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Accurate and updated knowledge of forest tree heights is fundamental in the
context of forest management. However, measuring canopy height over large
forest areas using traditional inventory techniques is laborious, time-consum-
ing and excessively expensive. In this study, image-based point clouds pro-
duced  from  stereo  aerial  photographs  (AP)  were  used  to  estimate  forest
height, and compared to Airborne Laser Scanning (ALS) data. We generated
image-based Canopy Height Models (CHM) using different image-matching algo-
rithms (SGM: Semi-Global Matching; eATE: enhanced Automatic Terrain Extrac-
tion), which were compared with a pure ALS-derived CHM. Additionally, plot-
level  height  and  density  metrics  were  extracted  from  CHMs  and  used  as
explanatory variables for predicting the Lorey’s mean height (LMH), which was
measured at 296 reference points on the ground. CHMSGM and CHMALS  showed
similar results in predicting  LMH at sample plot locations (RMSE% = 8.54  vs.
7.92, respectively), while CHMeATE had lower accuracy (RMSE% = 13.23). Simi-
larly, CHMSGM showed a lower normalized median absolute deviation (NMAD)
from CHMALS  (0.68 m) compared to CHMeATE (1.1 m). Our study revealed that
image-based point clouds using SGM in the presence of high-resolution ALS-
derived digital terrain model (DTM) provide comparable results with ALS data,
while the performance of image-based point clouds using eATE is poorer than
ALS for forest height estimation. The findings of this study provide a viable
and cost-effective option for assessing height-related forest structural parame-
ters. The proposed methodology can be usefully applied in all those countries
where AP are updated on a regular basis and pre-existing historical ALS-de-
rived DTMs are available.

Keywords: Forest Inventory, Canopy Height Model, Stereo Aerial Photographs,
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Introduction
Measuring forest height using traditional

forest  inventory  techniques  is  laborious,
time-consuming and excessively expensive
for  large  forest  areas  (Fieber  et  al.  2015,
Stepper et al. 2015), whereas with remote
sensing (RS), single stands and large areas
can be covered cost-efficiently (Naesset &
Okland 2002).

Forest canopy height models (CHMs) and
their derived metrics can be used for a vari-
ety  of  valuable  application  in  forest  sci-
ence.  For  instance,  CHM can be used for

change  detection,  canopy  gap  dynamic,
and single  tree  detection (Pitkänen et  al.
2004,  Yu  et  al.  2004,  Koch  et  al.  2006,
Zielewska-Büttner et al.  2016). Height and
density metrics derived from CHMs at plot
level can be used for the assessment of for-
est height, forest timber volume, biomass,
basal  area  and  mean  diameter-at-breast-
height  point  (DBH)  using  the  area-based
approach (ABA – Bohlin et al. 2012, Naesset
2004,  Ota  et  al.  2015,  Rahlf  et  al.  2014,
Straub et al. 2013a,  White et al. 2013). The
same parameters  at  single  tree  level  can

also  be  derived  directly  (i.e.,  tree  height
and crown area) or indirectly (i.e., volume,
basal  area  and mean DBH) from CHM by
separation  of  individual  crown  using  the
individual  tree  detection  approach  (ITD –
Brandtberg 1999,  Hyyppä & Inkinen 1999,
Koch et  al.  2006).  CHM as well  as  height
metrics derived from Airborne Laser Scan-
ning (ALS), also called Light detection and
ranging  (LiDAR)  data,  were  successfully
applied in many case studies for the assess-
ment  of  forest  structure  information,  as
ALS  has  the  capability  for  extraction  of
both  the  digital  terrain  model  (DTM),
which represents the forest floor, and the
digital  elevation model  (DEM), which rep-
resents the entire canopy of forest (Nelson
et  al.  1984,  Nilsson  1996,  Hyyppä  et  al.
2008, Packalén et al. 2008, Tesfamichael et
al.  2010,  White et al.  2015a,  Yamamoto et
al. 2017).

