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Many ecological studies require long-term time series of high quality. Missing
data may represent a serious problem since they can affect the reliability of
measured variables in specific  locations.  To which extent and according to
which methodology a gap in time series should be filled is a major research
challenge. In this study, the time-series of meteorological data relative to 13
monitoring sites from the ICP-Forest network in Italy were analysed with the
aim to define the minimum number of site-specific observations, which can be
considered  adequate  for  further  analysis  on  forest  resource  management.
Three main climatic variables were taken into account in the analysis: air tem-
perature, relative humidity and total precipitation. By using an increasing pro-
portion of available data, descriptive and inferential statistic methods were
applied  to  evaluate  the  amount  of  variability  along  the  period  of  analysis
(1998-2013) and associated error of estimation at seasonal level. The relative
importance of each factor accounted in our analysis (season, year, variable,
plot, sampling proportion) was investigated fitting a Random Forest model on
the results of the bootstrapping procedure. Air temperature was the variable
with a marked seasonal profile and the easiest to be represented at monthly
level on a specific time period. Humidity and precipitation were more stable
across the analysed time period. Trends in precipitation showed that a high
amount of variability could be detected only when > 80% of valid observations
were available. Humidity showed an intermediate pattern, with an exponen-
tial increase in the amount of explained variability when using an increased
proportion of sampled observations. Random Forest Regression models indi-
cated sampling proportion (i.e., number of available observations) as an im-
portant factor for trend analysis of relative air humidity and precipitation. We
conclude that monthly or seasonal statistics can be proficiently estimated for
both air temperature and relative humidity with a proportion of missing values
higher  than 50%.  Conversely,  a  reliable  analysis  of  intra-seasonal  or  intra-
monthly precipitation variability requires a much higher amount of observa-
tions. In the latter case gap filling represents the only feasible solution.
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Introduction
A  periodic  evaluation  of  meteorological

parameters in forest sites can have a cen-
tral  role  for  the  quantification  of  forest
response to the climate condition and to
balance future management guidelines and
forestry  (Williams & Dumroese 2013,  Bus-
sotti  & Pollastrini  2017).  In the recent de-

cades the climatological aspect gained an
increasing  attention  also  in  the  forestry
field  due  to  direct  effects  on  forest  re-
sources (Perdinan & Winkler 2014, Schueler
et al.  2014,  Fady et al.  2016,  Marchi et al.
2016),  which  in  turn  are  fundamental  to
preserve  ecosystem  services  biodiversity
and multi-functionality by means of a sus-

tainable forest management (Di Salvatore
et al. 2013,  Marchetti et al. 2014,  Salvati et
al.  2016).  Minimum requirements for  eco-
logical studies are generally long-term time
series of meteorological variables collected
in the environment under investigation or
at least in forest sites as close as possible
to the studied environment.  For  this  pur-
pose, many meteorological networks have
been implemented in connection with  re-
search  activities  and  are  currently  main-
tained by public programs. The institutional
commitment  implies  that  the  higher  the
density of a meteorological network is, the
more financial efforts in term of man and
operational costs are required to ensure an
adequate consistency of the data. ICP-For-
ests  monitoring  network  was  established
in  1985  under  the  Convention  on  Long-
range  Trans-boundary  Air  Pollution  (CLR-
TAP) of the United Nations Economic Com-
mission for Europe (UNECE) with the intent
of monitoring climate change effects and
human-related pressure  on forest  ecosys-
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tems.
A robust quality check to ensure the ab-

sence  of  missing  periods  and  storage  er-
rors is always mandatory and several statis-
tical techniques have been adopted to fill
gaps in climatic data series (Eischeid et al.
2000,  Hastie et al.  2008,  Ziche & Seidling
2010). Such methods depend more on the
availability of data rather than complexity.
In  case  of  interpolation  of  climatic  sur-
faces, a key role is played by the represen-
tativeness  of  the meteorological  network
often masked by a regular spatial coverage
that  does  not  take  into  account  all  the
physiographic  features  of  a  given  spatial
extent, which play a major role in climate
variability (Bhowmik & Costa 2014,  Marchi
et al. 2017a).

