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Are the new gridded DSM/DTMs of the Piemonte Region (Italy) proper 
for forestry? A fast and simple approach for a posteriori metric 
assessment
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Vanina Fissore, Andrea Lessio, 
Renzo Motta

Aerial LiDAR (Light Detection and Ranging) derived data are widely adopted for
the study and characterization of forests.  In particular,  LiDAR derived-CHM
(Canopy Height Model) has proved essential in identifying tree height variabil-
ity and estimating many forest features such as biomass and wood volume.
However, CHM quality may be affected by internal limits and anomalies caused
by raw data (point cloud) processing (i.e., vertical  errors), which are quite
often disregarded by users, thus generating potentially erroneous results in
their applications. In this work, an auto-consistent procedure for the fast eval-
uation of CHM accuracy has been developed based on the assessment of inter-
nal anomalies affecting CHM data obtained by differencing gridded DSM (Digital
Surface Model) and DTM (Digital Terrain Model). To this purpose, a CHM was
generated  using  the  gridded  DTMs  and  DSMs  provided  by  the  Cartographic
Office of the Piemonte Region (north-western Italy). We estimated the local
potential  CHM  error  over  the  whole  region,  and  demonstrated  its  strictly
dependence on the terrain morphometry, particularly slope. The relationship
between potential CHM error and slope was modeled separately for mountain,
hill and flat terrain contexts, and used to produce a potential error map over
the whole region. Our results showed that approximately 20% of the regional
territory  suffers  from CHM uncertainty  (in  particular  high  elevation  areas,
including the treeline), though the majority of regional forest categories was
affected by negligible CHM error. The potential consequences of CHM error in
forest applications were evaluated, concluding that the tested LiDAR dataset
provide a reliable basis for forest applications in most of the regional territory.

Keywords: ALS, LiDAR, CHM, Data Quality, Vertical Errors, Slope Effect, Forest
Applications

Introduction
Aerial  LiDAR (Light  Detection and Rang-

ing)  is  nowadays  one  of  the  most  used
remote sensing technologies  for studying
and characterizing forests. Due to its excel-
lent  accuracy,  LiDAR-derived datasets can
provide reliable estimations of many forest
structural  characteristics,  such  as  tree
height,  canopy  height  variability  and  clo-
sure  (Falkowski  et  al.  2006).  Moreover,
tree  vertical  distribution  can  be  directly
retrieved,  while  above-ground  biomass,
average  basal  area,  average stem  diame-
ter, canopy volume and tree density can be
modeled (Dubayah & Drake 2000).

LiDAR raw data are point clouds that can
be directly  interpreted.  Nevertheless,  it  is
quite  common  to  operate  using  gridded
LiDAR  data  obtained  from  point  clouds
(raw  data)  by  spatial  regularization or  in-
terpolation. A Digital Surface Model (DSM)
and the correspondent Digital Terrain Mod-
el (DTM) can be jointly used to retrieve by
differencing  the  so  called  Canopy  Height
Model (CHM). In the case of forests, CHM
is a measure of the trees’ height over the
considered area and can be used to assess
many fundamental forest parameters such
as biomass and wood volume, and is prov-
ing  to  be  increasingly  useful  to  identify

canopy  height  variability  and  detect  tree
crowns (Jakubowski et al.  2013,  Qin et al.
2014).

ALS  (Aerial  Laser  Scanning)  data  have
been also proposed to map treeline height
position  and  shifts  (Næsset  &  Nelson
2007).  Treelines  are  transition  ecotones
very sensitive to temperature regimes and
considered  as  ecological  indicators  of  cli-
mate  change.  With  rising  temperatures,
treeline  is  expected  to  colonize  tree-less
areas  located  at  higher  altitudes.  There-
fore, it is important to monitor the position
and the possible movements of these eco-
tones, and LiDAR derived data may repre-
sent  a  useful  tool  to  this  purpose.  How-
ever,  regardless  the  mapping  strategy
adopted, results often are affected by un-
certainty  that  should  be  clearly  assessed
and notified.

Despite the importance of LiDAR datasets
in  forest  applications,  the  internal  limits
and anomalies caused by raw data quality
and  pre-processing  are  quite  often  disre-
garded  or  neglected.  Indeed,  such  con-
straints  can impact  the effectiveness  and
reliability  of  measures  in  specific  applica-
tions, generating potentially erroneous re-
sults.  Nowadays,  LiDAR  derived  datasets

© SISEF http://www.sisef.it/iforest/ 901 iForest 9: 901-909

DISAFA, University of Torino, l.go Paolo Braccini 2, I-10095, Grugliasco, TO (Italy)

@@ Vanina Fissore (vanina.fissore@unito.it)

Received: Jan 21, 2016 - Accepted: May 13, 2016

Citation: Borgogno Mondino E, Fissore V, Lessio A, Motta R (2016). Are the new gridded 
DSM/DTMs of the Piemonte Region (Italy) proper for forestry? A fast and simple approach for 
a posteriori metric assessment. iForest 9: 901-909. – doi: 10.3832/ifor1992-009 [online 2016-
08-29]

Communicated by: Matteo Garbarino

Research ArticleResearch Article
doi: doi: 10.3832/ifor1992-00910.3832/ifor1992-009

vol. 9, pp. 901-909vol. 9, pp. 901-909

http://www.sisef.it/iforest/contents/?id=ifor1992-009
mailto:vanina.fissore@unito.it