Over the last decade, ALS has revolution-
ized the process of forest mapping and has
been  used  operationally  for  forest  inven-
tory in many Nordic countries like Norway,
Finland, and Sweden (Maltamo & Packalen
2014,  Naesset  2007,  2014).  However,  in
many countries, ALS acquisitions are often
not as frequently updated as digital stereo
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aerial photographs (AP) by the survey ad-
ministrations,  and  therefore  cannot  be
used for the regular measurement as need-
ed for forest management planning due to
high cost. It is also unclear in most federal
states  in Germany,  the time frequency of
ALS data acquisition (Dees et al. 2012). APs
are updated on a routine basis  at regular
time  intervals  by  the  survey  agencies/ad-
ministration (Straub et al. 2013a, Stepper et
al. 2015, White et al. 2015b). As an example
in  the  Baden-Württemberg  state  of  Ger-
many,  APs  are  regularly  updated  every
three years by the Landesamt für Geoinfor-
mation und Landentwicklung (LGL) and can
be used  for  the regular  update  of  forest
structure  information,  while  ALS  acquisi-
tions  are  not  that  consistent  over  time.
Since  ALS  data  is  considered  more  accu-
rate, we have used it as one of the refer-
ence datasets in our study to estimate for-
est heights, despite its high costs.

Automatic process of AP based on image
matching  algorithms  can  provide  suffi-
ciently  dense  and  highly  accurate  image-
based 3D point clouds for the generation
of  DSM,  but  the  generation of  DTM  in  a

dense  forest  environment,  where  forest
floor is not visible is challenging (White et
al. 2013). Hence, the limiting factor of the
image-based point clouds is the vertical pe-
netration, which is provided by ALS. Thus
the  idea  of  combining  photogrammetric
image-based DSM with pre-existing histori-
cal ALS DTM could be a promising solution
for the generation of  CHM (Rönnholm et
al. 2004, St-Onge et al. 2004, Jan 2005, Vé-
ga & St-Onge 2008, Bohlin et al. 2012).

With the recent advancements of modern
stereo photogrammetry, one of the most
active  research  areas  in  computer  vision
for 3D mapping is stereo image matching
(Scharstein & Szeliski 2002). There are sev-
eral software packages and image match-
ing  algorithms  for  the  generation  of  3D
point clouds.  For our study, we have se-
lected two widely used programs that are
based  on  different  methodological  ap-
proaches. One is enhanced Automatic Ter-
rain Extraction (eATE): an ERDAS LPS mod-
ule,  that  is  a  normalized  correlation  area
based  search  windows  approach  for  the
identification of corresponding pixels using
spatial  correlation  metrics.  The  search

range along the epipolar line is constrained
by estimated minimum and maximum ele-
vation values (Straub et al. 2013b). The sec-
ond  one  is  Semi-Global  Matching  (SGM)
developed by Hirschmüller (2005, 2008). It
uses  a  pixel-wise  approach,  utilizing  the
radiometric robust mutual information and
a  smoothness  constraint  to  generate
dense  surface  point  clouds.  The  method
first  identifies  a  pixel  on  the  base  image
and then seeks for the similar pixel along
the epipolar line in the pair image. The min-
imum aggregated cost leads to a disparity
map. Several  studies showed that SGM is
the  superior  methodology  (Hirschmuller
2005, Gehrke et al. 2010, Rothermel & Haa-
la  2011).  So  far,  comparative  studies  be-
tween  the  point  clouds  image  matching
algorithms  have  not  focused  over  forest
terrain,  and this  forms the main research
gap for our study. Our specific goals were:
(a)  to  assess  the performance of  the im-
ages-based  point  clouds  in  comparison
with ALS for estimating forest heights; (b)
to identify  which of  the two widely used
image  matching  algorithms,  namely  SGM
and eATE, is best suited for forest height
retrieval.

Material and methods

Study area and field data
The study area  is  located  in  a  relatively

flat area north of Karlsruhe in the Federal
State  of  Baden-Württemberg,  Germany,
extending from 49° 03′ 37.302″ N and 08°
24′ 02.846″ E to 49° 01′ 18.773″ N and 08°
25′ 49.981″ E (Fig. 1). The total area covers
12 km2 and the dominant forest tree spe-
cies are Scots pine (Pinus sylvestris L.), Eu-
ropean/Common beech (Fagus sylvatica L.),
Sessile  oak  (Quercus  petraea  leibel.)  and
Red  oak  (Quercus  rubra  L.).  Further  tree
species including Douglas fir (Pseudotsuga
menziesii),  Norway  spruces  (Picea  abies)
and European larch (Larix decidua) can also
occur occasionally.

