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Comparison of parametric and nonparametric methods for modeling 
height-diameter relationships

Zdenek Adamec, 
Karel Drápela

This paper focuses on the problem of regionalization of the height-diameter
model at the stand level. To this purpose, we selected two different modeling
techniques. As a parametric method, we chose a linear mixed effects model
(LME) with calibrated conditional prediction, whose calibration was carried out
on randomly selected trees either close to mean diameter or  within three
diameter intervals throughout the diameter range. As a nonparametric meth-
od, the technique of classification and regression trees (CART) was chosen.
These two methods were also compared with the local model created by ordi-
nary least squares regression. The results show that LME with calibrated condi-
tional prediction based on measurements of height at three diameter intervals
provided results very close to the local model, especially when six to nine
trees are measured. We recommend this technique for the regionalization of
the global model. The CART method provided worse results than LME, with the
exception of parameters of the residual distribution. Nevertheless, the latter
approach is very user-friendly, as the regression tree creation and especially
its  interpretation  are  relatively  simple,  and  could  be  recommended  when
larger deviations are allowed.

Keywords: Calibration, Classification and Regression Trees, Hierarchical Struc-
ture, Linear Mixed Effects Model, Spatial Heterogeneity

Introduction
Modeling  the  relationship  between  the

tree  height  and  its  diameter  at  breast
height is one of the most common and old-
est paradigms in forestry, especially in for-
est inventory (Schmidt et al. 2011). Various
linear  and  nonlinear  models  have  been
used to study such relationship (Zhang et
al. 2005). Estimates are usually obtained by
the ordinary  least squares  (OLS) method,
though  the  estimation  of  model  parame-
ters is often hampered by the failure in sat-
isfying the assumptions of the method. In-
deed, the independence between observa-
tions is very often violated due to the spa-
tial  or  temporal  dependencies  between
data,  leading to biased estimates of stan-
dard errors of parameters and their confi-
dence intervals, as well as to misleading re-
sults of significance tests (Fox et al. 2001).
One of the main causes of the dependence
of data in forestry models is their hierarchi-

cal structure. Data collected from the same
inventory  units  are  more  similar  to  each
other  than  data  from  different  inventory
units (Fox et al. 2001). To face this problem,
we must consider that spatial variability is
an  important  feature  of  the  ecosystem,
rather  than  a  mere  statistical  nuisance
(Legendre  1993),  and  its  accurate  assess-
ment allows to better understand the com-
plexity  and  structure  of  an  ecosystem
(Zhang et al. 2008). For this reason, models
must  aim to explain the spatial  variability
of  data  as  much  as  possible.  In  previous
studies, researchers often disregarded the
problem  of  spatial  and temporal  non-sta-
tionarity,  using  global  or  local  models
instead.  The real  spatial  structure is com-
monly neglected by global models, as they
assume temporal and spatial homogeneity
of the data, and this results in a high por-
tion of unexplained variation. On the con-
trary,  local  models cannot be generalized

to populations (e.g., large areas) – as fitting
many  individual  models  requires  a  large
number of measurements – and are unsuit-
able to model the variability among differ-
ent plots. Several authors reported differ-
ent  ways  to  overcome  these  drawbacks
(Calama  &  Montero  2005).  Ferguson  &
Leech  (1978) used  two-stage  models,
Huang  et  al.  (2000) applied  models  for
each geographical  or  ecologically  defined
area, while Zhang et al. (2004) used various
geostatistical  methods.  Among  nonpara-
metric  methods  used  on  spatially  corre-
lated data, kriging has become very popu-
lar  in  the  last  decades;  several  examples
are reported in Kangas & Haara (2012).

The use of models with mixed effects is a
successful approach to overcome the prob-
lem of spatial variability in the data. Mixed
models include a fixed component, which
covers  the  entire  analyzed  dataset  (e.g.,
population),  and  a  random  component
that involves various levels of hierarchy in
the  dataset  (Calama  &  Montero  2005).
Mixed effects model allows the simultane-
ous estimation of parameters of the fixed
and random components, thus combining
the  “average”  characteristics  of  the  ana-
lyzed  population  (through  fixed  parame-
ters of the global model) with the spatial
or temporal variability of data (through the
random  component  parameters  –  Adame
et al.  2008).  The fixed component of  the
model therefore explains the influence of
different  variables  as  in  the  classical  OLS
regression  (Yang  &  Huang  2011).  In  con-
trast,  the  random  component  takes  into

© SISEF http://www.sisef.it/iforest/ 1 iForest 10: 1-8

Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and 
Wood Technology, Mendel University in Brno, Brno, 613 00 (Czech Republic)

@@ Zdenek Adamec (zdenek.adamec@mendelu.cz)

Received: Nov 24, 2015 - Accepted: Jul 07, 2016

Citation: Adamec Z, Drápela K (2016). Comparison of parametric and nonparametric methods
for modeling height-diameter relationships. iForest 10: 1-8. – doi: 10.3832/ifor1928-009 
[online 2016-10-19]

Communicated by: Piermaria Corona

Research ArticleResearch Article
doi: doi: 10.3832/ifor1928-00910.3832/ifor1928-009

vol. 10, pp. 1-8vol. 10, pp. 1-8

http://www.sisef.it/iforest/contents/?id=ifor1928-009
mailto:zdenek.adamec@mendelu.cz


Adamec Z & Drápela K - iForest 10: 1-8

account  the  heterogeneity  and  random-
ness  in  the  data  caused  by  known  and
unknown  factors  (Vonesh  &  Chiinchilli
1997). Mixed models thus provide a better
parameter estimates than OLS regressions
(Budhathoki et al. 2008), providing a flexi-
ble tool to analyze a given area.