Borgogno Mondino E et al. - iForest 9: 901-909

are often freely available from institutional
and  non-institutional  subjects,  and  pro-
vided to customers “ready to use”. Ideally,
quantitative estimates of data quality mea-
sures  (pulse  return  coordinate  accuracy
and  precision,  conformity  with  required
specifications, data spatial consistency and
completeness) should be part of every la-
ser data delivery. However, such informa-
tion is  often incomplete  or  even missing,
due to the costly and time-consuming pro-
cedures for data quality evaluation (Gatzio-
lis  & Andersen 2008),  especially  in moun-
tain  areas.  Moreover,  quality  measures
supplied to end-users within metadata fre-
quently refer to the original data (i.e., point
cloud) and not to the derived gridded data-
set,  which is  generally  characterized by a
higher  uncertainty  due  to  the  regulariza-
tion/interpolation process.

For these reasons, users may greatly ben-
efit from the possibility of testing the qual-
ity  of  data  to  be  used,  especially  when
mountain  forest  contexts  are  regarded.
Few scientific  papers  dealing  with  LiDAR-
derived data  have  considered this  aspect
(Hodgson & Bresnahan 2004). Conversely,
some scientific  works use LiDAR datasets
as reference for validating measurements
obtained by other remote sensing systems
(Hofton  et  al.  2006,  Tang et  al.  2014).  In
general, this procedure is deemed feasible
as  vertical  and  horizontal  accuracy  of  Li-
DAR measures is much higher (average ver-
tical  accuracy:  0.15  m  –  Baltsavias  1999)
compared  to  most  remotely  sensed  data
(e.g.,  Landsat,  MODIS,  etc.).  Nonetheless,
LiDAR  raw  data  often  require  a  pre-pro-
cessing step to avoid uncontrolled artifacts
(i.e., vertical errors), especially after point
cloud gridding/interpolation (Aguilar et al.
2010). 

CHM uncertainty strictly depends on the
reliability  of  the  gridded  DTM/DSM  from
which it  derives by differencing. It is  well
known that vertical error is related to to-
pography (Hyyppä et al. 2005), land cover
categories  (Hodgson  &  Bresnahan  2004),
vegetation classes (Coveney 2013) and ca-
nopy  density  (Reutebuch  et  al.  2003).  In
particular, the joint effect of LiDAR acquisi-
tion  geometry  and  terrain  slope  can  em-
phasize these errors (Kraus & Pfeifer 1998).
Since  steep  slopes  can  increase  vertical
absolute errors  (Su  & Bork 2006),  height
measurements  of  trees  located  in  these
areas potentially suffer from higher uncer-
tainty. Nevertheless, only few works have
taken  into  consideration  the  effect  of
topography  on  DTM/DSM/CHM  accuracy
(Spaete et al. 2010).

The  aim  of  this  work was  to  develop a
new approach for estimating CHM vertical
uncertainty  without  any  ground  survey
information.  CHM  was  obtained  here  by
matrix  difference  from  DSM  and  DTM
freely available in a  grid format from the
Cartographic  Office  of  the  Piemonte  Re-
gion (NW Italy). These represent the most
common  data  provided  by  public  institu-
tions  to  end-users  and  researchers  not

directly involved in LiDAR point clouds pro-
cessing.  We  developed  a  fast  method  to
quantify  and  map  CHM  uncertainty  over
the  study  area,  regardless  the  method
used  to  attain  the  grid  from  the  original
LiDAR data.  We also explored the depen-
dence  of  CHM uncertainty  from topogra-
phy and  pointed  out  its  effects  in  forest
applications. 

Materials and methods

Approach description
The  proposed  approach  is  based  on  a

dataset validation method to identify “evi-
dent artifacts” affecting the CHM obtained
by subtracting DSM from DTM grid values.
Grids  showing  negative  differences  are
obviously  CHM  errors  (artifacts),  as  DSM
values  should  locally  be  equal  or  higher
than those of the DTM.  No direct field vali-
dation survey was possible nor required, as
our goal was explicitly to develop a ready-
to-use and auto-consistent procedure for a
fast  evaluation  of  CHM  uncertainty.  Our
objectives were: (i) to quantify the uncer-
tainty of the tested dataset; (ii) to propose
a fast and simple CHM validation method-
ology; (ii) to show the potential limitation
due  to  CHM  uncertainty  in  respect  to
forestry  applications  in  the  Piemonte  Re-
gion.

For this tasks, 96 sample DSM and DTM
tiles  representing  three  different  land-
scape contexts (flat, hilly and mountainous
areas) were selected. For each tile, the cor-
respondent CHM was obtained and several
synthetic statistics computed. CHM errors
due  to  artifacts  were  then  analyzed  and
related to their landscape characteristics to
test for possible effects of terrain morpho-
metric parameters. The main focus was on
slope  that  is  considered  the  most  condi-
tioning factor,  according to the literature
(Su & Bork 2006). Terrain effects on CHM
uncertainty were then modeled, and CHM
errors  were mapped  over  the  whole Pie-
monte Region. Moreover, we investigated
if and how the estimated CHM uncertainty
affects the main regional forest categories.
Particular attention was paid to forest cat-
egories  located  at  the  highest  elevation
where  the  treeline  occurs.  In  most  inter-
pretations,  the  treeline  represents  either
the upper altitudinal or latitudinal line con-
necting trees having a minimum height of
2-5 m (Holtmeier 2009). In this context, the
vertical  accuracy  in  tree  height  measure-
ment  obtained  from  the  CHM  becomes
crucial for early detection of pioneer trees
representing  the  ongoing  tree  migration
(Næsset 2015).