Thanks  to  the  diffusion  of  web  knowl-
edge and data storage, many climatic data-
sets are freely available, generally provided
as  global  datasets  with,  in many cases,  a

spatial  grid  of  approximately  1  km  cell.
Even assuming that statistical downscaling
and interpolations are correct for a given
site of  interest, the representativeness of
the obtained dataset requires careful eval-
uation. To achieve this goal, linear regres-
sion  methods  were  adopted,  comparing
trends  of  interpolated data  with  the  real
data collected  in  situ (Amodei  et al.  2012,
Marchi  et  al.  2015).  Such simple  methods
consider the amount of explained variance
and the p-value of the slope parameter as
diagnostic indexes of representativeness.

In  this  paper,  the  meteorological  time-
series data relative to 13 monitoring sites in
Italy  has  been  analysed  with  the  aim  of
defining the minimum number of valid data
to be considered representative and ade-
quate  for  further  analysis.  Three  climatic
parameters (air  temperature,  air  humidity
and precipitation) were extracted from the
Italian ICP-Forests meteorological network

collected between 1998 and 2013. Then, an
increasing  number  of  records  were  pro-
gressively removed using a bootstrap repe-
tition,  following  evaluation  of  the  repre-
sentativeness  of  the  remained  records  in
terms of error of estimation and explained
variance on the whole climatic period.

Material and methods
The climatic data studied in this research

were  collected  in  a  16-year  period  (1998-
2013) from the Italian monitoring network
represented  by  13  test  sites  around  the
whole  country  (Fig.  1).  This  network  was
designed  in  the  framework  of  the  ICP-
Forests monitoring program, which proba-
bly represents one of the most important
sources  of  information  for  forest  re-
searchers at European level (Allegrini et al.
2009). As many other European Countries,
ICP-Forests  monitoring network in  Italy  is
structured  in  two  levels  of  detail.  The
extensive network (LEVEL I) is much more
represented  and  was  established  in  1985
with 243 plots units across the whole for-
ested area of Italy. The intensive network
(LEVEL II) is more recent, designed in 1995
under  the  “National  Integrated  Pro-
gramme  for  Forest  Ecosystems  Monitor-
ing” (CONECOFOR) with  a non-probabilis-
tic  scheme  and  implemented  between
1999 and 2003. LEVEL II sites are designed
to collect intensive and long-term forestry-
related characteristics, such as local meteo-
rology, deposition, crown condition, foliar
chemistry,  wood  increment,  carbon  stor-
age. The most representative sites selected
are  Holm  oak  forests,  flood-plain  forests,
Norway  spruce  stands,  beech  and  Euro-
pean larch forests (Bertini et al. 2011,  Mar-
chi  et  al.  2017b).  All  the  structural  forest
types  (i.e.,  high  forests,  stored  coppices,
transitory  crops)  are  well  preserved  ma-
ture stands in line with the ICP-Forests pur-
pose,  which  is  to  investigate  climate
change and human impacts on forests.

One of the main features of the ICP-For-
ests network is the availability of local me-
teorological  data,  with  a  meteorological
station located in each ICP-Forest plot. The
ICP-Forests meteorological network in Ita-
ly,  one  of  the  most  climatically-heteroge-
neous countries in Europe, revealed mean
annual  temperature  ranging  between
-0.9 °C and 15.1 °C, and total annual precipi-
tation  comprised  between  595  mm  and
1528  mm.  The  detected  variables,  moni-
tored continuously at 10 second time reso-
lution are air temperature for the profile of
0.1  m  and  2  m  (AT01  and  AT2),  relative
humidity for the profile of 0.1 m and 2 m
(RH01  and  RH2),  precipitation  (PR)  and
snow height (SH). Each meteorological sta-
tion is equipped with power unit and data
logger.  Climatic  variables  are  stored  in  a
database aggregated to a temporal resolu-
tion of 1  day. All  the measurements were
conducted below the canopy and the main
features  of  each  location  are  reported  in
Tab. 1.