The  main  advantage  of  using  a  mixed
model  is  the  possibility  to  calibrate  an
already  existing  model  (Mehtätalo  2004)
by estimating its  parameters on data not
used  in  the  construction  of  the  original
model, as in the case of a new experimen-
tal plot. Two calibration methods are avail-
able  to  this  purpose  (Sharma  &  Parton
2007):
• Random  parameters  have  a  value  of  0.

There are no measured values of the de-
pendent  variable,  so  the  calibration  is
done with only fixed effects (often refer-
red to as “fixed effects marginal predic-
tion”), which is related to the entire pop-
ulation.

• Random parameters are estimated sepa-
rately for each sampling unit.  It includes
at least one (or better several) measured
values of the dependent variable.  It is a
calibration with fixed and random effects
(also  referred  to  as  “calibrated  condi-
tional prediction”), which applies to indi-
vidual areas.
These calibration techniques have a wide

range of  applications,  though so far they
have been most frequently used in model-
ing growth (Miguel et al. 2013), increment
(Calama & Montero 2005, Budhathoki et al.
2008, Aakala et al. 2013) and height-diame-
ter functions (Trincado et al. 2007,  Adame
et  al.  2008,  Schmidt  et  al.  2011,  Castaño-
Santamaría et al. 2013, Lu & Zhang 2012).

When trees in the experimental area are
not enough for applying the calibrated con-
ditional prediction, LME with fixed effects
marginal  predictions  has  to  be  used  for
tree height modeling,  instead of  the LME
model  with  calibrated  conditional  predic-
tions. In such cases, a suitable alternative
could be the method of classification and
regression  trees  (CART),  which  is  a  non-

parametric  technique that  effectively  use
local  data (Sironen et  al.  2003),  does  not
require  a  normal  distribution  of  residuals
(Fan et al. 2006), and is robust to outliers
(De’ath  &  Fabricius  2000).  According  to
Rejwan et  al.  (1999),  this  method  is  suit-
able  for  modeling  with  hierarchical  data.
This approach is based on the splitting of
binary  data  into  homogeneous  groups
(with  respect  to  the  dependent  variable)
by using independent variables (Dobbertin
&  Biging  1998).  Using  qualitative  depen-
dent  variables,  this  method  produces  a
classification tree, while a regression tree is
obtained using quantitative dependent var-
iables (Moisen & Frescino 2002). The main
advantage of this approach is that no addi-
tional  height  measurements  are  required
for modeling tree height at the local level
when a CART model based on other data
sets is available for the area of interest. In
this case, only the stand variables required
for  the  assembled  classification  or  the
regression tree have to be identified.

Although  far  less  used  in  forestry  than
the LME, the CART method has been suc-
cessfully applied for modeling tree mortal-
ity (Dobbertin & Biging 1998) and for the
regionalization of global models of the vol-
ume of tally trees (Räty & Kangas 2008) or
of floodplain forest occurrences (Anderson
et al. 2010). Therefore, an accurate evalua-
tion  its  advantages  and  disadvantages  in
comparison  with  the  widely  used  LME
method is required.

The aim of this paper is to compare the
use of the LME (parametric) and the CART
(nonparametric) models to regionalize the
global  model  of  height-diameter  relation-
ship.

Material and methods

Study area
The study site  is  located in the Training

Forest  Enterprise  Masaryk  Forest  Křtiny
(lat. 49° 17′ 43″ N, long. 16°45′ 01″ E), south-
ern  Moravia  (Czech  Republic),  north  of
Brno.  Forty-six circular sample plots  were

selected in 23 different Norway spruce (Pi-
cea  abies Karst.)  stands.  The  sample  plot
area was 250 m2 (stands younger than 40
years), 700 m2 (stands aged between 41-80
years) and 1200 m2 (stands older than 80
years).  For each tree in the sample plots,
its  height  and  diameter  at  breast  height
were measured, and the basal area of each
tree was calculated.  Volume of  each tree
was calculated using volume equations by
Petráš & Pajtík (1991). We measured a total
of  1,590  trees.  For  each  of  the  23  forest
stands  considered,  the  mean  diameter,
mean height, stand basal area, mean tree
volume, number of trees per ha, site index
(mean height in 100 years) and the stand
age were obtained by averaging the sam-
pling  plot  values.  Tab.  1 summarizes  the
basic characteristics of tree and stand vari-
ables over the study area.

Statistical analysis
All  the  analyses  were  carried  out  using

the  software  packages  R  (R  Core  Team
2015) and STATISTICA® v. 12.0 (StatSoft Inc.,
Tulsa, OK, USA). The performances of the
parametric  LME  and  the  nonparametric
CART methods in modeling the height-dia-
meter relationship were compared. We fit-
ted the global model of the height-diame-
ter  function  for  the  entire  surveyed  area
and local models for each forest stand. To
fit a model with mixed effects, an appropri-
ate height-diameter (H-D) function has to
be selected. We have evaluated five com-
mon H-D functions: (i) the Michailov func-
tion (Michailov 1943 – eqn. 1):

(ii) the Petterson function (Petterson 1955
– eqn. 2):

(iii)  the Näslund function (Näslund 1947 –
eqn. 3):

(iv) the Levakovic function (Levakovic 1935
– eqn. 4):

(v) the Meyer function (Meyer 1940 – eqn.
5):

ĥ=1.3+a(1−e−b⋅dbh
)

where h is the fitted height of a tree, dbh is
the diameter at breast height, and  a, b, c
are the parameters to be estimated.