The  state  forest  service  of  Baden-Würt-
temberg set up a total of 296 permanent
circular  concentric  plots  during  the  sum-
mers  of  2006  and  2007  over  the  entire
study area, and these have been used for
the  collection  of  ground  reference  data
(Fig. 1). The sample plots were distributed
systematically over the study area in a 100
× 200 m sample grid. On each plot,  trees
with  diameter-at-breast-height  (DBH)  <10
cm, between 10 and 15 cm, between 15 and
30  and  >30  cm  were  measured,  if  they
were exactly at the distance of 2, 3, 6 and
12 m from the plot center. Two dominant
heights of each main tree species and one
dominant  height  of  other  mixed  species
were  measured.  The  remaining  tree
heights were predicted by species-specific
stand height curves developed by the For-
est  Research  Institute,  Baden-Württem-
berg (FVA), Germany (Kublin 2003). Finally,
ground Lorey’s mean height (LMH) was cal-
culated by multiplying the tree height (h)
by its basal area (g), and then the sum of
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Fig. 1 - Geographical location of the study site. The green points represents the loca-
tion of the reference sample plots on the ground, while the yellow rectangular block
delineates the small subset area where a transect (yellow line) was drawn for visual
comparison of the CHMs. Orthophoto and aerial photos: © Landesamt für Geoinforma-
tion und Landentwicklung für Baden-Württemberg (http://www.lgl-bw.de) Az.: 2851.9-
1/3.
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Forest height from image-based point clouds and ALS data

the multiplication of individual heights and
basal areas are divided by the sum of the
plot basal area (Lorey 1878 – eqn. 1):

where  LMH is  the  ground  Lorey’s  mean
height, g is the basal area and h is the tree
height. We selected  LMH since it is a stan-
dard forest measure to characterize forest
canopy  height,  giving  higher  weights  to
trees with a larger basal area.

Remote sensing data
Full-waveform ALS data was acquired in

2009 by Milan Geoservice Gmbh using the
IGL Litemapper 5600 system with a Riegl
LMS-Q560 (240 kHz) scanner. For the sum-
mer 2009 acquisitions during leaf-on condi-
tions, the study area was flown over twice
to  obtain  a  high  point  density.  The  first
flight  was  conducted  in  north-south  and
the second in the east-west direction. The
details of the flight and system parameters
of ALS are shown in Tab. 1.

Similarly, we used a block of 28 APs with
four spectral  bands (blue,  green,  red and
near-infrared).  The  APs  were  acquired  in
summer  2009  during  the  leaf-on  canopy
conditions.  The  aero-triangulation  was
done by Landesamt für Geoinformation und
Landentwicklung (LGL) with ground control
points  and  based  on  initial  measurement
by  Global  Navigation  Satellite  System
(GNSS)  and  inertial  measurement  unit
(IMU) (LGL). For the projection of the gen-
erated  datasets,  DHDN/3  Gauss-Krüger
coordinate  system  was  used  throughout
the process. More details about the techni-
cal parameters are given in Tab. 2.

Generation of image-based point clouds
using enhance Automatic Terrain 
Extraction (eATE) and Semi-Global 
Matching (SGM)

Image-based  point  clouds  were  gener-
ated  from  AP  using  eATE  manager  (inte-
grated module in the LPS ERDAS IMAGINE
2015) by choosing a  point sampling density
of 1, whereby every other pixel is matched.
A point sampling density of zero might be
useful  in term of  accuracy,  but  it  takes  a
considerable longer period to be process-
ed (ERDAS_IMAGINE 2012), and hence was
not used. A  pixel block size of 100 was se-
lected  where  eATE  engine  divides  the
images into blocks of pixels and processes
each  block  separately.  Thread  2 indicates
the  number  of  distributed  processing
threads  for  this  eATE  process  and  each
thread is assigned to a separate core in the
machine. The radiometry threshold defines
the measurement (percentage) of contrast
around  the  central  pixel  in  the  master
image. The default is 2.5, and it is recom-
mended to use larger (than 2.5) threshold
for high contrast images, thereby ensuring
a higher possibility of getting good corre-
lated points. For low-contrast images, it is
recommended to  use a  smaller  threshold
so  that  eATE  correlates  more  points  re-

