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The effect of calcium on the growth of native species in a tropical 
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Recovering of degraded areas depends not only on the choice of native species
to be planted, but also on the requirements of planted seedling species in
terms of soil fertility, mainly in tropical areas. This study aims to assess the ef-
fects of calcium (Ca) and soil base saturation (V%) on the growth of seedlings
of eight tree species native to the Atlantic Forest biome and commonly used in
restoration plantings in the study region. Seedlings were grown in a green-
house over a period of four months in Haplic Arenosol dystric soil with low cal-
cium content and high aluminum saturation, and were subjected to four dif-
ferent treatments: (i) control; (ii) lime addition until V%=40 (V40); (iii) lime
addition until V%=70 (V70); (iv) addition of calcium chloride and magnesium
until V%=70 (VMg70). On average, seedlings treated only with lime (V40 and
V70) gave similar results, showing an increase in both shoot and root dry plant
biomass. Different absorption by species belonging to different successional
groups were observed. Pioneer and early secondary species showed similar be-
havior regarding nutrient use efficiency. Seedling fertilization increases the
chances of success of restoration plantings in degraded areas by favoring seed-
ling biomass gain and nutrient absorption, and increasing overall V% through
lime fertilization. The patterns for pioneer and secondary species found in this
study could contribute to decision making in restoration projects and to native
seedling production of white-sand forest native species.

Keywords:  Tree  Species,  Plant  Nutrition,  Liming,  Nutrient  Absorption  Effi-
ciency, Ecological Restoration

Introduction
The  science  and  practice  of  ecological

restoration have significantly advanced in
the last decades. Most of the research and
monitoring of areas under restoration pri-
oritize the analysis of vegetation parame-
ters (i.e., composition, structure, and func-
tion), while the soil compartment is rarely
analyzed, though soil is considered an indi-
cator  of  successful  restoration (Ruiz-Jaen
&  Aide  2005,  Viani  et  al.  2017).  Little  is
known about soil influence in the success
of forest restoration plantings and its inter-
actions with planted seedlings (Ruiz-Jaen &
Aide 2005,  Melo et al.  2013,  Perring et al.
2015). 

Currently, more than half of the remain-
ing  tropical  forests  are  highly-productive
second-growth forests distributed over nu-

trient-poor and naturally acidic soils, where
most of  the nutrient  pool  lies  in  the bio-
mass  and  is  maintained  through  nutrient
recycling (Jordan & Herrera 1981, Fujii 2014,
Martins  et  al.  2015,  Sayer  &  Banin  2016,
Nagy et  al.  2017).  When vegetation is  re-
moved,  most  nutrients  stored in  the  bio-
mass  are  lost  and litterfall  is  interrupted,
thus  halting  nutrient  cycling  and  making
the soil as the only source of nutrients (Uri-
arte et al. 2015). Nutrient availability in soils
increase as succession advances and forest
structure  develops,  therefore  forest  and
soil development are tightly linked in forest
restoration  and  succession  (Paul  et  al.
2010). Compromising soil nutrient availabil-
ity  may  arrest  forest  succession  and  in-
crease the chance of failure in restoration
projects. 

Soil  chemical  degradation is  common in
highly  weathered  tropical  soils,  compro-
mising its quality, reducing macro- and mi-
cro-nutrients and increasing aluminum con-
centrations due to pH reduction. When as-
sociated to Al toxicity, low calcium concen-
trations can hinder root growth (especially
in deeper soil layers), leading to low plant
growth rates and possibly the failure of re-
forestation projects in tropical forest eco-
systems  (Uroz  et  al.  2014,  Chazdon  2014,
Jager  et  al.  2015,  Lal  2015).  Other  studies
have  demonstrated  that  calcium  addition
can promote  aboveground biomass  gains
while  reducing  root  development,  which
indicates complex relationships of soil fer-
tility and allocation of plant biomass (Fahey
et al. 2016, Wright et al. 2011).

