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Moisture in modified wood and its relevance for fungal decay
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Water plays an essential role in fungal decay of wood, and limiting the cell wall
moisture content by chemical modification can effectively improve the dura-
bility of the material. Investigating the wood-water relations of modified mate-
rial under climatic conditions relevant for fungal decay are, however, experi-
mentally challenging. Most studies in literature therefore focus on moisture
sorption under conditions outside those of importance for fungal decay. This
review discusses the validity of such data for characterising the wood-water
relations at very humid climatic conditions, relevant for fungal decay. More-
over, the review attempts to cover the basics of fungal decay, the important
role of water, and how controlling water content by modification can improve
durability.
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Introduction
Some of the most widespread, economi-

cally important, and devastating wood-de-
caying organisms are basidiomycetes fungi
(Viitanen & Ritschkoff 1991, Duncan & Lom-
bard 1965,  Alfredsen et  al.  2005,  Schmidt
2007). A lot of research is therefore dedi-
cated  to  understand  their  degradation
mechanisms and the basic conditions nec-
essary for decay (Alfredsen et al. 2013, Thy-
bring  2013,  2017,  Ringman  et  al.  2014a,
2014b,  2017,  Zelinka et al.  2016b,  Kirker et
al. 2017,  Ormondroyd et al. 2017), in order
to prevent fungal attack of wood. Protec-
tion  of  wood  structures  has  traditionally
been accomplished by  using toxic  preser-
vative systems, i.e., fungicides, but environ-
mental  concerns  and  restrictions  of  their
use have increased the focus on non-toxic
alternatives such as chemical modification
(Hill  2006).  A  large  number  of  physico-

chemical  modification  processes  exist
aimed at improving various aspects of the
performance of wood materials. In this re-
view, the focus is on modifications target-
ing an improved durability,  and how their
performance is linked to wood-water rela-
tions  of  the  modified  material.  Recent
years  have  seen  several  new  findings  re-
garding  the  protection  mechanism,  and
this reviews attempts to cover both the ba-
sics of fungal decay, the important role of
water, and how controlling water content
by modification can improve durability.

Fungal decay mechanisms and the 
importance of water

Fungi employ enzymes for the conversion
of  cell  wall  polymers  into  smaller  frag-
ments which can be consumed. However,
as cell  wall pores, even in the water-satu-
rated state, are too small  for enzymes to
enter  (Srebotnik  et  al.  1988,  Daniel  et  al.
1989, 1990, 2004), fungi break up cell walls
by  oxidative  action  (Cragg  et  al.  2015).
While  fungi  classified  as  white-rot  fungi
rely  on  enzymes  for  this  task  (Vaaje-Kol-
stad et al. 2010, Hori et al. 2013, Riley et al.
2014),  another  class  of  fungi  termed
brown-rot fungi have evolved a non-enzy-
matic strategy based on Fenton chemistry
to disrupt cell walls in the initial stage of at-
tack  (Goodell  et  al.  1997,  Xu  &  Goodell
2001,  Halliwell  2003,  Arantes  &  Milagres
2007,  Hastrup  et  al.  2013,  Schilling  et  al.
2013,  Ringman  et  al.  2014a,  Zhang  et  al.
2016). It is speculated that through trans-
portation of chelated iron ions into wood
cell walls and reaction of these with hydro-
gen peroxide, brown-rot fungi create high-
ly  reactive  free  radicals  which  disrupt
chemical  bonds  of  the  cell  wall  constitu-
ents.  This  mechanism  can  work  at  a  dis-
tance of several microns from the fungi to

create pathways within cell walls, through
which  the  lignocellulolytic  enzymes  can
penetrate (Grethlein et al.  1984,  Grethlein
1985, Wong et al. 1988, Arantes & Milagres
2007,  Arantes  et  al.  2011,  Ringman  et  al.
2014a,  Hosseinpourpia & Mai 2016c). That
such a combination of non-enzymatic and
enzymatic degradation machinery is effec-
tive is apparent from the high relative oc-
currence (73-85 % of cases) of brown-rot in
decaying  wooden  structures  compared
with white-rot decay (Duncan & Lombard
1965, Viitanen & Ritschkoff 1991,  Alfredsen
et al. 2005, Schmidt 2007).

A  prerequisite  for  fungal  decay  is  suffi-
cient  ambient  temperature  and  moisture
conditions  of  the  wood.  Being  a  hygro-
scopic  material,  wood  can  absorb/desorb
and  exchange  water  molecules  with  the
surrounding  air.  Water  in  wood,  often
termed moisture, can be found both within
cell walls as bound water and outside cell
walls in the wood void structure (pits,  lu-
mens,  vessels,  etc.)  as  capillary  water  or
vapour (Engelund et al. 2013). The moisture
distribution  between  cell  walls  and  voids
depends on the climatic  conditions.  Thus,
for  relative  humidity  (RH)  levels  up  to
about  97-98  %,  the  moisture  content  in
equilibrium with  the ambient  RH is  domi-
nated  by  bound  water  (Engelund  et  al.
2010). However, as the RH approaches sat-
uration  (100%  RH)  the  contribution  from
capillary  water  held  in  the  void  structure
becomes  significant  and  eventually  domi-
nates the moisture content at very high (>
99  %)  RH  (Stone  &  Scallan  1967,  Griffin
1977, Fortin 1979, Cloutier & Fortin 1991, Al-
meida & Hernandez 2006,  Almeida & Her-
nandez 2007,  Fredriksson et al. 2013,  Fred-
riksson  &  Johansson  2016).  In  line  with
common practice within building materials
research, the RH-range from 0% to 97-98 %
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is  in  this  review  referred  to  as  “hygro-
scopic” and the range above as “over-hy-
groscopic” (see Fig. 1).