gardless of the contrast. If the threshold is
set to zero then all points will be matched
(ERDAS_IMAGINE 2012). For segmentation,
we used the infrared band because of its
higher sensitivity to vegetation compared
to the other bands. During the correlation
process,  we  optimized  the  matching  by
using all available spectral bands. For  win-
dow  size,  which  is  representative  of  the
pixel area used for computing the correla-
tion  coefficient  between  left  and  right
images,  we  chose  a  larger  (15×15)  value.
While the default value is 9×9, it is recom-
mended  to  use  a  larger  window  size  for
areas  with  minimal  variation (right  in  our
case) and a smaller window (e.g., 5×5) for
areas with greater topographic relief. Coef-
ficient start and end indicates the correla-
tion  coefficient  used  for  each  pyramid
level.  Higher  coefficients  range  (0.7-0.8)
produces  higher  accuracies,  but  fewer
points  may  be  matched,  while  a  lower
range increases the number of correlated
points. The search window is the maximum
search size in pixels surrounding the point
to be interpolated and has a square shape.
The default value is 50; a higher number is
suitable  for  low  contrast  areas,  while  a
lower  number  is  recommended  for  areas
with higher contrast. We use a higher value
because  it  gives  better  points  despite
increasing the processing time. A low value
may  give  more  uniformly  distributed
points, but the points may not be accurate.
Standard deviation tolerance indicated the
tolerance (in meters) for determining the
standard deviation of the planar fit (default
= 3) and LSQ refinement indicated the pyra-
mid  level  to apply  a  least  squares  refine-
ment.  Edge  contrast represents  the  num-
ber  of  pyramid levels  to  apply  edge con-
straint,  and  tolerance means the measure
in pixel used to accept or reject the point
during reverse matching.  Smoothing looks
for spikes in elevation, and low smoothing
option  ensures  a  minimal  smoothing  for
data with few anomalies (ERDAS_IMAGINE
2012).

Similarly, image-based point clouds were
generated from AP using SGM XPro (inte-
grated in LPS ERDAS IMAGINE 2015) by set-
ting  urban situation  to  zero,  as  it  can be
applied to urban areas. We selected  Keep
vertical which retains point clouds on the
vertical surfaces like trees tops.

Generation of Digital Surface Model 
(DSM) and Digital Terrain Model (DTM)

DSMs  with  a  spatial  resolution  of  1  m
were  calculated  from  the  image-based
point clouds using eATE (DSMeATE) and SGM
(DSMSGM).  Similarly,  DSMALS and  DTMALS

were  generated  from  ALS  data.  For  the
generation of  DSMs and DTMs the active
filtering  and  interpolation  techniques  as
implemented  in  the  TreesVis  software
(Weinacker  et  al.  2004)  were  used.  In
TreesVis, the generation of DSM and DTM
from point clouds is done by using an “Ac-
tive  Surface  Filtering  Algorithm”.  Before
starting  the  iterative  process,  the  algo-

rithm  created  three  surfaces:  the  “active
surface,  a  “punch  surface”  and  a  “mask
surface”. The active surface is only allowed
to move vertically up and down. Moreover,
the  active  surface  represents  the  desired
output, whether DSM or DTM is to be gen-
erated. In the case of DTM generation, the
active  surface  is  placed  lower  than  the
punch surface and move upward, while in
the case of DSM generation the active sur-
face is placed above the punch surface and
move downward. Each pixel of the punch
surface is  filled with  height  values of  the
lowest 3D point for the calculation of DTM.
Similarly, the highest 3D point is chosen as
a height for the punch surface for the cal-
culation  of  DSM  within  pre-defined  pixel
size spatial resolution. The mask surface is
automatically filled with special flags, nec-
essary  for  the  regulation  of  minimization
process.  After  creation of  these surfaces,
the original 3D point clouds were no longer
needed  for  minimization  and  could  be
deleted.  However,  for  visualization  pur-
poses, the point clouds are still present in
the random access memory (RAM) of the
computer. The developed active algorithm
was up to now only allowed to move up
and down, which simplified the process to
a great extent.  The reason for the move-
ment  and  deformation  of  active  surface
are  two  types  of  forces,  i.e.,  the  inner
forces and the outer  forces.  The iterative
process continues until these forces reach
the  level  of  equilibrium.  The  inner  forces

iForest 10: 273-280 275

Tab. 1 - Details of flight and system pa-
rameters  of  Airborne  Laser  Scanning
(ALS).