All computations and statistics were run
and  managed  by  SAGA® GIS  (System  for
Automated  Scientific  Analysis,  Hamburg,
Germany)  and  IDL  (Interactive  Data  Lan-
guage) programming tools.

Dataset
The LiDAR  dataset  of  the Piemonte  Re-

gion has been recently released in a grid-

ded format (DTM and DSM) covering the
entire  regional  territory.  The dataset  was
acquired during the ICE aerial-photogram-
metric  survey  (2009-2011).  Relative  flight
height was about 4500 m a.s.l, with a longi-
tudinal  and  cross  overlapping  of  55-70%
and  90%,  respectively  (Regione  Piemonte
2016a). LiDAR point clouds were acquired
using a LEICA ALS50-II  sensor (Leica Geo-
systems 2006). Nominal point density was
about 0.5 points m-2. The system was capa-
ble  of  detecting up  to 4  multiple  returns
for  each  outbound  laser  pulse  (first,  sec-
ond, third, last). The vertical discrimination
distance between consequent pulses was
approximately 3.5 m. DTM and DSM were
pre-processed  from  the  original  LiDAR
point clouds by filtering and regularization,
resulting in a geometric resolution of 5 m.

The  reference  technical  report  concern-
ing DTM quality check (Regione Piemonte
2012)  states  that  “data  control  is  consid-
ered positive if no more than 5% of ΔQ dif-
ferences results (in absolute value) higher
than 0.60 m; moreover, for areas defined
as of «reduced accuracy», i.e., mountainous
forest areas, threshold value is set to 1.44
m”.  Since  these  reference  values  are  as
much as twice the DSM/DTM precision (tol-
erance),  we  assumed  the  tolerance  as  a
statistical  measure  of  CHM  uncertainty
(errors). The regional cartographic depart-
ment states that the DSM dataset is “not
explicitly tested” because it represents an
intermediate product in the generation of
the  DTM.  Since  no  specification  were
given, we assumed the same tolerance for
DSM and DTM. All  data were delivered in
the  UTM  32N  WGS84  reference  frame.
DTM tile size matches the correspondent
1:10.000 section of the Regional Technical
Map (CTR).

A land cover map of “Forests and other
territory  covers” (FTC)  was also obtained
in a vector format from the regional data-
base  (SIFOR  –  Regione Piemonte  2016b).
The FTC reference frame is the UTM WGS-
84 zone 32N, with nominal scale 1:10.000.
The FTC includes 5  major classes  of  terri-
tory cover: “agricultural areas”, “predomi-
nant  pastoral  value  areas”,  “semi-natural
herbaceous formations”, “forested areas”,
“other  territory  covers”.  The  “forested
areas” class includes 93 forest types and 21
forest categories. 

Study area
Piemonte  extends  for  about  2.539.983

ha,  of  which 1.098.677 ha are covered by
mountains, 769.848 ha by hills and 671.458
ha by lowlands.  Forest areas cover  about
916.000 ha (Camerano et al. 2004). In order
to allow a representative selection of  the
entire  regional  framework,  sample  areas
used  in  this  study  were  extracted  from
each  landscape  context,  which  was  thus
represented by a different number of DTM/
DSM  tiles  distributed  over  the  whole  re-
gion  (Fig.  1). Sample  tiles  were  selected
according to the administrative boundaries
of municipalities whose territory is mostly
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Quality evaluation of LiDAR-derived datasets

mountainous, hilly or flat.  Overall, 96 tiles
were selected for the following municipali-
ties:
• Lowland context was represented by 24

tiles  covering  the  following  municipali-
ties: Borgo d’Ale (4); Cameri (5); Venaria
(2); Savigliano (8); Felizzano (5).

• Hill  context  was  represented by 37 tiles
covering the following municipalities: Ver-
bania (6); Mazzè (4);  Moncalieri  (7);  Bu-
sca  (8)  Villanova  di  Mondovì  (4);  Bor-
ghetto di Barbera (4); La Morra (4).

• Mountain context was represented by 35
tiles  covering  the  following  municipali-
ties: Ceresole Reale (8); Macugnaga (6);
Settimo  Vittone/Carema/Chiaverano  (8);
Pontechianale (7); Limone Piemonte (6).
Several  terrain  characteristics  of  each

landscape context are reported in Tab. 1.

CHM quality check
Co-registration  (homology)  of  the  DTM

and the correspondent DSM tiles was test-
ed  to identify  eventual  pixel  position dis-
placement.  Moreover,  since  many  tiles
showed  local  areas  of  missing  values
(“noData”),  we  tested  if  the  number  of
regular  (NOT-NULL)  pixels  was  the  same
for DSM and correspondent DTM tiles. Sta-
tistics were then globally computed for all
tiles representing the same landscape con-
text.