To select the best function for the global
model,  the following criteria were consid-
ered:  (i)  mean  of  residuals;  (ii)  residual
standard  deviation;  (iii)  standard  error  of
residuals;  (iv)  Akaike’s  information  crite-
rion (AIC – Akaike 1973).
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Tab. 1 -  Basic characteristics of tree and stand variables. (DBH): diameter at breast
height of a tree; (H): height; (BA): basal area; (V): volume; (DBHm): mean diameter;
(Hm): mean height; (BAs): stand basal area; (Vm): mean tree volume; (N): number of
trees; (SI): site index; (A): stand age; (95% CI): 95% confidence interval of mean value;
(min): minimal value; (Max): maximal value; (STD): standard deviation.

Level Variable Mean ± 95% CI Min Max STD

Tree DBH (cm) 32.2 ± 0.5 9.0 75.0 10.9
H (m) 28.4 ± 0.3 10.0 41.5 6.4

BA (cm2) 911.0 ± 29.7 63.6 4417 603
V (m3) 1.17 ± 0.04 0.01 6.55 0.91

Stand DBHm (cm) 33.1 ± 0.4 18.6 47.4 8.3
Hm (m) 28.8 ± 2.8 14.6 36.5 6.4

BAs (m2 ha-1) 35.7 ± 0.3 22.2 46.3 6.34

Vm (m3) 1.17 ± 0.03 0.16 2.56 0.66

N (n ha-1) 498.0 ± 13 221 1240 272

SI (m) 33.6 ± 0.1 32 38 1.7

A (years) 81.6 ± 1.6 30 136 33.0
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Parametric and nonparametric H-D models

Linear mixed effects model
We built the actual mixed model as a two-

level model, according to the methodology
proposed  by  Weiss  (2007).  The  first-level
model included only tree variables,  which
vary within the forest stand in relation to
height  and  diameter.  The  second-level
model  also  included  stand  variables.  In
terms of general matrix expression, the lin-
ear mixed model can be described as fol-
lows (Gregoire et al. 1995 – eqn. 6):

where y is the dimensional vector of the n
observations of the response variable tak-
en from  nv trees within  nu plots,  X is  the
design matrix of dimension n × m including
the explanatory  variables  associated with
fixed components,  β is the  m-dimensional
vector  of  fixed  components  (estimated
fixed parameters  of  the  model), Z is  the
design matrix of  dimension  n × q for the
random  components,  b is  the  q-dimen-
sional  vector  of  random  components  for
the  levels  tree  and  plot,  and  ε is  the  n-
dimensional  vector  of  residual  compo-
nents.

Making  the  first-level  model  consists  of
three steps:  (1)  the global  model;  (2)  the
model  with  random  effect  of  intercept
only; and (3) the model with random effect
of  intercept  and  regression  parameter.
Through these steps, we tested the signifi-
cance  of  the  structure  in  the  data,  the
importance of the predictor, and the ran-
dom effect of the model. The significance
of each model was tested using the likeli-
hood ratio test and the AIC. After the first-
level  model  was  obtained,  we  fitted  the
second-level model by testing the contribu-
tions of the following stand variables: num-
ber of trees per ha, age of the forest stand,
stand basal area, mean diameter, and the
site index.  In some cases, the logarithmic
transformation was applied to stand vari-
ables  because  of  the  non-linear  relation-
ships  observed  between  stand  variables
and the model parameter estimates. 

The inclusion of the stand variables in the
second-level model was done using the fol-
lowing procedure: the stand variable show-
ing the highest correlation with the param-
eter estimates was included in the model;
after  the  inclusion,  the  relation  of  the
remaining  stand  variables  on  parameter
estimation was tested again. We repeated
the above procedure  until  the parameter
estimates showed a statistically significant
relationship  (correlation  coefficient)  with
some of the tested stand variables.

The mixed model obtained was calibrated
using the calibrated conditional prediction
in order to extend its predictability to the
other plots. This step requires at least one
dependent variable value to be measured
in a given plot (in this case, the tree height)
in  order  to  calculate  the  random  compo-
nent of the parameter estimates. We can
write the calibrated conditional prediction
using the equation by  Calama & Montero

(2005 – eqn. 7):

where the meaning of the symbols is the
same as in eqn. 6.

For the calculation of the random compo-
nents  of  parameter  estimation,  we  used
the best linear unbiased predictor (BLUP)
proposed by  Robinson (1991). The estima-
tion of random components of the model
parameters  can  be  expressed  as  follows
(Calama & Montero 2005 – eqn. 8):

where b̂ is the vector of BLUP for the ran-
dom  components,  D̂ is  the  covariance
matrix  of  the  random  effects,  ZT is  the
design matrix for the random components,
R̂ is  the estimated matrix for the residual
variance,  e is the vector whose dimension
equals  the  number  of  observations  and
whose values are the residuals of the fixed
effects marginal model.

The  calibration  process  was  carried  out
using  two  different  procedures  of  tree
selection. In the first procedure, we mea-
sured  the  height  of  1  to  5  randomly  se-
lected trees that were in the range of ± 2
cm  of  the  mean  diameter.  In  the second
case, three diameter (d) intervals of 4 cm
were set as follows: (i)  dmin to  dmin + 4 cm;
(ii)  d̄ - 2 cm to d̄ + 2 cm; (iii)  dmax  - 4 cm to
dmax. In this case, 1, 2 or 3 trees were ran-
domly  selected  within  each  interval,
obtaining 3, 6 or 9 trees, respectively, to be
measured for height. 