Parameters Value

Flying height [m]
(above ground level)

600

Field of view [deg]
(full scan angle)

60

Strip width [m] 520
Measurement rate [kHz] 240
Point density [points m-2] ~ 22
Flying velocity [m s-1] 46

Tab.  2 -  Details  of  flight  and  technical
characteristics  of  Digital  Stereo  Aerial
Images.

Details
Stereo aerial
photographs
/images (AP)

Camera UltraCamXP
Flying height 2950 m
Image overlap 60% & 30%
Swat width 520 m
Acquisition date Summer 2009
No. of images used 
in a block

28

Spectral bands blue, green, red
and near-infrared

Resolution (GSD) 0.2 m (20 cm)
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introduce stiffness in the active surface in
such a way that it will not touch each detail
of  the  punch  surface.  Each  pixel  of  the
active surface is  influenced by the expan-
sion,  which  is  defined by  the distance  to
the  eight  neighboring  pixels.  The  outer
forces  attract  the  active  surface,  which
brings deformity in the active surface. The
relation  between  the  inner  and  outer
forces  defined  the  degree  of  deformity.
Two  different  forces  are  used  as  outer
forces, i.e., a “pressure force” which push-
es the active surface downward in case of
DTM  generation  and  upward  in  case  of
DSM generation. The second outer force is
the magnetic ones, where each pixel of the
punch surface is attracting the active sur-
face  toward  itself.  The  magnetic  force  is
always positive.  The iteration process will
stop until  the vertical  movement is lower
than a pre-defined threshold. The uncritical
pre-defined threshold was set to 0.01 [m],
which is better than the vertical measure-
ment accuracy of the given 3D points.

Calculation of Canopy Height Models 
(CHMs) and computation of 
explanatory variables (metrics)

We  generated  three  kinds  of  canopy
height  models:  (1)  CHMSGM by  subtraction
of DTMALS from DSMSGM; (2) CHMeATE by sub-
traction  of  DTMALS from  DSMeATE;  and  (3)
CHMALS by  subtraction  of  DTMALS from
DSMALS.

The most commonly used ALS and image-
based derived metrics from CHMs or point
cloud  in  forest  inventory  are  the  percen-
tiles  (Naesset  2004).  A  total  of  15  height
metrics  were  calculated  from  each  CHM,
i.e.,  maximum,  minimum,  mean  and  the
height percentiles (h99, h95, h90, h80, …,
h10).  For  variation  and  heterogeneity  of
forest  canopy  height,  we  calculated  the
coefficient of  variation (CV) and standard
deviation  (SD)  from  each  CHM.  As  men-
tioned  above,  the  metrics  were  derived
from  the  vertical  distribution  of  CHMs
using a 12-meter radius circle, which corre-
sponds to the size of ground sample plots.
Besides,  we  calculated  the  canopy  cover
density  parameters  and  Canopy  Volume
(CVol) which takes into account the horizon-
tal distribution of the canopy structure. We
calculated  the  forest  canopy  density  (cd)
by  dividing  the  number  of  pixels  with
heights above 2 m by the total number of

pixels within an area of 12 m radius circular
sample  plots.  Besides,  we  derived  ten
types of forest cover density metrics (i.e.,
cd1, cd2, cd3, …, cd10) at sample plots loca-
tion followed by the methodology adopted
by  Naesset (2004),  Rahlf et al.  (2014) and
Straub  et  al.  (2013a).  The range between
the lower canopy height (>2m) and maxi-
mum height was divided into ten fractions
of equal length. Each fraction was consid-
ered  a  threshold  and  a  potential  crown
region  was  defined  by  dividing  all  1×1  m
cells  covered  by  height  above  a  certain
threshold.  The  ratio  of  the  crown  region
area above the pre-specified threshold to
the total area of the sample plot was used
as an estimate for the canopy cover. The
CVol was calculated from the CHM, which is
the sum of all  the heights of 1×1 m pixels
size  covering  the  total  circular  12-meter
radius sample plot area. The importance of
all the above height metrics for the predic-
tion  of  forest  variables  was  already  ex-
plained in details by Naesset (2002), Bohlin
et al. (2012), Straub et al. (2013a) and Rahlf
et al. (2014).