CHM errors analysis
CHMs  were  computed  by  differencing

DSMs  and  DTMs.  As  CHM  values  are  ex-
pected to be positive or zero regardless of
their geographic position, negative values
were identified and assumed as proxies of
potential CHM uncertainty. Error statistics
were separately  computed for  each land-
scape context. Since the tolerance (double
of precision) was assumed as a statistical
measure  of  CHM  uncertainty,  statistics
summarizing the occurrence of CHM nega-
tive  values  was  called  “a  posteriori CHM
tolerance”  (τCHM).  According  to  tolerance
values of  DTM (τDTM)  and DSM (τDSM),  it  is
also  possible  to  estimate  the  expected
CHM tolerance (hereafter:  “a priori toler-
ance” – τ̂CHM) by applying the Variance Pro-
pagation Law (VPL – Bevington & Robinson
2002), as follows (eqn. 1):

Assuming that τDTM = τDSM, then (eqn. 2):

According  to  DTM  and  DSM  metadata,
τ̂CHM was 0.83 m in the best case (τDTM = τDSM

= 0.60 m)  and  2.03  m in  the  worst  case
(e.g.,  mountain  and  forest  areas),  where
τDTM = τDSM = 1.44 m. We assumed 0.83 (τĈHM

– the “best” tolerance) and 2.03 m (θCHM –
the “worst” tolerance) as reference values
to compare the CHM a posteriori tolerance
with during our analysis.

CHM a posteriori tolerance estimation
For  each  of  the  96  selected  tiles,  CHM

was  calculated  from  the  correspondent
gridded DTM and DSM. Negative CHM val-
ues (Δ-) were identified and the parameter
p1 was  computed  to  quantify  the  occur-
rence of CHM errors over images (eqn. 3):

where Nim is the total number of tile pixels
and  NΔ- is the number of CHM pixels with
values < 0. The parameters p2 and p3 were
also calculated as the percentages of CHM
pixels  (for  each  tested  tile)  where  CHM
error exceeds the expected tolerance thre-
sholds  (eqn. 4):

where NΔ-
τ̂CHM is the number of CHM pixels

with Δ- < -τ̂CHM; and (eqn. 5):

where NΔ- θCHM is the number of CHM pixels
with  Δ-  <  -  θCHM.  The  reference  statistical
population in this case is  NΔ- (i.e., all  CHM
negative values).

It is worth to notice that: (i)  p1 certainly
underestimates  the  actual  occurrence  of
errors, since only negative errors are con-
sidered. Assuming that error frequency dis-
tribution  is  symmetric  (i.e.,  error  occurs
equally  with  positive  and  negative  sign),
then  p1 is  expected  to  double;  (ii)  con-
versely,  p2 and  p3 are  expected  to  be
invariant  even  in  the  case the  whole fre-
quency distribution of errors is considered,
since both the numerator and denominator
of the ratio should double in this case.

Statistics regarding each tested tile were
then averaged over each of the three refer-
ence landscape contexts. Since the param-
eters p1, p2 and p3 describe the frequency
of significant CHM errors over the region,
the statistic distribution of CHM errors was
also computed considering all tiles regard-
less of possible map shifting and separately
performed for each context.

iForest 9: 901-909 903

Fig. 1 -  Geographic 
distribution of the 
selected sample 
DTM/DSM tiles over 
the Piemonte 
Region. (Dark green):
lowland tiles; (pale 
green): hill tiles; 
(brown): mountain 
tiles.

Tab. 1 - Main terrain characteristics of the 3 landscape contexts considered, as infer-
red  from  sample tiles  selected according  to  the administrative  boundaries  of  the
municipalities whose territory is mostly mountainous, hilly or flat. This determines the
partial overlap of height and slope ranges among different contexts.

Landscape
contexts

Area
(ha)

Height (m a.s.l.) Slope (Degrees) Roughness

Min-Max Median Min-Max Median Median

Lowland 91100 92-442 231 0-16 0.97 16
Hill 134242 164-1622 343 0-43 5.90 56
Mountain 114446 225-4508 2108 0-72 21.60 336
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CHM error vs. terrain morphometry
To  investigate  the  relationship  between

CHM errors and landscape morphometry, a
correlation analysis was carried out. First, a
slope map (degrees) was computed from a
low  resolution  (10×10  m)  DTM  available
from  the  Regional  cartographic  office,
using  the  Maximum  Slope  algorithm  by
Travis et al. (1975) available in the software
SAGA GIS. Scatterplots of CHM errors (ab-
solute value) and the correspondent slope
values  were  generated  for  each  context.
Due to the area morphology, slope values
at  CHM  error  locations  were  not  equally
distributed in their range of variability, thus
affecting  the  reliability  of  the  regression
analysis. To solve this problem, 20 equally
spaced slope classes were defined, and the
mean absolute CHM error value (|m|) and
the quantity |M| = |m| + 2σclass (where σclass is
the standard deviation of the CHM errors
falling in the considered slope class) were
computed for each class.  In this case, the
parameter |m| is the average reference val-
ue of CHM uncertainty for each slope class,
while |M| represents the “worst case” that
can occur at each location. Assuming a nor-
mal  distribution  of  CHM  errors  in  each
slope class, the 95.4 % of error absolute val-
ues  are  lower  than  |M|.  Correlation  and
regression  analysis  were  performed  on
both |m| and |M| separately in each land-
scape contexts. Since a strong correlation
was found between slope and both |m| and
|M|,  two regressive models  were used to
estimate the potential  CHM error at each
location based on slope values. Models cal-
ibration was performed using all the avail-
able data (CHM errors) for each landscape
context.

To further investigate the relationship be-
tween CHM errors and terrain morphology,

spatial autocorrelation of CHM errors was
analyzed using variograms in a sample tile
(n. 190130) of the mountain context.