The calibration was performed on six for-
est stands that differed significantly in age
and other stand characteristics.  To assess
the  quality  of  the  mixed  model  as  com-
pared with local models, we used the fol-
lowing criteria: (i) coefficient of determina-
tion  (R2);  (ii)  root  mean  square  error
(RMSE); (iii) mean of residuals; (iv) residual
standard  deviation;  (v)  Akaike’s  informa-
tion criterion (AIC); (vi) mean deviation (Δi)
of fitted values obtained by the LME model
from the fitted values obtained by the OLS
model, calculated as follows (eqn. 9):

where  n is  the sample size,  yiLME and  yiOLS

are the fitted values obtained for the  i-th
tree (i = 1, 2, 3, …,  n) by the LME and the
OLS models, respectively.

Classification and regression trees
Because tree height is a continuous vari-

able,  the  regression  tree  method  was
selected, whose results are homogeneous
groups of individuals sharing the same pre-
dicted  height  (μh).  Individual  groups  are
explained  using  several  different  predic-
tors, which are independent variables easy
to be measured in the stand and/or to be
computed from the measured variables. In
this  case,  we  used  diameter  at  breast

height, mean diameter of tree species, age
of forest stand as continuous variables, as
well as the site index as a categorical vari-
able. We assessed the contribution of each
variable  to  the  regression  tree  grouping
using the analysis of significance proposed
by Breiman et al. (1984). The degree of sig-
nificance  take  values  from  1  to  100;  the
larger  the  value,  the  greater  the  signifi-
cance of given variable in the tree forma-
tion. 

The regression tree model was tested on
the same data used for the mixed model
described above,  but  the original  dataset
was divided into  a  training (860 records)
and a validation (730 records) subsets. The
training  subset  was  used  to  compile  the
regression tree model, while the validation
subset to verify the accuracy of the model.

In the process of binary data splitting of
the  tree  nodes,  the  algorithm  tries  to
reduce the residual sum of squares. To pre-
vent model overfitting and ensure a good
estimate of  μh, we set the minimum num-
ber of values in one node to 50, i.e., when
one of  the two groups obtained by split-
ting has fewer than 50 values, the process
is terminated. 

Ten-fold  cross-validation  pruning  tech-
nique was chosen to reduce the number of
branching of the regression trees achieved.
After  cross-validation,  the regression tree
models were tested on the validation sub-
set. The quality of the resulting trees was
determined  using  both  subsets  based  on
the following criteria: (i) coefficient of de-
termination;  (ii)  mean  of  residuals;  (iii)
standard  error  of  residuals;  (iv)  residual
standard deviation.

Comparison of the results of the mixed 
model and regression tree

We  compared  the  results  of  the  mixed
model and regression tree using data from
six  forest  stands  for  which  the  mixed
model calibration was carried out. In addi-
tion,  the  results  of  both  methods  were
compared with those obtained with a local
linear model  of  the height-diameter  func-
tion fitted using the classical ordinary least
squares (OLS) method. As comparison cri-
teria,  we  have  used  the  coefficient  of
determination (R2),  mean of  residuals  (ei),
the standard deviation of residuals (σei) and
the  mean  deviation  of  fitted  values  ob-
tained by the mixed model or the regres-
sion tree from the fitted values of the local
model (Δi). For the comparison of the LME
model  with  CART  and  OLS  methods,  we
used only the mixed model with calibrated
conditional  prediction  carried  out  with
heights measured in three diameter inter-
vals, as we have identified this type of cali -
bration  to  show  the  best  goodness-of-fit
for the linear mixed effects model.

Results

Linear mixed effects model
Tab. 2 shows the results of the compari-

son of functions used in the global height-
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n



Adamec Z & Drápela K - iForest 10: 1-8

diameter models. Based on all the criteria
chosen,  the  Petterson’s  height-diameter
function  provided  the  best  results.  How-
ever,  similar  model  performances  were
observed  using  all  the  functions  tested,
indicating their potential applicability in the
prediction of tree height.

The  resulting  global  linear  model  using
the Petterson H-D function can be repre-
sented by the following formula (eqn. 10):

where ĥ is the fitted height of the tree and

dbh  is  its  diameter  at  breast  height.  The
whole model and its parameters were sta-
tistically  significant (p<0.001),  with a high
coefficient of determination (R2 = 0.781). 

All  subsequent  stages  of  mixed  model
(global  model,  the  model  with  random
effect  of  intercept  only  and  model  with
random effect of intercept and regression
parameter) were compared using the likeli-
hood ratio test. Tab. 3 shows the results of
all  first-level  sub-models.  In  all  cases,  we
observed  statistically  significant  differ-
ences  among  the  different  models.  The
final  first-level  mixed  model  therefore

included the random part of the parameter
estimation for both the intercept and the
regression parameter.

When compiling the second-level model,
we  tested  the  contribution  of  individual
stand variables.  The obtained results  sug-
gest that the estimates of the parameter a
are mainly dependent on the logarithm of
the forest stand age (R = 0.944), while  b
estimates are dependent on the age of the
forest  stand (R =  0.457).  Therefore,  both
forest stand age and its logarithmic trans-
formation were included into the second-
level model.  Subsequently,  the parameter
estimates of the model including the stand
age were tested for relationship with the
remaining stand  variables  and  no statisti-
cally  significant  correlations  were  found.
Thus,  the final  mixed,  second-level  model
included  as  predictors  the  stand  age  in
parameter  b and  the  logarithm  of  stand
age  in  parameter  a.  We  can  express  the
final model with following equations (eqn.
11):

where (eqn. 12):

and (eqn. 13):

in which h is the fitted height of a tree, dbh
is  the diameter  at  breast  height,  T is  the
age of the forest stand,  uai is  the random
part of the intercept, ubi is the random part
of the regression parameter.