Modeling for predicting ground Lorey’s 
mean height (LMH)

For predicted LMH, we fitted multiple lin-
ear regression models between all the ex-
planatory  variables  extracted  above  (de-
rived  from  CHMSGM,  CHMeATE and  CHMALS)
and the response variable, which was the
LMH of the ground inventory sample plots.
The  explanatory  variables  which  showed
high collinearity and those which were the
least significant were dropped out one by
one starting with  highest  p-values  (lower
than 95% confident level) until a stage was
reached,  where  removal  of  explanatory
variables  had  a  significant  impact  on  the
coefficient  of  determination  (R2),  Root
Mean  Square  Error  (RMSE)  and  relative
RMSE (RMSE%).  For  estimating R2,  RMSE,
and RMSE%, we used a 3-fold cross-valida-
tion process (repeated 3-times).  The data
were randomly split into 3 sets. At the first
stage, the first set was knocked out as the
test set and the remaining two were used
as training sets.  At the second stage, the
middle set was knocked out as the test set
and  the  first  and  last  sets  were  used  as
training sets.  Similarly,  at  the third stage,
the last set was knocked out as the test set
and the first and second sets were used as

training  sets.  R2,  RMSE,  and  RMSE%
reported here were the mean of all 3-fold
cross  validation.  The  calculation  was  car-
ried out using the “caret” package (Kuhn
2008) in the statistical software R  (R Core
Team 2014). RMSE and RMSE% were calcu-
lated using the following equations (eqn. 2,
eqn. 3):

where  yi is  the predicted values  of  3-fold
cross  validation  using  linear  regression
model, yi is the observed and ȳ is the mean
values  of  LMH based  on  field  measure-
ment.

Comparison of image-based CHM 
(CHMSGM and CHMeATE) with pure ALS 
(CHMALS)

We  calculated  the  difference  maps  by
subtracting  image-based  CHMs  (CHMSGM

and CHMeATE) of the entire study area from
pure  ALS  (CHMALS).  The  difference  maps
were  calculated  only  for  forested  areas,
while all non-forested areas were excluded
using forest and non-forest mask. For nor-
mality  test  of  error  distribution,  we used
the  Q-Q  plots  (Fig.  2)  and  the  Anderson-
Darling’s  method  integrated  into  the
“nortest”  package  of  the  R  software
(Gross  & Ligges  2012).  Since the  distribu-
tion of errors was found to be non-normal
(Fig.  2),  we  derived  the  accuracy  assess-
ment using sample quantiles  of  the error
distribution based on the methodology for
DEM  accuracy  assessment  proposed  by
Höhle & Höhle (2009) and  Hobi & Ginzler
(2012).  Using  this  approach,  the  median
(50% quantile), the normalized median ab-
solute deviation (NMAD) and the 68.3% and
95% sample quantiles were calculated from
the difference maps using the R software.
The  NMAD was  calculated  according  to
Höhle & Höhle (2009) as follows (eqn. 4):

where Δhj denotes the individual error (j = 1,
…,  n) and mΔh  is the median of the errors.
NMAD is  thus proportional  to the median
of the absolute difference between errors
and the median errors.

We also selected a transect line of 1.71 km
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plots of error distribu-
tions for CHM difference 
maps of forested areas. 
The red lines represent 
the expected normal dis-
tribution.  
(a) CHMSGM –  CHMALS; 
(b) CHMeATE – CHMALS.

RMSE [m ]=
1
n∑i=1

n

( yi− ŷ i)
2

RMSE [% ]=
RMSE(3− foldCV )

ȳ
⋅100

NMAD=1.4826⋅median(|Δ h j –mΔh|)



Forest height from image-based point clouds and ALS data

as shown in Fig. 1 and Fig. 4 for visual inter-
pretation of the trend of CHM. The height
values of the CHMs falling along the tran-
sect line were extracted and plotted as line
graphs (Fig. 5), in order to visually display
the  trend  of  correlation  between  the
CHMs.

Results

Predictions of ground Lorey’s mean 
height (LMH)

The final  most explanatory variables de-
rived from CHMALS were the height at 99th

percentile and the canopy density (cd), and
we achieved R2 = 0.83 and RMSE = 1.93 m
against LMH (Tab. 3). Similarly, we achieved
R2 =  0.82  and  RMSE  =  2.09  m  by  using
height at 95th percentiles and canopy den-
sity  (cd)  as  explanatory  variables  derived
from  CHMSGM against  LMH.  However,  for
the  CHMeATE,  we  achieved  R2 =  0.55  and
RMSE = 3.22 m by using height at 90th per-
centiles,  standard derivation (SD)  and ca-
nopy density 2 (cd2) metrics as an explana-
tory variables (Tab. 3).