Most  studies  on  soil  properties  during
ecological restoration involve nutrient en-
richment by manipulating leaf litter and the
dynamics of P and N along the succession,
while calcium and aluminum are rarely ana-
lyzed  (Kaspari  et  al.  2008,  Wood  et  al.
2009,  Wright et al.  2011,  Yavitt et al.  2011,
Amazonas  et  al.  2011,  Fahey  et  al.  2016,
Sayer & Banin 2016). Calcium is regarded as
one  of  the  limiting  nutrients  in  tropical
forests,  being essential  for root  structure
and osmotic  processes  (White  1998),  but
possibly leached from soil due to the high
rainfall. Since tropical soils usually contain
high  aluminum  concentrations,  this  ele-
ment may interfere in nutrient absorption.
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Species  native  to  tropical  forests  have  a
wide range of response to different levels
of soil fertility, soil acidity, base saturation
and  aluminum  saturation.  These  species-
specific ranges vary in function of life-his-
tory traits, adaptation to local fertility and
life stage (Gonçalves et al. 1992,  Furtini et
al.  2000,  Sayer & Banin 2016).  The higher
the plant growth rate, the higher its sensi-
bility to acidity, which influence (with some
exception) the plant balance of Ca, Mg and
P (Furtini et al. 2000). Several studies have
demonstrated that trees and forest struc-
ture contribute to the retention of several
nutrients within the system, such as P,  N
and Ca (Sullivan et al. 2014). 

Recent global agreements are increasing
the demand for restoration activities (Sud-
ing et al. 2015). In this context, there is an

urgent  need  to  investigate  how  edaphic
conditions affect nutrient availability in the
early  development stages  of  native seed-
lings used for forest restoration plantings.
Our study aims to analyze the effect of cal-
cium and soil  base saturation on biomass
gain and nutrient use in seedlings of eight
native tree species commonly used for re-
storation  in  our  study  region.  We  expect
that: (i) biomass accumulation and nutrient
use  will  vary  among  seedling  species  ac-
cording  to  their  successional  group,  with
pioneer  trees  gaining  more  biomass  and
absorbing  more  nutrients  than  non-pio-
neers; (ii) soil treatments with higher base
saturation (V%) will favor seedling biomass
gain; (iii) species with higher biomass gain
will absorb more nutrients.

Materials and methods
The Haplic Arenosol (dystric) soil used in

our experiment was collected in the county
of  Caraguatatuba,  São  Paulo  State,  Brazil
(Tab. 1), in a white-sand coastal forest (Re-
stinga forest).  This  forest  formation  be-
longs to the Atlantic Forest biome (Fig. 1) –
one  of  the  richest  and  most  threatened
hotspots  in  the  world  (Laurance  2009)  –
and  usually  develops  over  nutrient-poor
marine substrates originated in the Quater-
nary. These white-sand forests have been
historically  deforested  since  the  early
stages of colonization in Brazil, and are still
threatened today, mainly by the real-estate
market.  Additionally,  the  intrinsic  Haplic
Arenosol  (dystric)  characteristics  of  these
forests, such as sandiness, low fertility (V%
< 50%), high acidity and flooding, limit tree
growth and pose a challenge for forest re-
storation  in  these  areas  (Marques  et  al.
2015, IUSS Working Group 2015).

Soil  was collected in the 20-40 cm deep
soil  layer,  which typically  shows low con-
centrations of P, K, Ca and high Al satura-
tion, indicating severe limitations to plant
growth. Such conditions were adequate to
test  native  seedling  growth  limitations  in
this study (Marques et al. 2015). 

