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Leaf transpiration of drought tolerant plant can be captured by 
hyperspectral reflectance using PLSR analysis

Quan Wang (1), Jia Jin (2-3) A clear understanding of plant transpiration is a crucial step for water cycle 
and climate modeling, especially for arid ecosystems in which water is one of 
the major constraints. Traditional field measurements of leaf scale transpira-
tion are always time-consuming and often unfeasible in the context of large 
spatial and temporal scales. This study focused on a dominant native plant in 
the arid land of central Asia, Haloxylon ammondendron, with the aim of deri-
ving the leaf-scale transpiration through hyperspectral reflectance using Par-
tial  Least Squares Regression (PLSR) analysis. The results revealed that the 
PLSR model based on the first-order derivative spectra at wavelengths selec-
ted through stepwise regression analysis can closely trace leaf transpiration 
with a high accuracy (R2 = 0.78, RMSE = 1.62 µmol g-1 s-1). The accuracy is also 
relatively stable even at a spectral resolution of 10 nm, which is very close to 
the bandwidths of several running satellite-borne hyperspectral sensors such 
as Hyperion. The results also proved that the first-order derivative spectra 
within the shortwave infrared (SWIR) domain, especially at 2435, 2440, 2445, 
and  2470  nm,  were  critical  for  PLSR  models  to  predict  leaf  transpiration. 
These findings highlight a promising strategy for developing remote sensing 
methods to potentially characterize transpiration at broad scales.

Keywords: Arid Land, Leaf Transpiration, PLSR, Derivative Spectra, Drought-
tolerant, Haloxylon ammondendron

Introduction
Plant  transpiration,  defined  as  the  pro-

cess of  water movement through a plant 
and its evaporation from aerial  parts, is a 
basic  process  regulated  over  short  time 
periods by stomatal conductance (gs – Mc-
Dowell et al. 2008) and is a key parameter 
in climate models for quantifying the bio-
sphere-atmosphere  interactions  (Naithani 
et  al.  2012).  So  far,  this  process  has  not 
been fully understood yet, especially in arid 
areas,  where water  resources  are one  of 
the  major  constraints.  In  this  context,  a 
more accurate understanding of plant tran-
spiration is very important for water cycle 
and  climate  modeling  (Hunsmann  et  al. 
2008),  especially  for  arid  environments 
where  water  plays  a  determinant  role  in 
the ecosystem functions.

Field measurements of leaf scale transpi-

ration are  always  based  on the  measure-
ment of vapor added by transpiration into 
the air inside a chamber enclosing the leaf 
or a leaf surface (Jarvis & Catsky 1971, Pear-
cy et al. 1989). Such methods are time-con-
suming and often unfeasible for tracing the 
dynamics  of  transpiration.  To  tackle  this 
pr0blem,  various  models  considering  the 
energy  balance  have  been  developed  for 
simulating  the  multi-scale  transpiration, 
e.g.,  the  model  at  the  level  of  individual 
leaves (Dauzat et al.  2001,  Smith & Geller 
1980), the multilayer model for estimating 
daily transpiration of the whole plant (Ans-
ley et al.  1991,  Raupach & Finnigan 1988), 
and the Penman-Monteith’s model for ca-
nopy transpiration or regional level evapo-
ration  (He  et  al.  2013,  Monteith  1965, 
Zheng & Wang 2014). However, modelling 
the transpiration of a plant or a stand in a 

given  environment  is  challenging  due  to 
the  interaction  of  complex  physical  and 
physiological  phenomena  (Dauzat  et  al. 
2001), which led to argue about the perfor-
mances of these models.

Such challenge calls for the development 
of new approaches to determine absolute 
transpiration rates of plant leaves. Recen-
tly,  the  transpiration  rate  sensor  with  a 
multi-channel hygrometer using near infra-
red  (NIR)  tunable  diode  laser  absorption 
spectroscopy (TDLAS) at 1.37 µm was deve-
loped  (Hunsmann  et  al.  2008).  This  new 
tool  can  be  used  in  the  measure  of  the 
absolute,  high-resolution  water  transpira-
tion.  However,  a straightforward relation-
ship between leaf transpiration and reflec-
ted  information  has  still  to  be  verified, 
while  it  has  already been done for  other 
parameters related to the biological status 
of plants (Dorigo et al. 2007).

With  the  development  of  hyperspectral 
remote sensing and imaging spectrometry, 
many empirical approaches have been pro-
posed  for  spectroscopic  analysis,  such  as 
vegetation indexes, single regression, step-
wise multiple linear regression, partial least 
squares regression (PLSR), artificial neural 
networks, and others (Dorigo et al. 2007). 
PLSR, a multivariate extension of the multi-
ple  regression  model,  is  the  most  widely 
used approach in chemometrics, owing to 
its ability to analyze data with many noisy, 
collinear, and even incomplete variables in 
both  input  (X)  and  output  (Y)  measure-
ments  (Wold  et  al.  2001).  It  has  been 
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claimed  that  PLSR  analysis  can  provide a 
more useful  and accurate estimation tool 
for plant spectroscopic analysis compared 
with other empirical approaches; for exam-
ple,  PLSR  can  improve  the  prediction  of 
green  biomass  and  leaf  nitrogen  concen-
tration compared to hyperspectral indices 
(Cho  et  al.  2007,  Hansen  &  Schjoerring 
2003),  and  carotenoid  estimation  results 
based  on  PLSR  were  significantly  better 
than those based on stepwise multiple line-
ar regression and vegetation indexes (Yi et 
al.  2014).  In  addition,  the  PLSR  model  is 
more  suitable  than  the  multiple  linear 
regression model  for predicting the nitro-
gen content at the heading stage using the 
hyperspectral reflectance (Ryu et al. 2011).