The  second-level  mixed-effects  model
showed a better fit  on data as compared
with the first-order model (likelihood ratio
test:  p  <  0.001,  AIC  =  -10927.7).  This  was
confirmed by its lower dispersion of residu-
als, as depicted in Fig. 1.

The  calibrated  conditional  prediction  of
tree height based on a random sample of 1
to 5 trees within ± 2 cm around the mean
diameter provided biologically inconsistent
results. Indeed, an inverse relationship was
found,  thereby tree height  was predicted
to decrease when diameter increases. Such
inconsistency could not be eliminated even
by using a larger number of measurements
(max 5). Due to the poor quality of this cali-
bration, a low coefficient of determination
was  obtained,  as  well  as  a  high  average
deviation  of  fitted  values  of  the  mixed
model and fitted values of the local model.

The  second  calibration  method  (tree
height  measured  in  three  diameter  inter-
vals – see above) yielded significantly bet-
ter  results.  Tab.  4 summarizes  the  good-
ness-of-fit statistics obtained using the cali-
brated  second-level  mixed  effects  model
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Tab. 2 - Comparison of global height-diameter models. (ei): mean of residuals; (σei):
residual standard deviation; (SEei): standard error of residuals; (AIC): Akaike informa-
tion criterion.

Function ei (m) σei (m) SEei (m) AIC
Michailov (eqn.1) 0.0103 2.8101 0.0705 7802.8
Petterson (eqn.4) -0.0006 2.8023 0.0703 7794.0
Näslund (eqn.3) -0.0071 2.8081 0.0704 7800.6
Levakovic (eqn.2) 0.0085 2.8069 0.0704 7799.3
Meyer (eqn.5) -0.0313 2.8244 0.0708 7819.2

Tab. 3 - Comparison of first-level models. (a, b): parameters of the model; (σ uai): stan-
dard deviation of  the random intercept;  (σ ubi):  standard deviation of  the random
regression parameter; (εik):  residual standard deviation; (AIC): Akaike’s  information
criterion; (p): p-value after the likelihood ratio test.

Model a b σ uai σ ubi εik AIC p
Global 0.2648 2.0848 - - 0.0149 -8861 -
Random effect of a only 0.2952 1.2624 0.0192 - 0.0076 -10863 < 0.001
Random effect of a and b 0.2944 1.2919 0.0194 0.1726 0.0001 -10881 < 0.001
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(1.1109+0.0025T +ubi )⋅
1

dbh
+ε ik

ui=[uai

ubi
]~

N([0
0] ,[ 0.0000303 −0.0000001

−0.0000001 0.0309408])

ε ik ~ N (0,0.00563)

Fig. 1 - Compari-
son of residuals
(grey circles) of
the global mod-

el (a) and the
second-level

mixed effects
model (b) for

the prediction of
tree height.

Black dots rep-
resent the mean

of residuals in
each diameter

class, while the
black lines rep-

resent its confi-
dence intervals.
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on  the  whole  data  set  (training  +  valida-
tion) for the six forest stands analyzed. The
results clearly showed that increasing the
numbers of height measurements (1, 2, or 3
trees per interval,  i.e.,  3,  6, and 9 trees),
the  accuracy  of  model  predictions  was
largely improved. Indeed, a higher number
of trees minimizes the impact of selecting
dominant or suppressed trees on the posi-
tion of  the  model  curve.  The results  also
show that the calibration using only three
measured heights can provide confidence
intervals  of  Δi higher  than  1  m,  which  is
obviously  unacceptable  from  a  practical
point of view. On the contrary, Δi becomes
significantly smaller when the model is run
based on six or nine height measurements
depending on the desired degree of accu-
racy,  indicating the reliability of its predic-
tions of tree height. We achieved the best
results  when  the  calibration  was  made
using height measurements of nine trees.
Subsequently, we used this model for com-
parison with the regression tree and the lo-
cal model.

Classification and regression trees
In the CART model, all the selected vari-

ables  were  significant  in  the  resulting  re-
gression tree, with a degree of significance
of 100 for dbh, 97 for the mean diameter,
94 for stand age, and 57 for the site index.
The  resulting  tree  consists  of  19  splitting
nodes and 20 homogeneous groups (final
nodes).  Tab. 5 shows the actual values of
the splitting criteria and the resulting val-
ues of regression tree, while  Tab. 6 shows
the goodness-of-fit  statistics  obtained for
the resulting tree using the two data sub-
sets  (training  and  validation).  The  results

correctly  indicated  that  tree  height  in-
creases with increasing stand age and dbh,
supporting the use of CART models in dif-
ferent  stages  of  the  stand  development.
However,  the  achieved  regression  tree
showed that trees from stands with lower
mean diameter  are taller  than trees from
stands with higher mean diameter,  which
seems  biologically  counter-intuitive.  We
therefore  explored  the  characteristics  of
forest stands from which these trees origi-
nated,  finding  highly  heterogeneous  den-
sity  values  across  forest  stands.  Indeed,
competition  for  sunlight  in  high-density
stands  results  in  tall  and  slender  trees,
while  more  resources  are  allocated  by
trees to radial growth in low density-stands
due to the lower crown competition. In our
opinion,  this  may  explain  the  observed
anomaly.