Soil  samples  were  air  dried,  sieved
through a 2 mm sieve and characterized by
routine chemical analysis, according to the
methods described by Raij Van et al. (2001).
P, K, Ca and Mg contents were extracted
by ion exchange resins and quantified by
flame  emission  photometry  (K)  and  by
atomic  absorption  spectrophotometry  (P,
Ca, and Mg). We determined organic mat-
ter following the Walkley-Black method, af-
ter oxidation with a 0.167 mol L-1 potassium
dichromate (K2Cr2O7) solution, in the pres-
ence  of  5  mol  L-1 H2SO4.  The  excess  of
K2Cr2O7 was titrated with Fe2+ ions from a
standardized  solution  of  ferrous  ammo-
nium  sulfate.  Soil  pH  was  potentiometri-
cally  measured  in  0.01  mol  L-1 CaCl2 (1:2.5
soil:solution  ratio).  We  extracted  soil  po-
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Fig. 1 - Atlantic Forest biome in Caraguatatuba, São Paulo State, Brazil. (A): white-sand coastal forest (Restinga forest); (B): Haplic
Arenosol (dystric). Photos: José Carlos Casagrande.

Tab. 1 - Mean ± standard deviation of soil chemical analyses of the initial soil condi -
tions and treatments designed in this study. (OM): organic matter; (H+Al): potential
acidity; (SB): sum of bases; (CEC): cation exchange capacity; (V) base saturation; (m):
aluminum  saturation;  (initial):  soil  sample  before  treatments;  (Control,  V40,  V70,
VMg70): mean values of the eight native tree species in each treatment at the end of
the experiment. The results of the soil analysis refer to the contents available in solu-
tion and also the exchangeable contents adsorbed to soil colloids for calcium, magne-
sium and potassium.

Variables Unit Initial
Treatments (Final)

Control V40 V70 VMg70
P mg dm-3 1.0 ± 0.5 5.0 ± 0.8 5.0 ± 0.8 5.0 ± 1.2 6.0 ± 1.8
OM g dm-3 16.0 ± 1.2 17.0 ± 2.8 18.0 ± 2.6 16.0 ± 2.1 16.0 ± 1.5
pH CaCl2 3.6 ± 0.1 4.1 ± 0.1 4.1 ± 0.1 4.6 ± 0.1 4.1 ± 0.1
K m molcdm-3 0.3 ± 0.1 0.8 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.2
Ca m molcdm-3 3.0 ± 0.5 4.0 ± 1.3 4.0 ± 0.7 6.0 ± 1.1 6.0 ± 1.1
Mg m molcdm-3 1.0 ± 0.4 2.0 ± 0.5 3.0 ± 0.5 4.0 ± 0.6 3.0 ± 0.7
H+Al m molcdm-3 13.0 ± 1.5 17.0 ± 1.1 16.0 ± 0.5 13.0 ± 1.0 17.0 ± 1.5
Al m molcdm-3 3.2 ± 0.2 2.7 ± 0.6 2.1 ± 0.3 1.2 ± 0.2 1.9 ± 0.3
SB m molcdm-3 4.3 ± 0.6 7.3 ± 1.7 7.8 ± 1.0 10.6 ± 1.4 9.5 ± 1.6
CEC m molcdm-3 17.3 ± 1.5 24.6 ± 2.0 23.5 ± 1.1 23.7 ± 1.5 26.0 ± 2.2
V % 25.0 ± 2.5 29.0 ± 5.1 33.0 ± 2.9 45.0 ± 3.9 36.0 ± 4.4
m % 43.0 ± 3.3 28.0 ± 7.3 21.0 ± 3.8 10.0 ± 2.3 17.0 ± 6.7
S mg dm-3 5.0 ± 1.0 12.0 ± 1.7 11.0 ± 1.8 11.0 ± 2.9 13.0 ± 3.7
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tential acidity (H+Al) by the 0.5 mol L -1 cal-
cium  acetate  solution  at  pH  7.0.  We  ex-
tracted exchangeable Al content by 1 mol L-

1 KCl solution and determined it by titration
with 0.025 mol L-1 ammonium hydroxide so-
lution. We calculated the following param-
eters: (i) sum of bases, SB = Ca+Mg+K; (ii)
total  cation  exchange  capacity,  CEC  =
Ca+Mg+K+(H+Al); (iii) base saturation, V% =
(SB/CEC)  ×  100;  (iv)  aluminum  saturation,
m% = (Al/SB+Al) × 100. We extracted S con-
tent  by  0.01  mol  L-1  CaH2PO4  solution  and
determined it by turbidimetry.