In this  work, the time lapse between 1th
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Fig.  1 -  Geographic  distribution of  the ICP-Forests plots.  The plots included in  this
study are marked with an asterisk.
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January 1998 and 31th December 2013 has
been analysed with 1-day sampling interval
for a total of 5844 records. As a first step,
we determined the proportion of missing
data  over  the entire  time series  for  each
meteorological  station,  considering  AT2
and RH2 representative of AT01 and RH01,
respectively (Tab. 2).

Two methods of statistical analysis were
performed to obtain estimators aiming at
(1)  evaluating  the  error  of  estimation  at
seasonal level using an increasing propor-
tion of available data using the Mean Abso-
lute Relative Error (MARE); and (2) evaluat-
ing the amount of  explained variance (r2)
along  the  whole  analysed  period  (1998-
2013) estimating the monthly  mean value
with the same procedure. The MARE was
calculated as (eqn. 1):

(1)

where γ ̂and γ represent the estimated and
the observed seasonal value of AT2 or RH2
or PR, respectively. For each proportion of
sampling from 1% to 99% with an increase
step of +1% (i.e.,  98 repetitions in total) a
unique  value  of  MARE  per  each  climatic
variable was calculated.  In order to avoid
biases,  a bootstrap procedure was  imple-
mented by repeating a random extraction
of seasonal values. For each sampling pro-
portion  between  1%  and  99%,  10,000  ran-
dom  extractions  were  computed.  Then,
the final MARE was obtained by averaging
the  10,000  repetitions.  To  facilitate  our
evaluation, daily  records were grouped in
triplets  of  months  (season  I:  January-
March;  season  II:  April-June;  season  III;
July-September;  season  IV:  October-De-
cember).  Concerning the second analysis,
we adopted a linear regression approach.
A  linear  model  was  fitted  using  the  esti-
mated monthly average values (γ’) as inde-
pendent variable and the observed values
(γ) as dependent value. Then the amount
of explained variance (r2 of the fitted mod-
el) was calculated as follows (eqn. 2):

(2)

where γ ̂is the predicted value of the linear
model. Finally, all the results (MARE and r2

for each intensity of sampling) were mod-
elled using the a  Random Forest  (RF)  re-
gression  model  (Breiman  2001)  to  assess
the influence of  each variable (i.e.,  moth,
season,  year,  climatic  variable,  sampling
proportion)  and  with  the  purpose  of
understanding  the  most  relevant  drivers.
The importance of each predictive variable
was estimated from permuting Out-Of-Bag
(OOB) data by recording, for each tree, the
prediction  error  (Mean  Square  Error)  on
the  OOB  portion  of  the  data.  Then,  the
same  procedure  was  adopted  after  per-
muting each predictor variable. The differ-
ence  between  the  two values  were  then
averaged over all trees, and normalized by
the standard deviation of  the  differences

(Hastie et al. 2008). All the statistical analy-
sis and the RF were implemented in R soft-
ware (R Core Team 2017).

Results
Fig. 2 clearly shows the MARE of AT2, RH2

and PR plotted against the sampling pro-
portion  used  to  estimate  the  seasonal
mean. While for season II and season III an
almost uniform and small MARE was calcu-

lated across all the sites (plots), a much dif-
ferent result was obtained for season I and
season  IV.  For  these  seasons,  the  boot-
strap procedure for AT2 resulted in a MARE
around 500% with a sampling proportion of
60% of the total seasonal days. Particularly
for season IV,  an almost flat  line for RH2
and PR was observed against a very unsta-
ble AT2. We conclude that among the three
variables tested in this study, AT2 showed
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Tab. 2 - Characteristics of the climatic time series between January 1998 and Decem-
ber 2013. (AT01, AT2): air temperature at 0.1 m and 2 m, respectively; (RH01, RH2): rel -
ative humidity at 0.1 m and 2 m, respectively; (PR): precipitation.