It is often assumed that liquid water, e.g.,
capillary water in the wood void structure,
should be available for fungal decay to be
possible  (Kirk  &  Cowling  1984,  Schmidt
2007). While it is evident that fungal decay
is only relevant at high RH (Fig. 1) and that
in general wood moisture contents of 40-
70 % are most favourable for decay (Viita-
nen & Ritschkoff 1991), the essential pres-
ence of capillary water is questionable. For
instance,  the  lowest  RH  capable  of  sup-
porting brown-rot decay is around 92-97 %
RH (Griffin 1977, Clarke et al. 1980, Viitanen
1997,  Schmidt  2007),  the  exact  threshold
depending on temperature and fungal spe-
cies  (Viitanen  1997).  Wood  in  equilibrium
with this level of RH only contains minus-
cule  amounts  of  capillary  water  that  is
found  in  pores  smaller  than  70  nm.  For
Norway spruce, this amount of water out-
side cell walls is of the order of 10 µg water
per gram wood (Engelund et al. 2010). The
question of  whether capillary water is es-
sential  for  fungal  decay  is,  however,  ob-
scured by experimental limitations. It is dif-
ficult to maintain a stable climate above 97
% RH (Griffin 1977), and studies of moisture
in  wood  in  the  over-hygroscopic  regime
therefore requires special techniques,  e.g.,
pressure plate. For this reason, studies on
the effect of  initial  wood moisture condi-
tions on fungal decay often employ wood
specimens  exposed  to  liquid  water  and
perhaps  partially  dried  to  specific  wood
moisture  contents  (Peterson  &  Cowling
1973). This inevitably causes moisture gra-
dients in the specimens, but further com-
plications  arise with  controlling  the mois-
ture conditions during decay tests (Ammer
1964).  During  such  tests  both  the  hygro-
scopicity  of  the  material  changes  (Buro
1954,  Ammer 1963,  Schultze-Dewitz  et  al.
1969, Winandy & Morrell 1993, Anagnost &
Smith 1997), and the amount of water in-
creases  due  to  fungal  respiration  (Mez
1908, Hoffmann 1910,  Lehmann & Scheible

1923, Weigl & Ziegler 1960,  Thybring 2017).
These issues of lack of climate control and
changes in the substrate during the tests
seriously  complicate the interpretation of
the limiting moisture conditions for decay.

Improving durability by chemical 
modification

Since  sufficient  moisture  conditions  are
central  to  fungal  decay,  it  has  long  been
recognised that durability can be obtained
by  keeping  wood  dry  (Levi  1973,  Kirk  &
Cowling 1984, Clausen & Glass 2012). How-
ever, for some applications keeping wood
dry  is  impossible,  e.g.,  under  direct  expo-
sure to rain or in very humid environments.
In  these  cases,  alternative  strategies  are
needed to avoid fungal decay. While tradi-
tional  wood protection depends on  toxic
preservatives,  chemical  modification  im-
proves the durability the modified material
by non-toxic means. The exact mechanisms
behind the increased resistance to fungal
decay observed for several kinds of chemi-
cal modification is not fully clear, but it is
undoubtedly linked with reductions in the
moisture  content  of  cell  walls  (Thybring
2013).  Thus,  even  at  high  moisture  con-
tents  where  fungal  decay  of  untreated
wood  is  possible,  modified  wood  can  be
decay resistant (Cardias 1992, Forster 1998,
Farahani 2003, Williams & Hale 2003, Hill et
al.  2006,  Thybring  2017).  This  illustrates
that the total amount of water available to
fungi is not a predictor of the potential for
wood decay as sufficient cell wall moisture
content  needs  to  be  present  as  already
speculated a century ago (Zeller 1920).

As described previously, investigating the
wood-water  relations  in  the  over-hygro-
scopic regime, relevant for fungal decay, is
challenging. Therefore, the vast majority of
studies of wood-water relations for modi-
fied wood focus on the hygroscopic range,
while  the  over-hygroscopic  range  is  only
covered in two studies on modified wood
(Thygesen et al. 2010, Zauer et al. 2016) and
few more for unmodified wood (Stone &
Scallan  1967,  Griffin  1977,  Fortin  1979,

Cloutier & Fortin 1991,  Almeida & Hernan-
dez  2006,  Almeida  &  Hernandez  2007,
Fredriksson  et  al.  2013,  Fredriksson  & Jo-
hansson  2016,  Zelinka  et  al.  2016a).  This
raises the important question of  whether
observations  about  wood-water  relations
in the hygroscopic range are valid for the
over-hygroscopic  range  as  well.  For  in-
stance,  Thybring  (2013) found  a  common
moisture threshold for decay in several dif-
ferent types of modified wood, where a re-
duction of about 40 % in moisture content
at similar hygroscopic RH conditions (in the
range 30-90 %) was found to correlate with
resistance  to  fungal  decay  across  widely
different  modifications.  One  exception  is
thermally modified wood which is not fully
decay resistant (Kamdem et al. 2002, Welz-
bacher  &  Rapp  2007,  Kymäläinen  et  al.
2015), despite a 40 % reduction in moisture
content under hygroscopic conditions. This
illustrates the need for determining wood-
water relations at moisture conditions rele-
vant for fungal decay (Fig. 1).

Potential mechanisms for 
improved durability of modified 
wood towards brown-rot decay

It is apparent that the durability of wood
can be improved by reducing the cell wall
moisture  content  through  modification,
but  the  actual  mechanism  of  protection
has not yet been resolved. In a recent re-
view,  Zelinka et al. (2016b) discuss the po-
tential  mechanisms  behind  decay  resis-
tance from modification based on the ob-
servation by  Zelinka et al. (2015) that ions
within cell walls have a threshold moisture
content below which they cannot diffuse.
Ion transport in wood has been linked with
the formation of a continuous network of
cell  wall  water  (a percolation threshold  –
Zelinka  et  al.  2008,  Zelinka  & Glass  2010,
Jakes et al. 2013), and limiting the cell wall
moisture  might  prevent  the formation of
such  a  network,  hereby  disrupting  the
physical pathways for transport of solutes.
As the initial stage of brown-rot attack in-
volves the transport of ions into cell walls
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Fig. 1 - Schematic illustra-
tion of sorption isotherms