Overall,  we did not  observed significant
differences between the predictive power
of the explanatory variables derived from
CHMALS  and  CHMSGM  for  estimating  LMH.
However, the predictive power of explana-
tory  variables  derived  from  CHMeATE  was
not that accurate as CHMALS and CHMSGM for
estimating LMH (Tab. 3).

Comparison of image-based Canopy 
height models (CHMSGM and CHMeATE) 
with pure ALS (CHMALS)

A summary of the statistics for the error
distribution derived by subtracting CHMSGM,
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(x-axis) plotted against the 
predicted mean height (y-
axis). (a): CHMALS; (b): 
CHMSGM; and (c): CHMeATE.

Fig. 4 - Example
of the final out-
put maps of the

canopy-height
models (CHM)

obtained in this
study, covering a

small portion of
the whole stud-

ied area, and
including the
transect line
(ABC) repre-

sented in Fig. 1.
(a): RGB;

(b): CHMALS;
(c) CHMSGM;
(d) CHMeATE.
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CHMeATE from CHMALS is shown in Tab. 4. We
achieved  a  median  error  of  -1.30  m  and
NMAD = 0.68 m from the difference maps
derived  by  subtracting  CHMSGM from
CHMALS.  However,  we  achieved  a  median
error of -1.18 m and NMAD = 1.11 m from the
difference  map  obtained  by  subtracting
CHMeATE from CHMALS. In this case, CHMSGM

was  closer  to  CHMALS  as  compared  to
CHMeATE (Tab. 4).

Fig.  4 shows  the  final  output  maps  of
CHMs for a small subset of the study area
which includes the transect line for CHMs
comparison.

An example of the vertical profile of the
four CHMs along the transect line depicted
in Fig. 4 is shown in Fig. 5, where height val-
ues extracted from each CHMs are plotted
in the form of line graphs.  In  general,  all
the three CHMs show a good agreement of
the  outer  envelops  of  the forest  surface.
However,  CHMALS seems  to  penetrate
deeper  through the small  opening of  the
forest  canopy.  This  suggests  that  image-
based CHMs could be limited to the outer
envelope of the forest structure and can-
not  describe  in  details  both  the  middle
layer and the forest ground.

Discussion
The  first  objective  of  our  study  was  to

compare the potential of photogrammetric
image-based point clouds with ALS-derived
data for the assessment of forest heights.
The purpose was to find out a viable option
for all those countries where stereo aerial
photographs  are  updated  on  a  regular
basis,  but  ALS  acquisitions  are  not  that
consistent as needed for continuous forest
management. For the CHM based on ALS
(CHMALS), we achieved R2  = 0.83 and RMSE
= 7.92% against LMH. Similarly, we achieved
R2 = 0.82 and RMSE = 8.54 % for the image-
based  CHM  using  SGM  (CHMSGM)  against
LMH,  respectively.  However,  we achieved
R2  = 0.55 and RMSE = 13.23% for the image-
based CHM using eATE (CHMeATE) with LMH,
which is  not  that  accurate as  CHMALS  and
CHMSGM. White et al. (2015b) used SGM and
compared the potential of ALS and image-
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Tab. 3 - Comparison of predicted canopy height vs. ground LMH based on 3-fold cross
validation (n=296 plots).  (R2):  coefficients  of  determination;  (Adj.  R2):  adjusted R2;
(***): p < 0.001, (**): p <0.01, (*) p < 0.05, and (.): p < 0.1 indicated the level of signifi -
cance after t-test.

Canopy height
model (CHM)

Selected
variables

Coefficients R2 RMSE RMSE%

CHMALS intercept** 4.59 0.83 1.93 7.92

h99*** 0.93
cd** -4.45

CHMSGM intercept*** 24.46 0.82 2.09 8.54

h95*** 0.96

cd*** -23.88

CHMeATE intercept*** 35.02 0.55 3.22 13.23

h90*** 0.55

std*** 0.7

cd2*** -24.19

Tab. 4 -  Comparison of vertical agreement measures of image-based CHM (CHMSGM

and CHMeATE) with pure ALS-derived CHM (CHMALS).