CHM error mapping
CHM error models  of  |m| and |M| previ-

ously  calibrated  for  the  mountain  land-
scape context (the most critical) were used
to map the potential CHM errors over the
entire Piemonte Region. Modeling was per-
formed using a slope map obtained from a
coarser  DTM dataset of  Piemonte Region
with a GSD (Ground Sample Distance) of 50
m. Pixels exceeding the best (τ̂CHM) and the
worst (θCHM) tolerance values were used to
obtain the frequency distribution of height
error over the whole region.

CHM error impact over forest 
categories

To  assess  the  impact  of  CHM  potential
errors  on  the  main  regional  forest  cate-
gories,  regional  forest  areas  were  identi-
fied  using  the  FTC  map  obtained  by  the
regional database. Twenty-one forest cate-
gories listed in FTC map were grouped in 12
classes  according  to  Camerano  et  al.
(2004).  We  particularly  focused  on  those
areas  where  treeline  potentially  occurs
(high altitude classes – 1500-2500 m a.s.l.).

Results
A preliminary check of co-registration of

DTM and DSM tiles revealed that as much
as 38.7 % of the sampled tiles was shifted.
In  all  cases,  the  observed  displacement
was 0.5  pixel  (2.5  m),  indicating that  the
processing of  georeferenced files by data
producers was not rigorous.  According to
the  producers’  metadata,  DTM  and  DSM
were separately managed during the pro-
duction workflow, and this could have gen-

erated the observed tile translation, which
unavoidably  affects  also the computation
of CHM values. 

Moreover, some unexpected differences
between  DSM  and  DTM  were  found.  In
fact,  44.8  %  of  the  tested  DSM  tiles  in-
cluded a higher number of NOT-NULL pix-
els  compared  to  the  correspondent  DTM
tiles. These were mainly located along the
map edges and were probably generated
during the point cloud regularization step.

Tab.  2 reports  the  number  of  pixels  of
DSM  exceeding  the  DTM  ones  for  each
landscape context, as well as their percent-
age over the entire regional  territory and
their equivalent area in hectars. These sta-
tistics were globally computed for all tiles
belonging to the same landscape context.
The  results  show  that  these  areas  repre-
sent a negligible part of the Piemonte Re-
gion, corresponding to 0.029%, 0.041% and
0.043% for lowland, hill and mountain con-
texts, respectively.

CHM error analysis
Since  a  significant  number  of  DTM  and

DSM tiles  were found to be not  properly
co-registered, CHM error analysis was sep-
arately  performed  for  “matching”  and
“shifted” tiles  in each landscape context.
The percentages  p1,  p2 and  p3 (eqn.  3-5)
were then computed for each of the two
groups (Tab.  3).  Results  showed that  the
percentage of negative CHM values signifi-
cantly different from zero was not negligi-
ble,  especially  in  mountain  areas.  More-
over,  a  higher  percentage  of  errors  (i.e.,
lower  accuracy)  was  found where  spatial
displacement between DTM and DSM was
observed  (shifted  tiles).  Significant  CHM
errors  in  the  mountain  context  increased
from about  4.4% for  matching tiles  up to
29.3% for shifted tiles. It is worth to stress
that this  situation only concerns this  spe-
cific release of data we tested, which can
be easily corrected by revising the process-
ing workflow.  We therefore chose as the
most  appropriate  value  for  τĈHM that  ob-
served  for  the  “matching”  subset.  Addi-
tionally, such percentages could even be as
much as twice the above figures, since the
CHM errors  considered in  this  study may
theoretically represent only the half of the
whole error distribution (i.e., the negative
errors), as already mentioned.   

The statistic distribution of the observed
CHM errors for each context is summarized
in Fig. 2. CHM errors showed an increasing
trend from lowlands (0.04 m, 0.26 m and
0.89  m  for  minimum,  median  and  maxi-
mum values, respectively) to hills (0.05 m,
0.32  m  and  1.58  m,  respectively)  and  to
mountains  (0.05  m,  1.10  m  and  1.68  m,
respectively),  suggesting  a  strong  depen-
dency of errors from topography.

CHM error vs. terrain morphometry
As  not  negligible  CHM  errors  were  re-

corded  in  mountain  and  hilly  areas,  their
dependence from terrain slope was tested.
Scatterplots of slope vs. both |m| and |M|
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Tab. 2 – Counting of NOT-NULL pixels in the DSM and DTM sample tiles. The number
of NOT-NULL pixels of DSM exceeding those of the corresponding DTM (D), their per-
centage over  to the whole Piemonte Region area,  and their  equivalent  surface in
hectares are reported. Statistics were globally computed for all tiles belonging to the
same landscape context.

Landscape 
contexts

D
(n. pixels)

Area
(%)

ha

Lowland 10813 0.029 27.0

Hill 23825 0.041 59.5
Mountain 20197 0.043 50.4

Tab. 3 - CHM error occurrences for the tested tiles, calculated by averaging the param-
eters p1,  p2,  p3 of tiles belonging to the same landscape context (lowlands, hill and
mountain). 