for wood in absorption
from absolute dry state

(lower black line) and 
desorption from fully

water-saturated state
(upper black line) in the
entire relative humidity

(RH) range.
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(Kirker  et  al.  2017),  it  seems  reasonable
that the formation of a continuous water-
swollen porosity of sufficient pore size is a
prerequisite  for  this  transport.  Hossein-
pourpia & Mai (2016a,  2016b,  2016c) have
conducted a series of  experiments where
modified  wood  veneers  are  exposed  se-
quentially to solutions of iron ions and hy-
drogen peroxide,  mimicking the oxidative
Fenton chemistry of brown-rot fungi. Their
results show that for acetylated and phe-
nol-formaldehyde  modified  wood,  hydro-
gen peroxide is not consumed in a solution
with iron ions and modified wood after 48
hours of exposure given that the modifica-
tion intensity (WPG) is high enough (Hos-
seinpourpia  &  Mai  2016a,  2016b).  More-
over,  controls  of  modified  wood  of  ade-
quately high WPG exposed only to the iron
ion solution did not take up iron during the
48 hour experiment. The threshold WPG in
both cases was consistent with the 17-20 %
WPG  reported  for  acetylated  exposed  in
laboratory  and  field  tests  (Peterson  &
Thomas 1978, Kumar & Agarwal 1983, Taka-
hashi et al. 1989, Beckers et al. 1994, Brelid
et al. 2000, Papadopoulos & Hill 2002, Mo-
hebby 2003, Hill et al. 2006, Papadopoulos
2006,  Brelid  &  Westin  2007,  Hill  et  al.
2009).  For  thermally  modified  wood,  the
uptake of iron ions and consumption of hy-
drogen  peroxide  was  markedly  reduced
during  the  48  hour  exposure  time  for
wood of high modification intensity (Hos-
seinpourpia & Mai 2016c), but no threshold
was found. This indicates that solute trans-
port  is  slowed  but  not  hindered  in  ther-
mally modified wood, since fungal agents
presumably can be transported in the mi-
cro-porosity created as cell wall material is
lost during modification (Kymäläinen et al.
2014,  Kymäläinen et  al.  2015).  If  the pore
size is sufficiently large, enzymes may even
be transported into  the  cell  walls.  This  is
seen for pretreated wood material  where
the water-swollen volume in cell walls ac-
cessible to 5.1 nm probe molecules corre-
lates  linearly  with  hydrolysis  yield  (Greth-
lein et al. 1984, Grethlein 1985, Wong et al.
1988).  Perhaps the durability  of  thermally
modified wood could be optimised further
if  the  created  micro-porosity  could  be
tuned. This would require detailed investi-
gations  of  the  cell  wall  micro-porosity  in
thermally  modified  wood,  and  how  pro-
cessing conditions potentially affect it.

Conclusion
Water plays an essential role in fungal de-

cay of wood, and limiting the cell wall mois-
ture content by chemical modification can
effectively  improve  the  durability  of  the
material. Investigations of the wood-water
relations under climatic conditions relevant
for  fungal  decay  are,  however,  difficult,
and thus many studies focus on the relative
humidity (RH) range below 95 %. While the
cell  wall  moisture content in the over-hy-
groscopic range (> 98 % RH) is  underesti-
mated  by  extrapolation  of  data  obtained
below 95 % RH, the relative reductions in

cell  wall  moisture  content  appear  similar
for acetylated wood. This might not be the
case for other types of modification.

Reductions in cell  wall  moisture content
are thought to prevent fungal decay by hin-
dering transport of fungal agents into the
cell walls, presumably from a disruption of
the continuous water network within cell
walls otherwise found in untreated wood
at high moisture contents.

Acknowledgements
EET  gratefully  acknowledges  financial

support  from  the  VILLUM  FONDEN  Post-
doc programme. KM and LR gratefully ac-
knowledges  financial  support  from  Euro-
pean Regional Development Fund through
South Savo Regional Council from Finland
and  industrial  partners.  The  authors  ac-
knowledge  COST  Action  FP1407  “Under-
standing wood modification through an in-
tegrated  scientific  and  environmental  im-
pact approach (ModWoodLife)”.

References
Alfredsen  G,  Solheim  H,  Jenssen  KM  (2005).

Evaluation of decay fungi in Norwegian build-
ings. IIn: Proceedings of the “International Re-
search Group on Wood Protection”. Bangalore
(India) 24-28 April 2005. Document IRG/WP 05-
10562, IRG, Stockholm, Sweden, pp. 12. [online]
URL:  http://www.researchgate.net/publicatio
n/228818831

Alfredsen G, Flaete PO, Militz H (2013). Decay re-
sistance of acetic anhydride modified wood: a
review. International Wood Products Journal 4:
137-143. - doi: 10.1179/2042645313Y.0000000034

Almeida  G,  Hernandez  RE  (2006).  Changes  in
physical  properties of yellow birch below and
above  the  fiber  saturation  point.  Wood  and
Fiber Science 38: 74-83. - doi: 10.1007/s00226-00
6-0083-8

Almeida  G,  Hernandez  RE  (2007).  Influence  of
the pore structure of wood on moisture des-
orption at high relative humidities. Wood Mate-
rial  Science  and  Engineering  2:  33-44.  -  doi:
10.1080/17480270701538383

Ammer U (1963). Untersuchungen über die Sorp-
tion  pilzbefallenen  Holzes  [Investigations  of
the sorption of fungally attacked wood]. Holz
als Roh- und Werkstoff 21: 465-470. [in German]
- doi: 10.1007/BF02608818

Ammer U (1964). Uber den Zusammenhang zwi-
schen  Holzfeuchtigkeit  und  Holzzerstörung
durch Pilze [On the relationship between wood
moisture  content  and  wood  decay  by  fungi].
Holz als Roh- und Werkstoff 22: 47-51. [in Ger-
man]

Anagnost  SE,  Smith WB (1997).  Hygroscopicity
of decayed wood: Implications for weight loss
determinations.  Wood  and  Fiber  Science  29:
299-305.