The  experiment  was  conducted  at  the
Federal University of São Carlos (UFSCAR),
Araras, São Paulo State, Brazil,  where the
climate is mesothermal with hot and rainy
summers and cold dry winters (CWa – Kop-
pen); average annual temperature is 21.4 °C
and annual rainfall is 1448.8 mm. All the fol-
lowing analyses were carried out at the Soil
Fertility Laboratory of the University. 

Limestone (hereafter “lime”) was applied
to  the  collected  soil  as  pure  calcium and
magnesium carbonate in the proportion of
3:1.  The  following  treatments  were  de-
signed: (i) control (no lime); (ii) V40 (lime
for V%=40);  (iii)  V70 (lime for  V%=70);  (iv)
VMg70  (calcium  chloride  and  magnesium
Ca:Mg = 4.33:1,  to reach levels  of  Ca and
Mg  equivalent  to  V%=70,  keeping  soil  pH
unaffected).  In  treatment  VMg70,  we  in-
corporated 0.99 g and 0.33 g of CaCl2 and
MgCl2, respectively, in each vase. 

We used 3  ×  10-3 m3 polyethylene  vases
with three liters of soil each. All treatments
received a solution of nutrients containing
N, P, K, S, B, Cu, Fe, Mn, Mo and Zn. These
nutrients were added according to the re-
sults of soil analysis and fertilization recom-
mendations  obtained  from  the  Technical
Bulletin 100 for tree species of the Atlantic
Forest (Raij Van et al. 1996). The sources of
these  nutrients  were  urea,  monocalcium
phosphate, ammonium sulfate, boric acid,
copper  sulfate,  manganese,  zinc  and  so-
dium molybdate. 

Native seedlings (2-3 cm in height) of At-
lantic  tropical  forest  trees  were  provided
by a plant nursery located in the municipal-
ity of Ibaté (located at 98 km from the ex-
periment site).  One seedling was  planted
per vase. The tree species used and their
successional group are listed in Tab. 2. The
seedlings were watered daily by a sprinkler
system for 6 minutes, previously calculated
to maintain appropriate moisture content
(25%).  We  also  weekly  rotated  vase  posi-
tion in each block clockwise. 

After four months, plants were removed
from their vases and dried at 65 °C for 72
hours. Shoot and root biomass were sepa-
rated, grinded and weighed. We quantified
shoot and root biomass dry weight,  mac-
ronutrient  absorption  and  use  efficiency.
To  determine  macronutrient  content,
shoot  and  root  samples  were  washed  in
distilled  water  and  dried  in  a  forced-air
oven at 65 °C until  they reached constant
mass.  After  drying,  the  plant  tissue  was
weighed,  passed  through  Wiley-type  mill

and digested by  sulfuric  solubilization for
determination of N, and by nitric-perchloric
mixture  following  the  methodology  pro-
posed by Malavolta et al. (1997) for the de-
termination of P, K, Ca, Mg, and S. We de-
termined N using the Kjeldahl method and
titration with NaOH 1 mol L-1. We quantified
P  through  photocolorimetry  and  content
was  determined  by  flame  emission  pho-
tometry. The contents of Ca and Mg were
determined  through  atomic  absorption
spectrophotometry and S by turbidimetry.
The  amount  of  macronutrients  absorbed
(AMN) by the plants was calculated by mul-
tiplying dry mass (DM) production by the
macronutrient contents MC (AMN = DM ×
MC) of the shoot and root systems (Gon-
çalves  et  al.  1992).  The  nutrient  use  effi-
ciency (NUE) was estimated based on the
ratio of dry plant mass (DM) divided by the
amount of nutrients absorbed (AMN), both
in milligrams (Gonçalves et al. 1992). 