Further,  based  on  the  results  from  the
CART model, trees from stands with lower
site  index  were  taller  than  those  from
stands with  higher  site  index,  which also
seems  illogical.  A  deeper  analysis  of  the
stands with lower site index revealed that
the  selected  trees  in  these  stands  were
mostly  dominant  and  growing  in  better
conditions than trees with mean diameter
and height.  Indeed,  the site  index in  this
study was not determined according to the
height  of  dominant  trees  but  to  that  of
trees  with  mean  height.  The  regression
tree therefore correctly ranked these indi-
viduals  into  one homogeneous  group  ba-
sed on more predictors than only site index
(especially according to diameter at breast
height). All the independent variables used
in the CART model are thus biologically jus-
tified.

Comparison of OLS with LME and CART
The  goodness-of-fit  statistics  obtained

with  each  regression  technique  are  com-
pared in  Tab.  7.  The CART technique pro-
vided the lowest mean and standard devia-
tion of  residuals,  but  also a  high average
deviation  of  the  fitted  values  from those
predicted  by  the  local  model  (in  some
cases close to 1 m). Although such devia-
tion  could  still  be  considered  acceptable
for some applications (e.g., the use in vol-
ume  tables  for  determining  the  standing
volume),  we consider CART modeling sig-
nificantly biased as compared with the OLS
method. Similar statistics were obtained by
using the mixed model calibrated with only
3  tree  heights  in  3  diameter  intervals.  In
both cases,  small  deviations could  be ob-
served in individual stands, but the average
deviation  of  the  predictions  obtained  by
the two methods from those of  the OLS
model  was  high  (Tab.  7).  On  the  other
hand,  once  a  regression  tree  has  already
been  established,  its  application  to  other
stands  does  not  require  any  additional
height measurement.  In our case,  to esti-
mate the height of a specific tree we need
to know its diameter at breast height (to
be measured) and the stand variables, such
as  mean  diameter,  stand  age,  and  site
index, which can be easily drawn from for-
est management plans.

The  LME  technique  provided  good  pa-
rameter estimates of the residual distribu-
tion, though their values were higher than
those of the CART model. However, its pre-
dictions were very close to those achieved
with the local model using the OLS method
(Tab.  7),  and  in  some  cases  even  better.
The  average  deviation  of  predictions  by
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Tab. 4 - Goodness-of-fit of the calibrated second-level mixed effects model using 3 to 9 tree height measurements. (N): number of
measured trees; (Δi): average deviation of fitted values obtained by the LME model and those obtained by the OLS model; ( R2):
coefficient of determination; (AIC): Akaike’s information criterion; (RMSE): root mean square error; (ēi): mean of residuals; (σei):
residual standard deviation; (95% CI): 95% confidence interval of the mean.

Statistics N
Forest stand no. Mean

(±95% CI)3 5 11 14 19 22

Δi 3 0.549 0.752 1.144 1.032 0.694 1.315 0.914 ± 0.310
6 0.542 0.339 0.665 0.764 0.590 1.115 0.669 ± 0.295
9 0.400 0.239 0.632 0.642 0.299 0.493 0.451 ± 0.177

R2 3 0.763 0.702 0.730 0.200 0.534 0.390 0.553
6 0.777 0.817 0.812 0.265 0.569 0.433 0.612
9 0.809 0.835 0.818 0.307 0.623 0.512 0.651

local 0.848 0.854 0.860 0.368 0.644 0.534 0.685
AIC 3 18.421 42.177 98.792 120.580 103.958 131.355 85.880

6 17.199 11.372 76.200 110.891 99.130 127.379 73.695
9 10.095 6.847 74.243 106.892 87.499 119.566 67.524

local -1.140 -6.145 54.581 100.960 82.563 117.055 57.979
RMSE 3 1.191 1.333 1.901 2.458 1.785 3.186 1.976

6 1.166 1.060 1.615 2.256 1.728 3.074 1.817
9 1.084 1.012 1.591 2.190 1.617 2.858 1.725

local 0.971 0.952 1.401 2.093 1.573 2.794 1.631
ēi 3 0.921 1.022 1.530 1.889 1.417 2.461 1.540

6 0.893 0.789 1.288 1.808 1.394 2.376 1.425
9 0.825 0.952 1.261 1.757 1.288 2.200 1.380

local 0.768 0.698 1.074 1.636 1.251 2.176 1.267
σei 3 7.003 9.597 6.695 11.070 15.330 14.798 10.749

6 7.500 6.420 8.304 10.867 17.376 17.215 11.280
9 5.565 6.510 8.097 9.912 13.852 15.041 9.830

local 5.794 6.611 9.888 14.152 12.311 17.593 11.058
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both the local model and the mixed model
(based  on  9  height  measurements)  were
small  both in  the individual  forest  stands
and  overall.  We  concluded  that  the  LME
technique  is  superior  to  the  CART  tech-
nique for the prediction of height based on
dbh, and that the mixed model can replace
the local  model  without significant losses
of goodness-of-fit of the height curve mod-
el.  Moreover,  the mixed model  also guar-
antees  a  consisting  reduction  in  the  vari-
ability of residuals.

