented in this study show a high proba-
bility of detection of genotypes within mar-
ginal  forest  populations.  Exact  spatial  co-
ordinates of plots and additional informa-
tion on site quality such as stand age and
or site index are required to weight pres-
ence/absence  properly,  and  to  test  new
evaluation methods. In our opinion, novel
evaluation criteria should be developed to
complement the classical true skill statistic
(TSS),  the  area  under  the  receiver  oper-
ating  characteristic  curve  (AUC,  ROC  or
AUROC)  or  Cohen’s  Kappa.  For  instance,
wBAA and wPDM approaches could be val-
idated using site index and average volume
increment for each inventory plot. Fertility

and average growth can not be currently
derived from the Italian National Forest In-
ventory  (INFC2005)  because  age  is  cur-
rently missing and only current volume in-
crement is available.
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