ICP-Forests 
plot Data AT01 AT2 RH01 RH2 PR

ABR1 Valid (%) 20.8 76.5 16.8 0.0 71.5
Missing (%) 79.2 23.5 83.2 100.0 28.5

BOL1 Valid (%) 0.0 45.5 0.0 0.0 47.9
Missing (%) 100.0 54.5 100.0 100.0 52.1

CAL1 Valid (%) 51.3 50.5 51.3 0.0 51.2
Missing (%) 48.7 49.5 48.7 100.0 48.8

EMI1 Valid (%) 97.5 97.5 97.9 0.0 97.9
Missing (%) 2.5 2.5 2.1 100.0 2.1

EMI2 Valid (%) 54.3 54.8 48.6 0.0 52.7
Missing (%) 45.7 45.2 51.4 100.0 47.3

FRI2 Valid (%) 82.2 82.2 82.2 0.0 78.0
Missing (%) 17.8 17.8 17.8 100.0 22.0

LAZ1 Valid (%) 94.7 94.6 94.7 0.0 95.3
Missing (%) 5.3 5.4 5.3 100.0 4.7

LAZ2 Valid (%) 0.0 42.1 0.0 42.0 42.0
Missing (%) 100.0 57.9 100.0 58.0 58.0

LOM1 Valid (%) 0.0 40.8 0.0 40.8 40.8
Missing (%) 100.0 59.2 100.0 59.2 59.2

PIE1 Valid (%) 70.7 70.7 70.7 70.7 70.7
Missing (%) 29.3 29.3 29.3 29.3 29.3

PUG1 Valid (%) 0.0 27.5 0.0 27.5 27.5
Missing (%) 100.0 72.5 100.0 72.5 72.5

TRE1 Valid (%) 89.1 89.1 89.1 89.1 89.1
Missing (%) 10.9 10.9 10.9 10.9 10.9

VEN1 Valid (%) 82.1 85.2 82.3 84.1 84.1
Missing (%) 17.9 14.8 17.7 15.9 15.9
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r 2=
∑ (γ̂ −γ̄ )

2

∑ (γ −γ̄ )
2

MARE=
|γ̂−γ|

γ

Tab. 1 - Selected climatic variables in the study area. (Tmean): mean temperature; (Tdiff):
temperature difference; (Py): annual precipitation; (Ps): summer precipitation; (DD5):
degree days > 5 °C; (HCMD): Hargreaves climatic moisture deficit.

ICP-Forests
plot

Tmean

(°C)
Tdiff

(°C)
Py

(mm)
Ps

(mm) DD5 HCMD

ABR1 7.7 17.6 765 280 1661 195
BOL1 3.9 17.2 999 555 967 0

CAL1 12.4 16.0 952 184 2819 336
EMI1 12.5 21.8 715 274 3053 317

EMI2 9.3 18.5 1376 428 2063 95
FRI2 7.6 19.4 1457 688 1783 0
LAZ1 12.2 18.3 649 245 2801 315

LAZ2 15.1 14.9 821 176 3787 421
LOM1 -0.9 15.1 1470 800 257 0

PIE1 7.4 17.7 1528 733 1629 0
PUG1 11.9 17.4 595 211 2687 268
TRE1 4.1 17.0 915 534 1001 0

VEN1 12.1 21.2 1421 649 2946 34
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Fig. 2 - Relationship between the MARE and the increasing proportion of days sampled with the seasonal analysis for the three
studied variables
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Fig. 3 - Amount of climatic variability explained when an increasing proportion of monthly values (days) is sampled in the considered
climatic period (1998-2013). The red line and the blue line correspond to the average value and the fitted exponential model.
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the statistically  lowest  seasonal  accuracy,
although this could be due to the presence
of outliers.