Discussion
The  results  of  this  study  revealed  that

tree height can be accurately predicted ba-
sed  on  diameter  at  the  breast  height  by
including the stand age and its logarithmic
transformation  as  random  factors  in  the
mixed  model  considered.  Moreover,  the
mixed model removed the heteroscedasti-
city occurring in the global model (Fig. 1),
as  previously  reported  by  Drápela  (2011).
However,  the inclusion of  stand age as  a
stand variable makes the use of the above
model  suitable only to even-aged forests.
Mixed models  for  height  prediction were
previously  applied  to  even-aged  forests,
but using different stand variables, such as
the dominant height and dominant diame-
ter (Crecente-Campo et al. 2010), the mean
diameter (Schmidt et al. 2011), or a combi-
nation of stand variables (Sharma & Parton
2007,  Adame et  al.  2008).  Other  authors
have focused on uneven-aged forest using
the mean/dominant diameter or the domi-
nant  height  as  predictors  (Castaño-Santa-
maría et al. 2013), as the use of stand age is
unfeasible.  Eerikäinen  (2003) stated  that
the  inclusion  of  the  dominant  height  in
models  may  reflect  the  site  index  as  an
indicator of  the production potential  of a
site.  All  the above evidences support  the
hypothesis that the inclusion of stand vari-
ables into the model improves its final ac-
curacy (Soares & Tomé 2002).

The applicability  of  the proposed mixed
model  in  practice  has  been  assessed  by
comparing the effect of different ways of
selecting trees for height measurement to
be used in the calibrated conditional  pre-
diction. Using the first method, 1 to 5 trees
within  ±  2  cm  from  the  mean  diameter
were selected, while the second was based
on 3, 6, or 9 trees randomly selected within
4 cm intervals from the thinnest, medium
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Tab.  5 -  Results  of  the  regression  tree  construction.  (LB):  left  branch;  (RB):  right
branch; (N): number of trees in node; (μh): mean value of the height distribution; (SP):
splitting variable; (dbh): diameter at breast height of a tree; (dbhm): mean diameter;
(A): stand age; (SI): site index; (f): final nodes.

Node
LB of 

the node
RB of 

the node N μh (m) SP
Value 
of SP

1 2 3 860 27.97 dbhm 30.1
2 4 5 380 22.09 A 48
4 6 7 197 19.09 dbh 20.5
6 8 9 93 17.04 dbh 12.5
8f - - 11 12.82 - -
9 10 11 82 17.60 dbh 16.5
10f - - 26 16.29 - -
11 12 13 56 18.21 A 39
12f - - 41 17.54 - -
13f - - 15 20.07 - -
7 14 15 104 20.92 A 39
14f - - 47 19.16 - -
15f - - 57 22.37 - -
5 18 19 183 25.33 dbh 23.5
18 20 21 78 22.54 dbh 16.5
20f - - 16 19.63 - -
21f - - 62 23.29 - -
19 24 25 105 27.40 SI 32
24f - - 46 29.01 - -
25 26 27 59 26.14 dbh 30.5
26f - - 42 25.62 - -
27f - - 17 27.44 - -
3 28 29 480 32.62 dbh 32.5
28 30 31 126 28.99 dbh 23.5
30f - - 16 24.56 - -
31 32 33 110 29.64 A 75
32f - - 23 27.85 - -
33 34 35 87 30.11 dbhm 39.3
34f - - 18 31.81 - -
35f - - 69 29.67 - -
29 40 41 354 33.91 dbh 46.5
40 42 43 269 33.18 A 75
42f - - 25 29.70 - -
43 44 45 244 33.53 dbhm 39.3
44f - - 45 35.52 - -
45 46 47 199 33.08 dbh 40.5
46f - - 111 32.51 - -
47f - - 88 33.80 - -
41f - - 85 36.22 - -

Tab.  6 -  Goodness-of-fit  statistics  ob-
tained using the CART model. (R2): coef-
ficient  of  determination;  (ēi):  mean  of
residuals; (SEei  ): standard error of resid-
uals; (σei): residual standard deviation.

Statistics
Training

data
Validation

data
R2 0.940 0.804
ēi 0.000 -0.585
SEei 0.054 0.102
σei 1.590 2.746

Tab. 7 - Comparison of goodness-of-fit statistics for LME (mixed model), CART (regres-
sion tree model) and OLS (local model) techniques. (R2): coefficient of determination;
(ēi): mean of residuals; (σei): residual standard deviation; (Δ i ): average deviation of the
fitted values obtained using the LME model and the fitted values obtained using the
OLS model.

Model Stats
Forest stand no.

Mean
3 5 11 14 19 22

LME R2 0.809 0.835 0.818 0.307 0.623 0.512 0.651

ēi 0.825 0.952 1.261 1.757 1.288 2.200 1.380

σei 5.565 6.510 8.097 9.912 13.852 15.041 9.830

Δi 0.400 0.239 0.632 0.642 0.299 0.493 0.451

CART R2 0.783 0.727 0.767 0.202 0.570 0.465 0.586

ēi 0.089 0.094 0.148 -0.530 -0.021 0.144 -0.013

σei 1.146 1.293 1.788 2.272 1.718 2.963 1.863

Δi 3.546 2.303 2.220 1.258 1.179 1.216 1.954

OLS R2 0.848 0.854 0.860 0.368 0.644 0.534 0.685

ēi 0.768 0.698 1.074 1.636 1.251 2.176 1.267

σei 5.794 6.611 9.888 14.152 12.311 17.593 11.058
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and  thickest  trees.  Other  papers  also
included  two  ways  of  tree  selection,  na-
mely random selection of different number
of trees and a selection focused only on a
portion of  the diameter range. For exam-
ple,  random  selection  of  trees  has  been
applied by Adame et al. (2008) and Kangas
& Haara (2012), who selected 1 to 4 trees,
while  Trincado  et  al.  (2007) chose  only  1
tree. Sharma & Parton (2007) and Schmidt
et al. (2011) carried out a selection of 1 to 3
trees.  Crecente-Campo  et  al.  (2010) and
Castaño-Santamaría et al.  (2013) randomly
selected  1  to  10  trees  in  each  of  three
ranges  of  minimum,  mean  and  largest
diameters, as well as 3, 6, or 9 trees in sev-
eral  ranges  of  the  smallest,  largest  and
mean diameter.