Arantes V, Milagres AMF (2007). The synergistic
action  of  ligninolytic  enzymes  (MnP  and  Lac-
case) and Fe3+-reducing activity from white-rot
fungi for degradation of Azure B. Enzyme and
Microbial  Technology 42: 17-22. -  doi:  10.1016/j.
enzmictec.2007.07.017

Arantes  V,  Milagres  AMF,  Filley  TR,  Goodell  B
(2011).  Lignocellulosic  polysaccharides and lig-
nin degradation by wood decay fungi: the rele-

vance  of  nonenzymatic  Fenton-based  reac-
tions.  Journal  of  Industrial  Microbiology  and
Biotechnology 38: 541-555. -  doi:  10.1007/s1029
5-010-0798-2

Beckers EPJ,  Militz H, Stevens M (1994).  Resis-
tance  of  acetylated  wood  to  basidiomycetes,
soft rot and blue stain. In: Proceedings of the
“International  Research  Group on  Wood  Pro-
tection”. Bali (Indonesia) May 29-June 3 1994.
Document  IRG/WP  94-40021,  IRG,  Stockholm,
Sweden,  pp.  11.  [online]  URL:  http://www.irg-
wp.com/irgdocs/details.php?6f675c0e-ad67-
40d7-830f-5d45171a70dd

Brelid  PL,  Westin M (2007).  Acetylated wood -
results from long-term field tests. In: Proceed-
ings of the “3rd European Conference on Wood
Modification” (Hill CAS ed). Cardiff, Wales (UK)
15-16 Oct 2007. BioComposites Centre, Bangor,
UK, pp. 71-78.

Brelid  PL,  Simonson  R,  Bergman  O,  Nilsson  T
(2000). Resistance of acetylated wood to bio-
logical  degradation.  Holz  Als  Roh-und  Werk-
stoff 58: 331-337. - doi: 10.1007/s001070050439

Buro A (1954). Untersuchungen über den Abbau
von  Kiefern:  und  Buchenholz  durch  holzzer-
störende  Pilze  und  deren  Einfluß  auf  einige
physikalische Eigenschaften des Holzes [Inves-
tigations  of  the  decomposition  of  pine  and
beech by  wood-decaying  fungi  and  the  influ-
ence on some physical wood properties]. Holz
als Roh- und Werkstoff 12: 258-267. [in German]
- doi: 10.1007/BF02607789

Cardias  MFC  (1992).  The  protection  of  wood
against  fungal  decay  by  isocyanate  chemical
modification.  PhD thesis,  University  of  Wales,
Bangor, UK, pp. 243.

Clarke  RW,  Jennings  DH,  Coggins  CR  (1980).
Growth of Serpula lacrimans in relation to water
potential  of  substrate.  Transactions  of  the
British  Mycological  Society  75:  271-280.  -  doi:
10.1016/S0007-1536(80)80089-1

Clausen CA, Glass SV (2012).  Build green: wood
can last for centuries. Report no. FPL-GTR-215,
Forest Products Laboratory, USDA Forest Ser-
vice, Madison, WI, USA, pp. 24.

Cloutier  A,  Fortin  Y  (1991).  Moisture-content  -
water potential relationship of wood from sat-
urated  to  dry  conditions.  Wood  Science  and
Technology  25:  263-280.  -  doi:  10.1007/BF0022
5466

Cragg  SM,  Beckham GT,  Bruce  NC,  Bugg  TDH,
Distel DL, Dupree P, Etxabe AG, Goodell BS, Jel-
lison  J,  McGeehan  JE,  McQueen-Mason  SJ,
Schnorr K,  Walton PH, Watts JEM, Zimmer M
(2015). Lignocellulose degradation mechanisms
across the tree of life. Current Opinion in Chem-
ical Biology 29: 108-119. -  doi:  10.1016/j.cbpa.20
15.10.018

Daniel G, Nilsson T, Pettersson B (1989). Intracel-
lular and extracellular localization of lignin per-
oxidase during the degradation of solid wood
and  wood  fragments  by  Phanerochaete  chry-
sosporium  by  using  transmission  electron-mi-
croscopy  and  immuno-gold  labeling.  Applied
and Environmental Microbiology 55: 871-881.

Daniel G, Pettersson B, Nilsson T, Volc J (1990).
Use  of  immunogold  cytochemistry  to  detect
Mn(II)-dependent  and  lignin  peroxidases  in
wood degraded by the white rot fungi  Phane-
rochaete  chrysosporium and  Lentinula  edodes.
Canadian Journal of Botany 68: 920-933. - doi:

iForest 11: 418-422 420

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

http://dx.doi.org/10.1179/2042645313Y.0000000034
http://dx.doi.org/10.1016/j.cbpa.2015.10.018
http://dx.doi.org/10.1016/j.cbpa.2015.10.018
http://dx.doi.org/10.1007/BF00225466
http://dx.doi.org/10.1007/BF00225466
http://dx.doi.org/10.1016/S0007-1536(80)80089-1
http://dx.doi.org/10.1007/BF02607789
http://dx.doi.org/10.1007/s001070050439
http://www.irg-wp.com/irgdocs/details.php?6f675c0e-ad67-40d7-830f-5d45171a70dd
http://www.irg-wp.com/irgdocs/details.php?6f675c0e-ad67-40d7-830f-5d45171a70dd
http://www.irg-wp.com/irgdocs/details.php?6f675c0e-ad67-40d7-830f-5d45171a70dd
http://dx.doi.org/10.1007/s10295-010-0798-2
http://dx.doi.org/10.1007/s10295-010-0798-2
http://dx.doi.org/10.1016/j.enzmictec.2007.07.017
http://dx.doi.org/10.1016/j.enzmictec.2007.07.017
http://dx.doi.org/10.1007/BF02608818
http://dx.doi.org/10.1080/17480270701538383
http://dx.doi.org/10.1007/s00226-006-0083-8
http://dx.doi.org/10.1007/s00226-006-0083-8
http://www.researchgate.net/publication/228818831
http://www.researchgate.net/publication/228818831


Thybring EE et al. - iForest 11: 418-422

10.1139/b90-118
Daniel  G, Volc J, Niku-Paavola ML (2004). Cryo-

FE-SEM  and  TEM  immuno-techniques  reveal
new details for understanding white-rot decay
of  lignocellulose.  Comptes  Rendus  Biologies
327: 861-871. - doi: 10.1016/j.crvi.2004.08.003

Duncan CG, Lombard FF (1965). Fungi associated
with principal decays in wood products in the
United States.  US Department of  Agriculture,
Washington, DC, USA, pp. 31. - doi: 10.5962/bhl.
title.87851

Engelund ET, Thygesen LG, Hoffmeyer P (2010).
Water sorption in wood and modified wood at
high values of relative humidity. Part 2: Appen-
dix.  Theoretical  assessment of the amount of
capillary  water  in  wood  microvoids.  Holzfor-
schung 64: 325-330. - doi: 10.1515/hf.2010.061

Engelund ET, Thygesen LG, Svensson S, Hill CAS
(2013).  A  critical  discussion  of  the  physics  of
wood-water  interactions.  Wood  Science  and
Technology 47: 141-161. - doi:  10.1007/s00226-01
2-0514-7

Farahani MRM (2003). Decay resistance of modi-
fied  wood.  PhD  thesis,  University  of  Wales,
Bangor, UK, pp. 279.