The  experimental  design  consisted  of  a
random block design with four treatments
and eight native tree species, with six repe-
titions,  summing  192  vases.  We used  the
ANOVA procedure to analyze dry biomass,
and treatment  means were  compared  by
the post-hoc Tukey’s test (α=0.05). Consid-
ering the group of  nutrients (N,  P,  K,  Ca,
Mg and S) as response variables,  we car-
ried out a multivariate analysis of variance
(MANOVA) for the four following metrics:
shoot  and  root  nutrient  absorption  and
shoot and root nutrient  use efficiency.  In
order to investigate if species of different
successional groups differed regarding nu-

trient  absorption  and  use  efficiency,  we
employed four tests: Wilks, Pillai, Hotelling-
Lawley and Roy.  When the hypothesis  of
mean vector  similarity  was  rejected for  a
given group, the means that caused rejec-
tion were identified as mean vectors that
differed  from  the  others;  in  such  cases,
Bonferroni’s confidence intervals were es-
tablished  (Johnson  & Wichern  2007).  We
carried out all the analyses using the R soft-
ware version 3.0.1 (R Core Team 2015).

Results
On  average,  treatments  that  used  only

lime to increase the sum of bases (V40 and
V70)  gave  similar  results  and  increased
both shoot and root dry biomass (Tab.  3,
Tab.  4).  In VMg70,  we added enough cal-
cium  and  magnesium  to  increase  V%=70
without affecting pH (Tab. 1); nevertheless,
seedlings in this treatment had lower bio-
mass accumulation than V40 and V70 (Tab.
3,  Tab. 4). We observed differences in the
production of dry biomass among species
of the same ecological group: Schinus tere-
binthifolius showed  the  highest  values  of
shoot dry biomass (Tab. 3), while high val-
ues of root dry biomass were observed for
S.  terebinthifolius,  Cecropia  pachystachya,
Cytharexyllum  myrianthum  and  Psidium
myrtodes (Tab. 3, Tab. 4). 

We also observed different absorption by
species belonging to different successional
groups (Tab. 5). Early successional species
showed higher nutrient absorption, except
for N in shoot biomass, and N and P in root
biomass (Tab. 6). Overall, we observed that
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Tab. 2 - The eight native species native used in this study and their successional group.

Species Family Successional Group

Cecropia pachystachya Trécul Urticaceae
Pioneer (P)Lithraea molleoides (Vell.) Engl. Anacardiaceae

Schinus terebinthifolious Raddi Anacardiaceae
Cordia superb Cham. Boraginaceae

Secondary (S)
Cytharexyllum myrianthum Cham. Verbenaceae
Maclura tinctoria (L.) D.Don ex Steud. Moraceae
Prunus sellowii Koehne Rosaceae
Psidium myrtoides O.Berg Myrtaceae
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Tab. 3 - Dry shoot biomass production (g) of eight native tree species under different
fertilization treatments. Means followed by the same letter do not significantly differ
(p>0.05) across lines (uppercase letters) or columns (lowercase letters). (Control): no
lime; (V40): lime addition until V% = 40; (V70): lime addition until V% = 70; (VMg70): cal -
cium chloride and magnesium addition until equivalent Ca and Mg reach V% = 70.