Calibration  results  showed  that  random
selection of trees close to the mean diame-
ter is not feasible, as it provides predictions
too  biased  compared  to  local  models  or
not biologically justified (height decreasing
as the diameter increases).  Crecente-Cam-
po  et  al.  (2010) reported  similar  results,
with very high mean and standard error of
residuals of the resulting model using 1 to
10 trees of mean diameter.  Castaño-Santa-
maría  et  al.  (2013) using  trees  of  mean
diameter did not find such high means of
residuals,  but  recommended  the  use  of
trees with smaller diameter to achieve bet-
ter results in the calibrated conditional pre-
diction.

The second method, based on the selec-
tion of trees from more diameter intervals,
proved to yield better results in this study.
Similarly, Crecente-Campo et al. (2010) and
Castaño-Santamaría  et  al.  (2013) reported
that this approach improves the predictive
power  of  the  model.  The  results  of  this
study  confirm that  the  goodness-of-fit  of
the model increases by increasing the num-
ber of measured trees, in accordance with
Trincado et al. (2007),  Adame et al. (2008)
and Kangas & Haara (2012).

Sharma & Parton (2007) and  Schmidt et
al. (2011) compared both LME model with
fixed effects marginal  prediction and cali-
brated  conditional  prediction,  concluding
that the latter provides better results even
when only one tree is used for model cali-
bration.

Van Laar & Akça (2007) recommended a
minimum number of 20-25 tree height mea-
surements for determining a local model of
the height curve, to be used for example
for  calculation  of  the  standing  volume
using the volume tables. We found that the
reduction in number (up to 6 or 9) of the
required measured heights through the ca-
librated model did not invalidate the model
predictability, but at the same time ensures
a reduction in costs and time of data collec-
tion.  According  to  Crecente-Campo  et  al.
(2010), this reduction in the number of re-
quired  measurements  makes  the  applica-
tion of mixed models highly effective and
useful. 

The results obtained using the CART mod-
el  indicated  that  tree  height  depends  on

the diameter at breast height, mean diame-
ter,  stand  age,  and  site  index.  Strongly
nonlinear  relationships  exist  between the
height and the above variables. According
to  Gómez et al.  (2012),  the CART method
should be preferred to parametric models
as it is more suitable to analyze nonlinear
relationships as well as data with hierachi-
cal structure (De’ath & Fabricius 2000, Shi-
fley et al. 2006). 

Indeed,  the  strong  dependence  among
independent variables (e.g.,  dbh and age)
could  bring  about  problems  of  multicol-
linearity  when  parametric  methods  are
used.  Contrastingly,  CART  models  have
been reported to resist to multicollinearity
(Shifley et al. 2006), as CART considers the
high-hierarchy variables to be more impor-
tant than low-hierarchy variables, and the
independent variables  to have greater  in-
fluence  on  the  results  than  their  mutual
correlations.  Consequently,  there  are  no
biased estimates of parameters (Aertsen et
al.  2010).  Further,  the easy description of
interactions  between  variables  make  this
method a useful tool for the interpretation
of the results,  particularly when the num-
ber of independent variables increases and
other model types are very difficult  to in-
terpret (De’ath & Fabricius 2000).

Our results showed that tree height can
be quite  easily  predicted  using  the  CART
method.  CART  models  have  been  previ-
ously  applied  to  estimate  different  vari-
ables  in  forestry,  such  as  tree  mortality
(Dobbertin & Biging 1998, Fan et al. 2006),
site  index  (Aertsen  et  al.  2010)  and  the
form factor of sample trees (Räty & Kangas
2008). The interpretation of the regression
tree obtained with the CART model is very
easy and intuitive, which makes this meth-
od  a  suitable  tool  for  classifying  forest
stands (Gómez et al. 2012). Moreover, once
the  regression  tree  is  achieved,  no  addi-
tional  measurements  are  required,  thus
reducing the costs of data collection. 

In  this  study,  the  comparison  of  mixed
model, regression tree, and the local model
indicated that LME performed better than
CART  in  predicting  tree  height  based  on
dbh.  The CART method also  provided re-
sults  significantly  worse  than  those  ob-
tained with the OLS method (local model),
except for parameters of the residual dis-
tribution.  Moisen & Frescino (2002) com-
pared several modeling techniques to pre-
dict various forest characteristics, confirm-
ing the worse performances of CART com-
pared  to  OLS  methods.  Aertsen  et  al.
(2010) compared CART with multiple linear
regression  (MLR),  generalized  additive
models  (GAM)  boosted  regression  trees
(BRT) and artificial neural networks (ANN),
confirming that CART is more user-friendly
than the other four modeling techniques. 

Regarding the comparison between LME
and OLS models, we found that predictions
obtained  with  LME  only  slightly  differs
from  those of  the local  model.  Crecente-
Campo et al.  (2010) found that calibrated
LME  provides  significantly  better  results

than the global model,  thanks to the cali-
brated conditional  prediction  of  the  local
model. Similar results were achieved by Ca-
staño-Santamaría  et  al.  (2013).  We  con-
cluded  that  the  mixed  model  with  cali-
brated conditional prediction is best suited
for the regionalization of the global model,
e.g., up to the level of the forest stand. We
recommend to calibrate the model  based
on 6 to 9 tree height  measurements in a
given stand, depending on the required le-
vel of accuracy.
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