Forster S (1998). The decay resistance of chemi-
cally modified softwood. PhD thesis, University
of Wales, Bangor, UK, pp. 252.

Fortin Y (1979). Moisture content-matric poten-
tial  relationship and water  flow properties of
wood  at  high  moisture  contents.  PhD  thesis,
University  of  British  Columbia,  Vancouver,
Canada, pp. 187.

Fredriksson M,  Johansson P  (2016).  A  method
for  determination  of  absorption  isotherms  at
high relative humidity levels: measurements on
lime-silica brick and Norway spruce (Picea abies
(L.) Karst.). Drying Technology 34: 132-141. - doi:
10.1080/07373937.2015.1041035

Fredriksson  M,  Wadsö  L,  Johansson  P  (2013).
Small  resistive  wood  moisture  sensors:  a
method for moisture content determination in
wood  structures.  European  Journal  of  Wood
and Wood Products 71: 515-524. - doi:  10.1007/
s00107-013-0709-0

Goodell B, Jellison J, Liu J, Daniel G, Paszczynski
A,  Fekete  F,  Krishnamurthy  S,  Jun  L,  Xu  G
(1997).  Low  molecular  weight  chelators  and
phenolic compounds isolated from wood decay
fungi and their role in the fungal biodegrada-
tion of wood. Journal of Biotechnology 53: 133-
162. - doi: 10.1016/S0168-1656(97)01681-7

Grethlein HE (1985). The effect of pore size dis-
tribution on the rate of enzymatic hydrolysis of
cellulosic  substrates.  Nature  Biotechnology  3:
155-160. - doi: 10.1038/nbt0285-155

Grethlein HE,  Allen DC, Converse AO (1984).  A
comparative study of the enzymatic hydrolysis
of acid-pretreated white pine and mixed hard-
wood.  Biotechnology  and  Bioengineering  26:
1498-1505. - doi: 10.1002/bit.260261215

Griffin DM (1977). Water potential and wood-de-
cay fungi. Annual Review of Phytopathology 15:
319-329. - doi:  10.1146/annurev.py.15.090177.001
535

Halliwell B (2003). Free radical chemistry as re-
lated  to  degradative  mechanisms.  In:  “Wood
Deterioration and Preservation” (Nicholas DD,
Shcultz TP, Goodell B eds). American Chemical
Society, Washington, DC, USA, pp. 10-15. - [on-
line]  URL:  http://pubs.acs.org/doi/abs/10.1021/

bk-2003-0845.ch002
Hastrup ACS, Jensen TO, Jensen B (2013). Detec-

tion  of  iron-chelating  and  iron-reducing  com-
pounds in four brown rot fungi. Holzforschung
67: 99-106. - doi: 10.1515/hf-2011-0152

Hill CAS (2006). The use of timber in the twenty-
first century. In: “Wood Modification: Chemical,
Thermal  and  Other  Processes”  (Hill  CAS  ed).
John Wiley and Sons Ltd, Chichester, UK, pp. 1-
18.

Hill  CAS,  Hale  MD,  Ormondroyd GA,  Kwon JH,
Forster  SC  (2006).  Decay  resistance  of  anhy-
dride-modified Corsican pine sapwood exposed
to the brown rot fungus  Coniophora puteana.
Holzforschung 60: 625-629. - doi:  10.1515/HF.20
06.105

Hill  CAS,  Curling SF,  Kwon JH,  Marty  V (2009).
Decay  resistance  of  acetylated  and  hexanoy-
lated hardwood and softwood species exposed
to Coniophora puteana. Holzforschung 63: 619-
625. - doi: 10.1515/HF.2009.124

Hoffmann K (1910). Wachstumsverhältnisse ein-
iger holzzerstörenden Pilze [Growth conditions
for some wood-decaying fungi]. Zeitschrift für
die  gesammten  Naturwissenschaften  82:  35-
128. [in German]

Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett
D,  Henrissat  B,  Cullen  D  (2013).  Genomewide
analysis of polysaccharides degrading enzymes
in 11 white- and brown-rot Polyporales provides
insight  into  mechanisms  of  wood  decay.  My-
cologia 105: 1412-1427. - doi: 10.3852/13-072

Hosseinpourpia R, Mai C (2016a). Mode of action
of brown rot decay resistance in phenol-form-
aldehyde-modified  wood:  resistance  to  Fen-
ton’s reagent. Holzforschung 70: 253-259. - doi:
10.1515/hf-2015-0141

Hosseinpourpia R, Mai C (2016b). Mode of action
of  brown  rot  decay  resistance  of  acetylated
wood:  resistance  to  Fenton’s  reagent.  Wood
Science  and  Technology  50:  413-426.  -  doi:
10.1515/hf-2015-0045

Hosseinpourpia R, Mai C (2016c). Mode of action
of  brown  rot  decay  resistance  of  thermally
modified wood: resistance to Fenton’s reagent.
Holzforschung 70: 691-697. - doi: 10.1007/s0022
6-015-0790-0

Jakes JE, Plaza N, Stone DS, Hunt CG, Glass SV,
Zelinka  SL  (2013).  Mechanism  of  transport
through  wood  cell  wall  polymers.  Journal  of
Forest Products and Industries 2: 10-13.