Successional
Group Species Control V40 V70 VMg70 Averages

Pioneer C.pachystachya 5.1 abA 5.0 abA 4.8 bA 4.5 abA 4.9 b

L. molleoides 2.1 cdB 2.8 bcAB 4.1 bA 2.3 bcAB 2.8 bcd

S. terebinthifolious 6.9 aA 6.6 aA 8.3 aA 6.6 aA 7.1 a

Secondary C. superba 1.9 cdA 2.7 bcA 2.7 bcA 2.5 bcA 2.5 cd

C. myrianthum 3.8 bcAB 5.3 abA 5.4 bA 3.4 nbcB 4.5 bc

M. tinctoria 2.7 bcdAB 3.8 bcAB 4.4 bA 2.3 bcB 3.3 bc

P. sellowii 0.7 dA 1.2 cA 0.7 cA 0.7 cA 0.8 d

P. myrtoides 3.7 bcA 4.6 abA 3.8 bA 3.4 bcA 3.9 bc

- Averages 3.4 B 4.0 A 4.3 A 3.2 B -
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pioneer  species  absorbed  approximately
two times  more  K  and S  than secondary
species in shoot biomass (0.0585 g kg-1 of K
and  0.0105  mg  kg-1 of  S  for  pioneers,
0.0280 mg kg-1 of K and 0.0053 mg kg-1 of S
for  secondary  species).  Similarly,  pioneer
species  absorbed  37.6%,  38.3%  and  43.5%
more P, Ca and Mg, respectively, than sec-
ondary  species.  Roots  of  pioneer  species
absorbed,  on  average,  1.0,  2.0  and  3.0
times more K, Ca and Mg than secondary
species, respectively.

Root  nutrient-use  efficiency  was  similar
among pioneer and secondary species. Re-
garding  shoot  biomass,  pioneer  species
were, on average, 1.5 times more efficient
in  the  use  of  N  than  secondary  species,
while nutrient use efficiency of other com-

ponents was similar between successional
groups (Tab. 5, Tab. 6).

Discussion
Overall,  our results indicate the need to

correct the soil through liming, in order to
reach at least V%=40. A seemingly small in-
crease in V% (i.e., from the original V% = 25
to V% = 40 in the treatment V40) consider-
ably  increased  shoot  and  root  biomass.
Therefore,  for  these  species  a  slight  in-
crease in base saturation to V%=40 will con-
tribute  to  increase  seedling  quality,  pro-
ductivity  and  establishment,  and  reduce
soil  correction  costs  in  forest  restoration
plantings as well. Fertilization is particularly
important for restoration plantings in tropi-
cal degraded areas, where soils are usually

nutrient-poor (Villalobos et al.  2014,  Lima-
Perim et al.  2016). In acid soils,  which ex-
hibit  high  toxicity  to  aluminum  and  low
cation  exchange  capacity,  the  availability
of nutrients to plants is hindered and soil
correction  may  favor  nutrient  absorption
and incorporation in plant biomass, as ob-
served in our results and many other stud-
ies (Furtini et al. 1999, Meriño-Gergichevich
et al.  2010,  Campos et al.  2014,  Fujii  2014,
Martins et al. 2015,  Lima-Perim et al. 2016,
Raboin et al. 2016). 

Our findings corroborates with the study
by  Furtini  et al.  (2000) regarding the ma-
cronutrient accumulation and use efficien-
cy in response to phosphorus fertilization,
in which late secondary species were less
sensible  to  fertilization.  Furthermore,  our
results  also  corroborates  with  Sorreano
(2006), who evaluated 17 tree species and
showed  that  fast-growing  species  were
more sensitive to the lack of nutrients and
showed  visual  signs  of  deficiency  faster
than  slow-growing  species,  which  indi-
cated higher nutrient demands. 

The  higher  average  nutrient  absorption
observed for pioneers and the higher root
biomass detected for two of the three pio-
neer  species  used  in  this  experiment  (C.
pachystachya and  S.  terebinthifolius),  as
well as the higher shoot biomass of S. tere-
binthifolius, are probably all related to the
successional  strategy  of  these  species
(Tab.  3,  Tab.  4 and  Tab.  6).  As  a  conse-
quence of  higher growth rates, early  suc-
cessional species require, absorb and accu-
mulate more nutrients, and respond posi-
tively and faster to fertilization (Gonçalves
et al.  1992,  2008). The higher nutrient ab-
sorption of early successional species may
be caused by the expansion of the root sys-
tem and, consequently, the exploration of
more soil (Gonçalves et al. 1992, 2008). The
development  of  pioneer  species  in  a  de-
graded  site  ameliorate  climatic  and  soil
conditions and favors the establishment of
late-successional  species,  effectively  recu-
perating successional process (Trindade &
Coelho 2012).