Regarding the representativeness across
the  whole  time  period,  different  results
were  obtained  for  each  variable.  Results
for the three variables are reported in Fig.
3 where  observations  are  fitted  using  a
negative exponential model, showing an r2

of  0.98,  0.94  and  0.93  when  fitting  AT2,
RH2 and PR, respectively. The relationship
with the sampling proportion showed that
AT2  was  the  variable  with  the  highest
amount of explained variance (higher than
85%) with a sampling intensity of 10%. Con-
versely,  PR showed a much more regular
trend  with  an  almost  linear  shape.  RH2
revealed  an  exponential  increase  until
reaching 50% of the sampling proportion.

The  Random  Forest  algorithm  (RF)  was
run on the obtained result.  In a first test
the MARE was modelled as a combination
of all the covariates. In the second test the
amount  of  explained  variance  was  mod-
elled without the “season” term. The im-
portance of  each predictor  is  reported in
Tab.  3.  In  the  seasonal  analysis  the  sam-
pling proportion (i.e., number of available
observations) was  found to be a  less im-
portant  variable compared to  the  others,
which were well  balanced and not signifi-
cantly different between each other, with
a RF covering 62% of  the total  variability.
On the other side, the RF run on the results
of the trend analysis showed that sampling
proportion  and  the  studied  climatic  vari-
able  were  the  most  relevant  predictors,
much  more  important  than the  meteoro-
logical  station  and  the  year,  with  an
amount of explained variance of 92.3%.

Discussion
In a changing environment, stable and re-

liable climatic data represent a fundamen-
tal resource to investigate the adaptability
of  forest  systems.  Many  environmental
and modelling studies are focused on long-
term climatic  averages  (e.g.,  climatic  nor-
mal over a 30 years period) to determine
the  effects  of  climate  change  on  forest
populations (Isaac-Renton et al. 2014, Mar-
chi  et  al.  2016).  However,  an  increasing
degree of representativeness is needed in
studies that require a higher temporal-res-
olution,  such as  dendrochronology (Amo-
dei et al. 2012,  Marchi et al. 2015), or stud-
ies  based  on  seasonal  effects  on  plant

growth (Rathgeber et al. 2011, Savi & Fares
2014,  Kramer  et  al.  2017).  The  more  de-
tailed  the  analysis  is,  the  more  accurate
and continuous the database should be. In
such cases, missing data and outliers have
to be identified and treated before further
analysis  in order to avoid possible biases.
The presence of missing values in a dataset
can  heavily  affect  any  kind  of  analysis
(Schneider 2001), bringing to false expecta-
tions  or  underestimation  of  natural  pro-
cesses.  To  improve  such  datasets  at  re-
gional  level,  the  statistical  downscaling
with  laps-rate  regressions  (Ramirez-Ville-
gas & Jarvis 2010, Flint & Flint 2012, Ray et
al.  2015) or the use of statistical methods
such as the Singular Values Decomposition
(Bretherton et al. 1992, Wallace et al. 1992)
may represent the only alternative to the
interpolation  of  local  climatic  data  from
monitoring  networks.  When  long  time
series are needed, data collected from web
portals such as the CRU database (https://
crudata.uea.ac.uk/cru/data/hrg/),  custom
queries using stand-alone software (Wang
et al. 2012) or object-oriented web portals
(e.g., http://climexp.knmi.nl) may represent
the only solution. Our findings clearly high-
light  that,  in case of  monthly or seasonal
average values,  very few records can still
allow accurate  analysis  of  climate  trends.
Especially in the case of PR and RH2, a very
small  MARE  was  detected  with  a  limited
amount  of  measurements  (<10%).  AT2
showed a much wider difference between
seasons,  although  we  ascribe  this  to  the
presence of outliers, especially at ABR1 and
FRI2 where the mean value of monthly air
temperature is close to zero. In particular,
while  a  similar  standard  deviation  was
found for almost all the plots in the same
months, in FRI2 the coefficient of variation
of  AT2  was  much  higher  than  any  other
meteorological station. As a consequence,
the high MARE in AT2 was mainly due to
the small  mean values in season I and IV,
where most of the months are character-
ized by a low mean temperature.  Results
suggested that more attention on data col-
lection should be paid during cold seasons
given  that  almost  all  the  meteorological
stations experienced high air temperature
values at least during the season II and III
across almost the whole Italy. Under future
climate changes a fundamental role will be
played by extreme events, recognized as a
high peak or depression after and before

an almost stable climatic situation. Actually
extreme events  have been demonstrated
to have a fundamental role for forest sys-
tems and plants communities even in Me-
diterranean areas (Eilmann & Rigling 2012,
Lelieveld  et  al.  2012,  Barros  et  al.  2017,
Ummenhofer & Meehl 2017) and such rare
and unpredictable events will require even
more accurate and gap-free time-series to
understand the effects of these events on
forest ecosystems.