Kamdem  DP,  Pizzi  A,  Jermannaud  A  (2002).
Durability of heat-treated wood. Holz Als Roh-
und Werkstoff 60: 1-6. - doi: 10.1007/s00107-001-
0261-1

Kirk TK, Cowling EB (1984). Biological decompo-
sition of solid wood. In: “The chemistry of solid
wood” (Rowell RM ed). American Chemical So-
ciety, Washington, DC, USA, pp. 455-487. - [on-
line]  URL:  http://pubs.acs.org/doi/abs/10.1021/
ba-1984-0207.ch012

Kirker G, Zelinka S, Gleber SC, Vine D, Finney L,
Chen S, Hong YP, Uyarte O, Vogt S, Jellison J,
Goodell B, Jakes JE (2017).  Synchrotron-based
X-ray  fluorescence  microscopy  enables  multi-
scale  spatial  visualization  of  ions  involved  in
fungal lignocellulose deconstruction. Scientific
Reports 7: 41798. - doi: 10.1038/srep41798

Kumar S, Agarwal SC (1983). Biological degrada-
tion resistance of  wood acetylated with thio-
acetic  acid.  In:  Proceedings  of  the  “Interna-

tional  Research  Group  on  Wood  Protection”.
Surfers  Paradise,  QLD  (Australia)  9-13  May
1983.  Document  IRG/WP  83-3223,  IRG,  Stock-
holm, Sweden, pp. 13.

Kymäläinen M, Havimo M, Louhelainen J (2014).
Sorption  properties  of  torrefied  wood  and
charcoal. Wood Material Science and Engineer-
ing 9: 170-178. - doi:  10.1080/17480272.2014.916
348

Kymäläinen M, Mäkelä MR, Hildén K, Kukkonen J
(2015).  Fungal  colonisation  and  moisture  up-
take of torrefied wood, charcoal, and thermally
treated pellets during storage. European Jour-
nal of Wood and Wood Products 73: 709-717. -
doi: 10.1007/s00107-015-0950-9

Lehmann KB, Scheible E (1923). Quantitative Un-
tersuchung  über  Holzzerstörung  durch  Pilze
[Quantitative  investigation  of  wood  decay  by
fungi].  Archiv für Hygiene 92:  89-108. [in Ger-
man]

Levi M (1973). Control methods. In: “Wood dete-
rioration  and  its  prevention  by  preservative
treatments” (Nicholas DD ed).  Vol.  1,  chap. 5.
Syracuse University Press,  Syracuse, NY, USA,
pp. 183-216.

Mez C (1908). Der Hausschwamm und die übri-
gen  holzzerstörenden  Pilze  der  menschlichen
Wohnungen [The dry rot fungus and the other
wood-decaying  fungi  in  human  homes].
Richard Lincke, Dresden, Germany, pp. 191-192.
[in German]

Mohebby  B  (2003).  Biological  attack  of  acety-
lated wood. PhD thesis,  Georg-August-Univer-
sität Göttingen, Göttingen, Germany, pp. 147.

Ormondroyd GA, Alfredsen G, Prabhakaran RTD,
Curling  SF,  Stefanowski  BK,  Spear  MJ,  Gob-
akken LR (2017). Assessment of the use of dy-
namic mechanical analysis to investigate initial
onset of brown rot decay of Scots pine (Pinus
sylvestris L.). International Biodeterioration and
Biodegradation 120: 1-5. - doi:  10.1016/j.ibiod.20
17.02.002

Papadopoulos AN, Hill CAS (2002). The biological
effectiveness  of  wood  modified  with  linear
chain carboxylic acid anhydrides against Conio-
phora puteana. Holz Als Roh-und Werkstoff 60:
329-332. - doi: 10.1007/s00107-002-0327-8

Papadopoulos  AN  (2006).  Decay  resistance  in
ground stake test of acetylated OSB. Holz Als
Roh-und Werkstoff 64: 245-246. - doi:  10.1007/
s00107-006-0110-3

Peterson CA, Cowling EB (1973). Influence of var-
ious initial moisture contents on decay of Sitka
spruce and sweetgum sapwood by  Polyporus
versicolor in the soil-block test. Phytopathology
63: 235-237. - doi: 10.1094/Phyto-63-235

Peterson MD, Thomas RJ (1978).  Protection of
wood from decay fungi by acetylation - an ul-
trastructural  and  chemical  study.  Wood  and
Fiber Science 10: 149-163.

Riley  R,  Salamov  AA,  Brown  DW,  Nagy  LG,
Floudas D, Held BW, Levasseur A, Lombard V,
Morin E, Otillar R, Lindquist EA, Sun H, LaButti
KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pis-
abarro AG, Walton JD, Blanchette RA, Henrissat
B, Martin F, Cullen D, Hibbett DS, Grigoriev IV
(2014).  Extensive  sampling  of  basidiomycete
genomes  demonstrates  inadequacy  of  the
white-rot/brown-rot paradigm for wood decay
fungi. Proceedings of the National Academy of
Sciences  USA  111:  9923-9928.  -  doi:  10.1073/

421 iForest 11: 418-422

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

http://dx.doi.org/10.1073/pnas.1400592111
http://dx.doi.org/10.1094/Phyto-63-235
http://dx.doi.org/10.1007/s00107-006-0110-3
http://dx.doi.org/10.1007/s00107-006-0110-3
http://dx.doi.org/10.1007/s00107-002-0327-8
http://dx.doi.org/10.1016/j.ibiod.2017.02.002
http://dx.doi.org/10.1016/j.ibiod.2017.02.002
http://dx.doi.org/10.1007/s00107-015-0950-9
http://dx.doi.org/10.1080/17480272.2014.916348
http://dx.doi.org/10.1080/17480272.2014.916348
http://dx.doi.org/10.1038/srep41798
http://dx.doi.org/10.1007/s00107-001-0261-1
http://dx.doi.org/10.1007/s00107-001-0261-1
http://dx.doi.org/10.1007/s00226-015-0790-0
http://dx.doi.org/10.1007/s00226-015-0790-0
http://dx.doi.org/10.1515/hf-2015-0045
http://dx.doi.org/10.1515/hf-2015-0141
http://dx.doi.org/10.3852/13-072
http://dx.doi.org/10.1515/HF.2009.124
http://dx.doi.org/10.1515/HF.2006.105
http://dx.doi.org/10.1515/HF.2006.105
http://dx.doi.org/10.1515/hf-2011-0152
http://dx.doi.org/10.1146/annurev.py.15.090177.001535
http://dx.doi.org/10.1146/annurev.py.15.090177.001535
http://dx.doi.org/10.1002/bit.260261215
http://dx.doi.org/10.1038/nbt0285-155
http://dx.doi.org/10.1016/S0168-1656(97)01681-7
http://dx.doi.org/10.1007/s00107-013-0709-0
http://dx.doi.org/10.1007/s00107-013-0709-0
http://dx.doi.org/10.1080/07373937.2015.1041035
http://dx.doi.org/10.1007/s00226-012-0514-7
http://dx.doi.org/10.1007/s00226-012-0514-7
http://dx.doi.org/10.1515/hf.2010.061
http://dx.doi.org/10.5962/bhl.title.87851
http://dx.doi.org/10.5962/bhl.title.87851
http://dx.doi.org/10.1016/j.crvi.2004.08.003
http://dx.doi.org/10.1139/b90-118
http://pubs.acs.org/doi/abs/10.1021/ba-1984-0207.ch012
http://pubs.acs.org/doi/abs/10.1021/ba-1984-0207.ch012
http://pubs.acs.org/doi/abs/10.1021/bk-2003-0845.ch002
http://pubs.acs.org/doi/abs/10.1021/bk-2003-0845.ch002