Initially, we expected that late secondary
species would have higher nutrient use ef-
ficiency; however, species of different suc-
cessional groups were similar regarding nu-
trient  use  efficiency.  Previous  studies
demonstrated  different  nutrient  use  effi-
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Tab. 4 - Dry root biomass (g) of eight native tree species under different fertilization
treatments. Means followed by the same letter do not significantly differ (p>0.05)
across lines (uppercase letters)  or  columns (lowercase letters).  (Control):  no lime;
(V40): lime addition until V% = 40; (V70): lime addition until V% = 70; (VMg70): calcium
chloride and magnesium addition until equivalent Ca and Mg reach V% = 70.

Successional
Group

Species Control V40 V70 VMg70 Averages

Pioneer C.pachystachya 4.5 aA 5.4 abA 3.8 abA 1.9 abB 3.9 a

L. molleoides 0.7 bB 1.4 dAB 2.4 bcA 1.2 bAB 1.4 bc

S. terebinthifolious 4.1 aA 4.6 abcA 5.4 aA 4.2 aA 4.6 a

Secondary C. superba 0.7 bA 1.9 cdA 1.4 bcA 1.1 bA 1.3 bc

C. myrianthum 4.0 aB 6.3 aA 5.7 aA 3.2 abB 4.8 a

M. tinctoria 0.9 bA 1.7 dA 2.1 bcA 1.1 bA 1.5 bc

P. sellowii 0.4 bA 0.6 dA 0.4 cA 0.4 bA 0.4 c

P. myrtoides 2.9 abA 3.4 bcdA 3.3 abA 2.3 abA 3.0 ab

- Averages 2.3 B 3.2 A 3.1 A 1.9 B -

Tab. 5 - Bonferroni 95% confidence interval (CI) of absorption and nutrient use effi-
ciency in shoots and roots and of nutrient use efficiency in the shoots of seedlings of
the eight native species. No significant effect was found for root efficiency after mul -
tivariate analysis  of  variance (MANOVA).  (Lower CI):  lower  limit  of  CI;  (Upper CI):
upper limit of CI; (*): p < 0.05.

Nutrient

Absorption (g kg-1) Efficiency (%)

(a) Roots (b) Shoots (c) Shoots

Lower CI Upper CI Lower CI Upper CI Lower CI Upper CI
N -7.95 33.14 -11.75 30.88 1.06 43.30*
P -0.35 4.38 0.45 8.52* -276.33 182.29
K 1.42 3.98* 15.40 45.71* -49.97 6.08
Ca 0.96 9.51* 0.81 29.35* -37.21 69.53
Mg 2.28 15.36* 1.09 15.93* -107.48 91.63
S 1.47 2.89* 2.25 8.16* -347.22 32.24

Tab. 6 - Mean values of absorption and nutrient use efficiency of shoots and roots of eight native tree species. Different letters
between rows within the same plant section (shoot or roots) indicate significant differences (p<0.05) between pioneer and sec -
ondary species.

Characteristic
Plant
Section

Successional
Group N P K Ca Mg S

Absorption
(g kg-1)

Shoot Pioneer 0.0490 a 0.0119 a 0.0585 a 0.0394 a 0.0196 a 0.0105 a

Secondary 0.0394 a 0.0074 b 0.0280 b 0.0243 b 0.0111 b 0.0053 b

Roots Pioneer 0.0372 a 0.0055 a 0.0204 a 0.0115 a 0.0161 a 0.0063 a

Secondary 0.0249 a 0.0036 a 0.0199 b 0.0050 b 0.0053 b 0.0047 b

Efficiency
(%)