Forested areas CHMSGM - CHMALS CHMeATE - CHMALS

Sample size Summary of the statistics of the error distribution derived
from the differences maps

50% (median) [m] -1.30 -1.18

NMAD [m] 0.68 1.11
68.3% -0.57 0.74
95% quantile [m] 0.99 6.64
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Fig. 6 - Comparison of point density per square meter 
derived from SGM and eATE. The red graph represents 
mean point density [m2] derived from SGM at sample 
plots locations, while the straight red line represents the 
mean point density over all sample plots (n=296). The 
black line graph represents the mean point density [m2] 
derived from eATE at sample plots locations, while the 
straight black line represents the mean point density over
all sample plots (n=296).

Fig. 5 – Visual com-
parison of the ver-
tical profile of the

studied forest
along the selected

transect line (see
Fig. 1 and Fig. 4),
based on the dif-

ferent CHMs
obtained in this

study.
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based  point  cloud  metrics  for  estimating
LMH at the plot level. They obtained RMSE
= 8.96% for ALS and 14% for image-based
point clouds with  LMH.,  i.e., a lower accu-
racy as compared with that obtained in this
study.  Järnstedt  et  al.  (2012) used  the
NGATE module of the SOCET SET for point
clouds  generation  and  compared  the
potential  of  ALS  and  image-based  point
clouds for estimating the tree mean height
at the plot level. They obtained an RMSE =
18.61% for ALS and 28.23% for image-based
point clouds, which is also higher than our
results  based on SGM. The error  distribu-
tion in the form of quantiles derived from
the differences maps (Tab. 4) also indicates
that  the  image-based  CHM  using  SGM
(CHMSGM)  is  closer  to  ALS  CHM  (CHMALS)
than  the  image-based  point  clouds  using
eATE (CHMeATE).

The second objective was to compare the
performance of two image-matching algo-
rithms (SGM and eATE) for estimating the
canopy height. It is evident that SGM gives
more accurate results  than eATE by both
evaluating the metrics derived from image-
based CHM for  predicting LMH and com-
paring  image-based  CHM  (CHMSGM  and
CHMeATE)  with  ALS-derived CHM (CHMALS).
We  obtained  reasonably  accurate  esti-
mates of tree heights by using SGM image
matching point clouds algorithm then eATE
in combination with ALS-derived DTM. One
of  the  reasons  of  the higher  accuracy  of
SGM  might  be  the  production  of  point
clouds. We achieved a mean point density
of  25  points  m-2 by  using  SGM  and  3.19
points m-2  using eATE at sample plots loca-
tion (Fig. 6). This demonstrates that point
clouds based on the SGM image-matching
algorithm better represent the tree struc-
ture,  including the tree tops and the sur-
rounding crown area, as compared to eATE
point  clouds.  This  difference  can  also  be
noticed  from  Fig.  4,  where  eATE-based
CHM looks smoother and less coarse than
SGM-based  CHM. According  to  Gobakken
& Naesset (2008) and  Magnusson (2006),
the higher is the point density, the higher
will be the accuracy of forest attribute esti-
mation. However, they compared different
ALS point clouds density, while we exam-
ined  first-time  image-based  point  clouds
density for determining forest heights.

Conclusions
Our  findings  show  that  forest  height

information  can  be  accurately  extracted
from image-based point clouds in all those
forest  areas  where  highly  accurate  DTMs
obtained  from  ALS  campaigns  are  avail-
able.  The  quality  of  such  height  informa-
tion is comparable to ALS based product,
which is a promising outcome. Further, our
results confirmed that the SGM algorithm
performs better than the eATE for the esti-
mation of tree height.

ALS is the most accurate option for esti-
mating forest structure variables and is cur-
rently  used  for  forest  management  pur-
pose in many Nordic countries.  However,

in many other countries, ALS data are not
regularly  updated  as  digital  stereo  aerial
photographs, due to its high cost. So the
combined approach of using image-based
point  clouds  and  historical  ALS-derived
DTM developed in this study offer a viable
and cost-effective option to forest commu-
nity  for  estimating  height-related  forest
structural  parameters,  and  can  be  useful
for all those countries where stereo aerial
photographs  are  updated  at  a  regular
period in the presence of pre-existing his-
torical ALS-derived DTM.
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