Moisture in modified wood and fungal decay

pnas.1400592111
Ringman  R,  Pilgård  A,  Brischke  C,  Richter  K

(2014a). Mode of action of brown rot decay re-
sistance in  modified wood: a  review. Holzfor-
schung 68: 239-246. - doi: 10.1515/hf-2013-0057

Ringman R, Pilgård A, Richter K (2014b). Effect
of wood modification on gene expression dur-
ing  incipient  Postia  placenta decay.  Interna-
tional Biodeterioration and Biodegradation 86
Part B: 86-91. - doi: 10.1016/j.ibiod.2013.09.002

Ringman R, Pilgård A, Brischke C, Windeisen E,
Richter K (2017). Incipient brown rot decay in
modified  wood:  patterns  of  mass  loss,  struc-
tural  integrity,  moisture and acetyl  content in
high  resolution.  International  Wood  Products
Journal 8: 172-182. - doi: 10.1080/20426445.2017.
1344382

Schilling JS, Duncan SM, Presley GN, Filley TR, Ju-
rgens JA, Blanchette RA (2013). Colocalizing in-
cipient  reactions  in  wood  degraded  by  the
brown rot fungus Postia placenta. International
Biodeterioration and Biodegradation 83: 56-62.
- doi: 10.1016/j.ibiod.2013.04.006

Schmidt  O (2007).  Indoor  wood-decay  basidio-
mycetes:  damage,  causal  fungi,  physiology,
identification and characterization, prevention
and control. Mycological Progress 6: 261-279. -
doi: 10.1007/s11557-007-0534-0

Schultze-Dewitz G, Lenhart K, Peschka F (1969).
Das  Sorptionsverhalten  des  Holzes  verschie-
dener Kiefernarten und der Fichte nach Angriff
durch  Braunfäulepilze  (Basidiomyceten)  [The
sorption  relations  of  wood  of  different  pine
species  and spruce after  attack by brown-rot
fungi  (basidiomycetes)].  Holztechnologie  10:
113-118. [in German]

Srebotnik E, Messner K, Foisner R (1988). Pene-
trability  of  white  rot-degraded  pine  wood by
the  lignin  peroxidase  of  Phanerochaete  chry-
sosporium. Applied and Environmental Microbi-
ology  54:  2608-2614.  [online]  URL:  http://
aem.asm.org/content/54/11/2608.short

Stone  JE,  Scallan  AM (1967).  Effect  of  compo-
nent removal upon porous structure of cell wall
of wood. 2. Swelling in water and fiber satura-
tion point. Tappi 50: 496-501.

Takahashi M, Imamura Y, Tanahashi M (1989). Ef-
fect of acetylation on decay resistance of wood
against brown-rot, white-rot and soft-rot fungi.
In: Proceedings of the “International Research
Group  on  Wood  Protection”.  Lappeenranta
(Finland)  22-26  May  1989.  Document  IRG/WP
89-3540, IRG, Stockholm, Sweden, pp. 16.

Thybring EE (2013). The decay resistance of mod-
ified  wood  influenced  by  moisture  exclusion

and swelling reduction. International Biodeteri-
oration  and  Biodegradation  82:  87-95.  -  doi:
10.1016/j.ibiod.2013.02.004

Thybring EE (2017). Water relations in untreated
and  modified  wood  under  brown-rot  and
white-rot decay. International Biodeterioration
and Biodegradation 118: 134-142. -  doi:  10.1016/
j.ibiod.2017.01.034

Thygesen LG, Engelund ET, Hoffmeyer P (2010).
Water sorption in wood and modified wood at
high values of relative humidity. Part I: Results
for untreated, acetylated, and furfurylated Nor-
way  spruce.  Holzforschung  64:  315-323.  -  doi:
10.1515/hf.2010.044

Vaaje-Kolstad  G,  Westereng  B,  Horn  SJ,  Liu  Z,
Zhai H, Sørlie M, Eijsink VGH (2010). An oxida-
tive  enzyme  boosting  the  enzymatic  conver-
sion  of  recalcitrant  polysaccharides.  Science
330: 219-222. - doi: 10.1126/science.1192231

Viitanen H, Ritschkoff AC (1991). Brown rot de-
cay in wooden constructions - effect of temper-
ature, humidity and moisture. Swedish Univer-
sity of Agricultural Sciences, Uppsala, Sweden,
pp. 55.

Viitanen HA (1997). Modelling the time factor in
the development  of  brown rot  decay in  pine
and spruce sapwood - the effect of critical hu-
midity  and  temperature  conditions.  Holz-
forschung  51:  99-106.  -  doi:  10.1515/hfsg.1997.
51.2.99

Weigl  J,  Ziegler  H  (1960).  Wasserhaushalt  und
Stoffleitung  bei  Merulius  lacrymans (Wulf.)  Fr
[Water  balance  and  matter  transport  in  Mer-
ulius lacrymans  (Wulf.)  Fr].  Archiv für Mikrobi-
ologie  37:  124-133.  [in  German]  -  doi:  10.1007/
BF00408399

Welzbacher  CR,  Rapp AO  (2007).  Durability  of
thermally modified timber from industrial-scale
processes in different use classes: Results from
laboratory and field  tests.  Wood Material  Sci-
ence and Engineering 2: 4-14. - doi:  10.1080/174
80270701267504

Williams FC, Hale MD (2003).  The resistance of
wood  chemically  modified  with  isocyanates:
the role of moisture content in decay suppres-
sion. International Biodeterioration and Biode-
gradation 52: 215-221. - doi:  10.1016/S0964-8305
(03)00070-2