Tiles
Landscape
contexts p1 p2 p3

Matching Lowland 0.63 13.58 1.32
Hill 0.29 13.21 3.58

Mountain 4.41 30.41 9.30

Shifted Lowland 0.92 0.47 0.03

Hill 2.25 15.06 5.47

Mountain 29.30 58.94 20.48
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revealed  a  strong  correlation  between
these variables  in  both hill  and mountain
contexts  (Fig.  3b,  Fig.  3f).  The  following
exponential regression model showed the
best fitting to the observed data (eqn. 6):  

where  ε is  the mean (|m|)  or  worst  (|M|)
CHM error (m), depending on the modeled
parameter,  and  β is  the local  slope angle
(degrees). In flat areas, β is zero, thus eqn.
6 can be rewritten as |ε| = expa. The values
of parameters  a,  b,  and  c obtained by fit-
ting  the  above  model  in  both  hill  and
mountain contexts are reported in Tab. 4.

Fig.  3 reports the results  of  the correla-
tion  analysis  between  CHM  errors  and
slope. A strong significant relationship was
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Fig. 2 - Boxplots 
of the CHM 
error distribu-
tion for low-
land, hill and 
mountain con-
texts. The ends 
of whiskers rep-
resents the 
maximum and 
minimum values
of the distribu-
tion.
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Fig. 3 - Correlation of CHM errors with
slope. (a-e) Frequency distribution of
CHM errors in slope classes for hill (a)

and mountain (e) contexts. (b-f) Re-
gression analysis of slope versus |m|

and |M| statistics for hill (b) and moun-
tain (f) contexts. (c, d, g, h) Scatter-

plots of the observed vs. predicted val-
ues of |m| (c, g) and |M| (d, h) for the

hill (c, d) and mountain (g, h) contexts.

ε=expc⋅β 2+b⋅β+a
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found,  with  error  values  increasing  with
slope in both hill  and mountain contexts.
Trends of the parameters |m| and |M| were
similar  in  shape  and  value  for  both  con-
texts,  though  the  coefficients  of  the  re-
gression model were slightly different. This
could be explained by the different statisti-
cal  distribution of  the CHM errors  across
slope classes.

To  better  explore  the  dependence  of
CHM errors from slope, a mountain sample
tile (n. 190130) was chosen and a random
sample of its CHM errors (20 % of the total)
was extracted. Selected points were differ-
ently colored according to CHM error value
and superimposed over the correspondent
DTM tile (left panel of Fig. S1 - Supplemen-
tary material). Map showed that the major-
ity of CHM errors mainly occurred in those

parts of the area analyzed where topogra-
phy is highly variable and the elevation is
high. Moreover, the cumulative frequency
distributions  of  slope  and  height  values
corresponding  to  CHM  negative  pixels
showed that 100% of errors occurred at ele-
vations  higher  than 1300 m a.s.l.,  even  if
height values of the area ranged between
280 and 2900 m a.s.l. (Fig. S1, right panel).
This  confirms  the  strong  correlation  of
CHM error with slope, but not with eleva-
tion. 

Spatial  autocorrelation  analysis  was  ap-
plied to the sample tile previously used for
the error distribution analysis  (n.  190130).
As displayed by the variogram reported in
Fig.  4,  CHM  error  variance  did  not  result
distance-dependent (no spatial  autocorre-
lation)  at  the closest  distances (up to 1.5

km), while it markedly increased up to 7.5
km  and  then  decreased  for  further  dis-
tances. Furthermore, a bidimensional (sur-
face)  variogram  generated  for  the  same
tile clearly showed that error variation was
higher  along  the  SW-NE  direction  (lower
left panel in Fig. 4), i.e., along the main ele-
vation  gradients  in  the  area  (lower  right
panel).  Contrastingly,  CHM error  variance
was slowly decreasing along the direction
of the main valley system (NW-SE), further
confirming  the  strong  CHM  error  depen-
dency from geomorphology.

CHM error mapping
Modeling  of  the  dependence  of  CHM

errors from terrain morphology allowed to
map  the  CHM  potential  error  over  the
whole regional  territory.  A potential  CHM
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Fig. 4 - Variogram and surface variogram of
CHM errors for sample tile no. 190130. 
(Upper panel): spatial autocorrelation of 
CHM errors, reflected by the increase of 
error variance with distance, indicating 
that morphology is a conditioning factor. 
The distance range (approx. 8 km) was 
consistent with the length of the main val-
ley system (red bar). Sub-patterns of varia-
tion within this distance can be related to 
the local morphology (black bars). (Lower 
panels): bidimensional (surface) variogram 
of CHM errors (left) and the corresponding
DTM (right). Error variation was weak 
along the flat area (valley), while increased 
on steep slopes.

Tab. 4 - Pearson’s correlation coefficients (R) and parameters values (a, b, c) of the regression model (eqn. 6) used to predict CHM
error (|m| and |M|) based on slope values in the mountain and hill contexts.

Parameters
Mountain Hill

|m| vs. Slope |M| vs. Slope |m| vs. Slope |M| vs. Slope

R 0.84 0. 90 0.99 0.99
a -0.47969 0.19952 0.02842 0.94374

b 0.02911 0.01335 0.00077 -0.02155

c -0.00007 0.00028 0.00028 0.00065
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error  map with  cell  size of  50×50 m was
generated  using  the  mountain  context
parameters for both |m| and |M| in eqn. 5.
To this  goal,  a  slope map was generated
from a 50×50 m available DTM covering the
entire region. 