Shoot Pioneer 107.3 a 422.4 a 84.4 a 137.3 a 272.2 a 462.7 a

Secondary 76.7 b 481.9 a 107.4 a 124.2 a 287.0 a 625.9 a

Roots Pioneer 92.3 a 576.0 a 156.7 a 320.3 a 275.0 a 574.0 a

Secondary 170.5 a 672.7 a 124.3 a 457.3 a 409.2 a 588.2 a
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ciency for  different  species  (Gonçalves  et
al.  1992).  In  the  field,  pioneer  species
showed  slightly  higher  nutrient  use  effi-
ciency for N and P than secondary species,
while  in  greenhouses  the  opposite  trend
was observed. This contrast between field
and  greenhouse  behavior  may  have  oc-
curred because pioneers in the field could
intensify  their  physiological  functions,  in-
creasing  nutrient  use  and  efficiency.  Our
work was carried out in nutrient poor soils,
and the results obtained for N in the shoot
biomass of pioneers may result also from
the intensification  of  their  physiology  for
this nutrient (Tab. 5). In the early stages of
restoration  plantings,  such  species  may
show consistent differences in nutrient use
and  absorption  when  compared  to  older
plantings (Waring et al. 2015).

Although Brazil is a global example of na-
tive  seedlings  production  for  forest  re-
storation  and  implementation  of  large-
scale restoration programs, there is a lack
of studies on white sands ecosystems (Ber-
nardino et al. 2007, Macedo & Teixeira 2011,
Coneglian et al. 2016). On the other hand,
the effect of liming on soil acidity, nutrient
availability and plant responses have been
thoroughly reported in agricultural and sil-
vicultural investigations (Chatzistathis et al.
2015, Tiritan et al. 2016). The few studies in
the Atlantic  white sand forests (Restinga)
that  evaluate  liming  for  seedling  produc-
tion point out that native species show a
variety of responses to liming and nutrient-
poor environments and, in most cases, na-
tive species benefited from the reduction
in soil acidity, as observed for the averages
of  treatments  V40  and  V70  in  our  study
(Tab. 3, Tab. 4).

Other studies on coastal white-sand for-
ests  have  reported  a  low  vegetation  re-
silience due to soil  characteristics.  Higher
fertility  is  found in the first  10 cm of  soil
and, given its high leaching rates, this soil
layer  has  a  high density  of  fine roots  for
quick nutrient absorption. In these ecosys-
tems, 70% of the root system is located in
the  0-10  cm  layer  and  90%  of  the  root
biomass is found up to only 20 cm depth.
High Al  concentration in these soils  ham-
pers downward root growth (Bonilha et al.
2012). The white sand forests that were the
subject  of  this  study  show  structure  and
species  richness  and  diversity  similar  to
other forests established on sandy and nu-
trient-poor soils around the world (Lima et
al. 2011). 

The patterns for pioneer  and secondary
species found in this  study could contrib-
ute to decision-making in restoration proj-
ects and to native seedling production of
white-sand  forest  species.  However,  the
existence of species-specific responses has
to be taken into consideration (Jamaluddin
et al. 2013). 

Conclusion
Seedling  fertilization  increases  the

chances of success of restoration plantings
in degraded areas by favoring native seed-

ling biomass gain and nutrient absorption,
and increasing overall  soil  base saturation
through  lime fertilization.  Although  nutri-
ent  use  efficiency  was  similar  among the
studied  species,  nutrient  absorption  and
biomass  gain  were related to the succes-
sional  role of  each species,  with pioneers
showing higher rates. Our results point out
the need of further research in this field, as
scientific knowledge about the fertilization
of native species and their potential to con-
vert nutrients in biomass is still scarce, par-
ticularly in field experiments (Gonçalves et
al. 2012). Increasing our knowledge on the
specific  requirements  of  native  forests,
particularly in nutrient absorption, is an im-
portant step to create guidelines for fertil-
ization in reforestation projects and obtain
higher seedling development in restoration
plantings, thus reducing maintenance costs
and promoting a quick recover of ecologi-
cal processes of restoration areas.
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