Although trend analysis showed that AT2
was the most seasonal-dependent variable,
a  low  amount  of  data  is  required  for  its
monthly  representativeness.  On  the  con-
trary,  the  trend  analysis  showed  that  PR
requires  consistent  database  (>  80%  of
valid  data)  to  avoid  relevant  biases.  RH2
showed  an  intermediate  behaviour  be-
tween  AT2  and  PR  with  an  exponential
increase of the amount of  explained vari-
ability  with  an  increased  proportion  of
sampled  days.  This  may  be  explained  by
the  intrinsic  temporal  autocorrelation  of
such climatic parameters. Indeed, air tem-
perature values are much more autocorre-
lated than relative humidity and precipita-
tion.

In conclusion, our results may play a fun-
damental role both in case of local analysis
(forest type – local climate) but also for the
purpose of site comparison. Indeed, many
efforts were spent to homogenize climate
time-series for different sites by means of
spatial interpolation with the use of exter-
nal  climate  data  (Ziche  &  Seidling  2010),
which expose to the risk of adopting unre-
alistic  values.  We  demonstrated  instead
that when minimum requirements are ac-
complished  (i.e.,  number  of  records  per
unit of time), the use of external databases
may  be  avoided.  This,  of  course,  still  im-
plies that a rigorous data check for outliers
should  be  performed.  When  monthly  or
seasonal  accuracy  is  required  for  trend
analysis,  a high proportion of missing val-
ues  can  be  accepted  in  case  of  AT2  and
RH2,  but not for PR due to the intra-sea-
sonal or intra-monthly variability of the lat-
ter parameter. Although not the object of
this study, when a higher resolution is re-
quired (daily or weekly) gap filling such as
Singular  Value  Decomposition  or  external
interpolated data may represent the only
feasible solution.

Conclusions
Time series represent the time-evolution

of the meteorological dynamic process and
are fundamental to evaluate patterns and
responses  of  forest  species  to  climate
changes. Accounting for forest response to
climate is  functional  to sustainable forest
management.  When  monthly  or  seasonal
average values are needed, our results indi-
cate that statistics can be proficiently esti-
mated for both air  temperature and rela-
tive humidity with a proportion of missing
values higher than 50%. Conversely, the in-
tra-seasonal  or intra-monthly variability  of
precipitation  requires  a  higher  density  of
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Tab. 3 - Variables importance (% increment of MSE) when used as predictors in a Ran -
dom Forest regression model. (n/i): not included.

Predictor
Seasonal
analysis

Trend
analysis

Sampling Proportion 27.5 1267.8
Station 69.3 257.7
Variable 66.1 1366.4
Year 67.3 195.1
Season 72.5 n/i
Var. Explained by the model (%) 62.1 92.3
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observations.  In  this  case  gap  filling  may
represent the only possibility to avoid rele-
vant  biases.  New  emerging  technologies
have the potential to increase the robust-
ness of the dataset thanks to remote con-
trol  of  measured  parameters  via wireless
systems,  especially  in  remote  area where
access is often costly and difficult, particu-
larly  in  cold  seasons  when,  as  demon-
strated in  this  study,  a  higher  amount of
measurements is needed to ensure data of
good  quality.  Recent  achievements  ob-
tained  in  the  framework  of  EU  funded
projects  such as  SMART4ACTION showed
that  saving  on  maintenance  costs  of  the
stations and keeping a high level of accu-
racy in the measured values is possible.
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