Fig. 5 shows the distribution of CHM error
(|M|) over the Piemonte Region. Significant
|M| error values (> 3 m) were found only in
the hill or mountain contexts. The expect-
ed  mean  CHM  error  (|m|)  was  generally
consistent  with  the  declared  accuracy  of
the  DTM,  and  consequently  of  the  DSM
(Tab.  5).  Indeed,  |m| values  were  lower
than the expected “best” tolerance (0.83
m) in 51% of the mapped territory, while in
the remaining part |m| values were lower
than the “worst” tolerance (2.03 m). More-
over,  |M| errors  were  surprisingly  low,
being smaller  than the “worst” tolerance
(2.03 m) in about 80% of the region. Hence,
20%  of  the  regional  territory  (mainly
located on mountains) suffers from a high
CHM uncertainty.

Regarding the treeline, an additional anal-
ysis  was  carried  out  to  verify  how  CHM
potential  errors  might  affect  treeline  de-
tection  at  high  elevations  (1500-2500  m
a.s.l.).  Six  elevation  classes  were  defined
and mapped using the available DTM (Tab.
6),  and  the  potential  CHM  errors  were
computed  for  each  class  using  the  CHM
error map obtained above. Only the values
of |m| and |M| above 2.03 m were consid-
ered  in  this  analysis,  as  the  minimum
height of trees forming the treeline is com-
monly considered to be 2 m.  The majority
of  not  negligible  CHM  potential  errors
were  found  in  the  elevation  class  where
the  treeline  commonly  occurs  (1500-2500
m a.s.l. - Tab. 6). We concluded that the use
of  the  LiDar  dataset  tested  in  this  study
could not be suitable for studies on local
treeline dynamics and variation. Some im-
provement could be attained by combining
the  CHM  information  with  the  digital  or-
thoimages acquired during the same flight
(ICE  aerial-photogrammetric  survey  2009-
2011). 

Impact of CHM error on forest 
categories

CHM potential error was related to forest
areas  using the available FTC vector  map
described  above.  Polygon  zonal  statistics
(mean  and  standard deviation of  |M|  val-
ues,  average  values  of  slope  in  degrees,
elevation and covered area in %) were cal-
culated for 12 forest categories represent-
ing  the  main  forest  types  of  Piemonte.
Main CHM statistics obtained are reported
in Tab. 7, while Fig. 6 reports the mean and
standard  deviation  values  of  |m| and  |M|
for each category, sorted by the mean val-
ue of class slope (from the lowest to the
highest).  A strong linear  correlation (R2  =
0.8774,  p<0.01) was  found  between  the
standard deviation of  |m|  and slope,  sug-
gesting that not only CHM potential error
increases with slope, but also local uncer-
tainty of  its  estimation.  Since the highest
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Tab. 5 - CHM errors distribution in the Piemonte Region, expressed as percentage of
the regional area falling within the considered CHM error (|m| and |M|) classes.

CHM error (m)
Area
(%)

|m| |M|
< 0.83 51 0
0.83 - 1.66 40 65
1.66 - 2.03 5 14
2.03 - 3.00 2.6 16
3.00 - 4.00 0.4 4
4.00 - 6.00 1 0.8
> 6.00 0 0.2

Tab. 6 - Mean (|m|) and maximum (|M|) potential CHM error calculated for six eleva-
tion classes in the Piemonte Region. Values are mean (± standard deviation) of  |m|
and |M| values higher than 2.03 m (the “worst” tolerance). 

Elevation class
(m a.s.l.)

|m| Area
(ha)

|M| Area
(ha)

|m| value
(m)

|M| value
(m)

0-150 0 0 0 0
150-300 0 0 0 0
300-700 81.25 10637.50 2.30 ± 0.21 2.38 ± 0.33
700-1500 3468.75 137350.00 2.31 ± 0.28 2.47 ± 0.46
1500-2500 (treeline) 10181.25 219418.75 2.33 ± 0.33 2.55 ± 0.58
> 2500 6525.00 49206.25 2.46 ± 0.46 2.85 ± 1.35
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Fig. 5 – Map of the potential CHM |M| error distribution in the Piemonte Region. Sig -
nificant |M| error values (> 3 m – yellow, orange and blue pixels) were found only in
the hill and mountain contexts.
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CHM errors were observed not only where
slope is higher but also at the highest ele-
vations, the relationship between elevation
and slope for the whole region was tested
using an exponential regression model on
the  average  values  for  each  forest  cate-
gories and. Results  showed a strong rela-
tionship between the variables considered
(R2 = 0.9007, p<0.01).

Discussion
In this study, we evaluated the quality of

the CHM obtained from the LiDAR dataset
(gridded DSM and DTM) provided by the
Piemonte Region using an indirect method
based on the assessment of internal anom-
alies  affecting  CHM  data.  The  proposed
method provides a fast evaluation of data
uncertainty,  with no direct ground valida-
tion required.

We  estimated  the  local  potential  CHM
error  and  demonstrated  that  it  is  strictly
dependent  from  slope.  The  relationship
between  CHM  error  and  slope  was  inde-

pendently modeled for mountain, hill  and
flat terrain contexts by exponential regres-
sion.  Using  the  model  calibrated  on  the
mountain context, the local CHM potential
error was estimated and mapped over the
whole  region.  This  analysis  showed  that
the mean potential  error (|m|)  was lower
than the nominal best tolerance (0.83 m)
over  51%  of  the  territory,  while  the  maxi-
mum  potential CHM error (|M|) was lower
than the nominal worst tolerance (2.03 m)
in about 80% of the analyzed region. How-
ever,  CHM uncertainty  was not  negligible
(2.33-2.55  m)  at  the  highest  elevations
(1500-2500 m a.s.l.), including the treeline.