Winandy JE,  Morrell  JJ (1993).  Relationship be-
tween incipient decay, strength, and chemical-
composition  of  Douglas-fir  heartwood.  Wood
and  Fiber  Science  25:  278-288.  [online]  URL:
http://ir.library.oregonstate.edu/concern/defaul
ts/qz20ss911

Wong  KKY,  Deverell  KF,  Mackie  KL,  Clark  TA,

Donaldson LA (1988). The relationship between
fiber  porosity  and  cellulose  digestibility  in
steam-exploded  Pinus  radiata.  Biotechnology
and Bioengineering 31: 447-456. - doi:  10.1002/
bit.260310509

Xu  G,  Goodell  B  (2001).  Mechanisms  of  wood
degradation by brown-rot fungi: chelator-medi-
ated cellulose degradation and binding of iron
by cellulose. Journal of Biotechnology 87:  43-
57. - doi: 10.1016/S0168-1656(00)00430-2

Zauer  M,  Meissner  F,  Plagge  R,  Wagenführ  A
(2016). Capillary pore-size distribution and equi-
librium moisture content of wood determined
by  means  of  pressure  plate  technique.  Holz-
forschung  70:  137-143.  -  doi:  10.1515/hf-2014-
0340

Zelinka SL, Glass SV (2010). Water vapor sorption
isotherms for Southern pine treated with sev-
eral waterborne preservatives. Journal of Test-
ing and Evaluation 38: 521-525.

Zelinka SL, Glass SV, Stone DS (2008). A percola-
tion  model  for  electrical  conduction  in  wood
with  implications  for  wood-water  relations.
Wood and Fiber  Science 40:  544-552.  [online]
URL:  http://wfs.swst.org/index.php/wfs/article/
view/270

Zelinka SL, Gleber SC, Vogt S, Rodríguez López
GM, Jakes JE  (2015).  Threshold for  ion move-
ments in wood cell walls below fiber saturation
observed  by  X-ray  fluorescence  microscopy
(XFM). Holzforschung 69: 441-448. - doi: 10.1515
/hf-2014-0138

Zelinka  SL,  Glass  SV,  Boardman CR,  Derome  D
(2016a). Moisture storage and transport prop-
erties  of  preservative  treated  and  untreated
southern  pine  wood.  Wood  Material  Science
and Engineering 11:  228-238. -  doi:  10.1080/174
80272.2014.973443

Zelinka SL,  Ringman R,  Pilgård A,  Thybring EE,
Jakes JE, Richter K (2016b). The role of chemi-
cal transport in the brown-rot decay resistance
of  modified  wood.  International  Wood  Prod-
ucts Journal 7: 66-70. - doi: 10.1080/20426445.2
016.1161867

Zeller  SM (1920).  Humidity  in  relation to  mois-
ture imbibition by wood and to spore germina-
tion on wood. Annals of the Missouri Botanical
Garden 7: 51-74. - doi: 10.2307/2990045

Zhang J, Presley GN, Hammel KE, Ryu JS, Menke
JR, Figueroa M, Hu D, Orr G, Schilling JS (2016).
Localizing gene regulation reveals a staggered
wood decay mechanism for the brown rot fun-
gus  Postia  placenta.  Proceedings  of  the  Na-
tional  Academy  of  Sciences  USA  113:  10968-
10973. - doi: 10.1073/pnas.1608454113

iForest 11: 418-422 422

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

http://dx.doi.org/10.1073/pnas.1608454113
http://dx.doi.org/10.2307/2990045
http://dx.doi.org/10.1080/20426445.2016.1161867
http://dx.doi.org/10.1080/20426445.2016.1161867
http://dx.doi.org/10.1080/17480272.2014.973443
http://dx.doi.org/10.1080/17480272.2014.973443
http://dx.doi.org/10.1515/hf-2014-0138
http://dx.doi.org/10.1515/hf-2014-0138
http://dx.doi.org/10.1515/hf-2014-0340
http://dx.doi.org/10.1515/hf-2014-0340
http://dx.doi.org/10.1016/S0168-1656(00)00430-2
http://dx.doi.org/10.1002/bit.260310509
http://dx.doi.org/10.1002/bit.260310509
http://ir.library.oregonstate.edu/concern/defaults/qz20ss911
http://ir.library.oregonstate.edu/concern/defaults/qz20ss911
http://dx.doi.org/10.1016/S0964-8305(03)00070-2
http://dx.doi.org/10.1016/S0964-8305(03)00070-2
http://dx.doi.org/10.1080/17480270701267504
http://dx.doi.org/10.1080/17480270701267504
http://dx.doi.org/10.1007/BF00408399
http://dx.doi.org/10.1007/BF00408399
http://dx.doi.org/10.1515/hfsg.1997.51.2.99
http://dx.doi.org/10.1515/hfsg.1997.51.2.99
http://dx.doi.org/10.1126/science.1192231
http://dx.doi.org/10.1515/hf.2010.044
http://dx.doi.org/10.1016/j.ibiod.2017.01.034
http://dx.doi.org/10.1016/j.ibiod.2017.01.034
http://dx.doi.org/10.1016/j.ibiod.2013.02.004
http://aem.asm.org/content/54/11/2608.short
http://aem.asm.org/content/54/11/2608.short
http://dx.doi.org/10.1007/s11557-007-0534-0
http://dx.doi.org/10.1016/j.ibiod.2013.04.006
http://dx.doi.org/10.1080/20426445.2017.1344382
http://dx.doi.org/10.1080/20426445.2017.1344382
http://dx.doi.org/10.1016/j.ibiod.2013.09.002
http://dx.doi.org/10.1515/hf-2013-0057
http://dx.doi.org/10.1073/pnas.1400592111
http://dx.doi.org/10.1073/pnas.1400592111
http://wfs.swst.org/index.php/wfs/article/view/270
http://wfs.swst.org/index.php/wfs/article/view/270

	Moisture in modified wood and its relevance for fungal decay
	Introduction
	Fungal decay mechanisms and the importance of water
	Improving durability by chemical modification
	Potential mechanisms for improved durability of modified wood towards brown-rot decay
	Conclusion
	Acknowledgements
	References