Regarding the impact  of  CHM errors on
different  forest  types,  we found that  the
mean potential error is almost forest class-
independent as for both class mean value
and standard deviation (1.10-1.45 m), which
instead  increased  with  slope  when  the
maximum  potential  CHM  error  is  consid-
ered.  Nonetheless,  the values reported in
Tab.  7 could  be  advised  as  reference  es-

timates of |m| and |M| for each forest cate-
gory. However, when used in forest appli-
cation,  it  should  be taken  into considera-
tion that (i) the reported values depend on
the prevailing morphology of the area con-
sidered (slope) and not on forest species;
and (ii) most forest categories show negli-
gible  CHM  errors  as  compared  with  the
“worst”  declared  accuracy  of  the  parent
datasets.  This  makes  the  LiDAR  gridded
datasets of  the Piemonte Region suitable
for  forest  applications  for  most  of  the
regional  territory.  However,  the  steepest
and highest elevation areas (about 20% of
the regional territory) suffer from non-neg-
ligible errors, making the measurements of
tree height derived from CHM not fully reli-
able.  In  particular,  the  use  of  the  tested
CHM seems to  be inappropriate  for  tree-
line  mapping  purposes,  as  unreliable  re-
sults might be obtained. Indeed, according
to our results, the potential CHM error de-
tected for such elevation class is fully con-
sistent with the minimum height  of  trees
forming  the  treeline  (2-5 m  –  Holtmeier
2009).

It is worth to notice that the gridded DTM
tested  in  this  study  is  established  and
proven by the Piemonte Region, while the
gridded DSM used is not an official release
yet, and therefore it could be improved by
revising  the  original  point  cloud  of  the
LiDAR acquisition.  DTM,  however,  can be
freely  downloaded  from  the  official  Geo-
portal website of the Piemonte Region.

The main goal of this study was to pro-
vide  users  with  an  easy  tool  (the  model
relating CHM error and slope) for assessing
the potential CHM error to be adopted in
customized forest applications. To this end,
we  recommend  particular  caution  when
mountain forest areas are included in the
study,  as  steep  slopes  may  strongly  de-
crease the vertical accuracy issued with the
original LiDAR acquisition, and consequent-
ly vertical errors may increase.

Future research will  be addressed to as-
sess the uncertainty of wood volume and
biomass  estimation from LiDAR CHM  val-
ues.  This  could  be  obtained  by  reversing
ordinary empirical  models of  volume esti-
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Tab. 7 - CHM error statistics for 12 forest categories representing the main forest types of the Piemonte Region, sorted by increasing
value of mean slope in each category. Mean values (± standard deviation) of potential CHM errors |m| and |M| are reported. 

Forest category
|m|
(m)

|M|
(m)

Slope
(degrees)

Elevation
(m s.l.m.)

Area
(%)

Riparian willow and poplar forest 1.03 ± 0.09 1.20 ± 0.32 5.35 173.86 1.51
Black Locust forest 1.08 ± 0.08 1.25 ± 0.25 8.51 276.85 12.87
Sessile oak, Oak-Hornbeam and Turkey oak forests 1.13 ± 0.19 1.54 ± 0.62 13.54 352.29 8.07
Downy oak and Hop-Hornbeam forests 1.18 ± 0.16 1.67 ± 0.50 17.21 273.97 6.41
Chestnut forest 1.24 ± 0.21 1.75 ± 0.60 18.94 583.77 23.66
Conifer tree plantation 1.26 ± 0.21 1.91 ± 0.64 21.13 768.06 2.30
Mesophilous mixed broad-leaves forest 1.30 ± 0.26 1.92 ± 0.76 21.26 925.03 4.30
Scots pine, Mountain pine and Cluster pine forests 1.37 ± 0.29 2.10 ± 0.79 24.53 1040.60 1.65
Mixed broad-leaves pioneer forest and shrub forest 1.40 ± 0.31 2.28 ± 0.98 26.53 1214.90 11.91
Beech forest 1.43 ± 0.29 2.33 ± 0.80 27.87 1126.46 14.75
Larch and Arolla pine forest 1.45 ± 0.31 2.36 ± 0.87 27.94 1723.87 9.68
Silver fir and Spruce forests 1.50 ± 0.33 2.67 ± 0.94 31.40 1433.78 2.89
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Fig. 6 - Mean values (± standard deviation) of potential CHM errors (|m| and |M|) for 12
forest categories representing the main forest types of the Piemonte Region, sorted
by their mean slope value (lowest to highest). (1): Riparian willow and poplar forest;
(2): black locust forest; (3):  sessile oak, oak-hornbeam and Turkey oak forests; (4):
Downy oak and hop-hornbeam forests; (5): chestnut forests; (6): conifer tree planta-
tions; (7): mesophilous mixed broad-leaves forest; (8): Scots pine, Mountain pine and
Cluster pine forests; (9):  mixed broad-leaves pioneer forest and shrub forest; (10):
beech forest; (11): larch and Arolla pine forest; (12): silver fir and spruce forests.
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mation, using tree height as predictor and
stem diameter  as the predicted value.  To
this  purpose,  CHM  uncertainty  has  to  be
propagated along the model to obtain the
potential error for stem diameter, and con-
sequently of the error affecting biomass or
wood volume estimates.
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