Reflected  data  collected  by  spectrome-
ters  hold  thousands  of  generally  collated 
bands  within  the  visible  to  near-infrared 
domains.  PLSR deals  efficiently with such 
data sets including many highly correlated 
bands by avoiding the potential overfitting 
typically  associated  with  multiple  linear 
regression (Huang et al.  2004). Many stu-
dies have applied PLSR to estimate various 
biochemical and nutritional parameters of 
leaves and canopies through hyperspectral 
reflectance data, for example biomass esti-
mation  (Cho  et  al.  2007,  Fu  et  al.  2014, 
Hansen & Schjoerring 2003), nitrogen con-
centration/content  prediction  (Hansen  & 
Schjoerring 2003, Huang et al. 2004, Inoue 
et al. 2012,  Nguyen & Lee 2006,  Ryu et al. 
2009,  2011),  phosphorous  concentration 
and potassium content determination (Ra-
moelo et  al.  2013,  Zhang et  al.  2013),  glu-
cose, sucrose, specific gravity, and soluble 
solids prediction (Rady et al. 2014) and ca-
rotenoids  estimation  (Yi  et  al.  2014).  In 
comparison,  far  fewer attempts have tar-
geted  the  determination  of  physiological 
functional  attributes  from  reflectance 
using  PLSR  analysis.  Among  the  few  at-
tempts  carried  out,  Serbin  et  al.  (2012) 
reported that the key determinants of pho-
tosynthetic capacity, namely the maximum 
rates of RuBP carboxylation (Vcmax) and re-
generation (Jmax), can be effectively captu-
red by reflectance using PLSR models even 
across  species  (Serbin  et  al.  2012).  How-
ever,  to  the  best  of  our  knowledge,  yet 
there is no such study on transpiration.

On the other hand, former studies explo-
ring  plant  traits  from  reflectance  sugges-
ted that a number of other modes or trans-
formed formats of spectra, such as trans-
mittance and derivative spectra, were help-
ful  for  data  mining  (Rady  et  al.  2014). 
Among  those,  derivative  techniques  are 
commonly used and, in particular, the first-
order  derivative  transformation  is  widely 
employed  in  hyperspectral  data  analysis 
(Abdel-Rahman  et  al.  2014).  Previous  stu-
dies  on  the  relationship  between  canopy 
transpiration  and  hyperspectral  indexes 
also proved that the first-order derivative 
transformation  is  superior  to  the  original 
reflectance  for  tracing  the  dynamics  of 
canopy transpiration (Jia & Wang, unpub-
lished). Hence, the combination of deriva-

tive  techniques  and  the  PLSR  model  for 
tracing leaf-scale transpiration is also wor-
thy to be explored.

The main objective of the present study is 
to examine data taken simultaneously  on 
both leaf transpiration and reflected spec-
tra, from which the PLSR model was built 
up, to estimate leaf transpiration based on 
hyperspectral reflectance. The final target 
was  the  development  of  a  methodology 
that can trace leaf  transpiration promptly 
and  accurately.  This  study  focused  on  a 
dominant native plant in deserts, Haloxylon  
ammondendron,  a  well-distributed species 
in the arid land of  northwestern China as 
well as in central Asia. Detailed goals were: 
(1)  to  verify  the  statistical  relationships 
between transpiration and spectra;  (2)  to 
select  corresponding  feature  bands  that 
can be used for building up a PLSR model 
to estimate transpiration; and (3) to build a 
PLSR  model  based  on  selected  feature 
bands that can be used in tracing leaf-scale 
transpiration.

Materials and methods

Study site
Field  measurement  was  carried  out  in 

2013 at the Integrated Remote Sensing Ex-
perimental Site, 20 km north of the Fukang 
Station  of  Desert  Ecology,  Xinjiang  Insti-
tute  of  Ecology  and  Geography,  Chinese 
Academy of Sciences, located at 44° 17  N,′  
87° 56  E, with an elevation of 475 m a.s.l.′

This region has a continental arid tempe-
rate climate and drought is quite prevalent. 
The  extreme  minimum  temperature  can 
reach -40 °C in winter, while the maximum 
temperature can be 40 °C in summer in the 
growing season.  It  is  so far from the sea 
that  the  annual  mean  precipitation  is  as 
low as 80-160 mm, while pan evaporation 
can reach about 2000 mm in summer due 
to the high temperature (Li & Wang 2012). 
As a result, the drought-resistant plant  H. 
ammodendron, a stem-succulent shrub and 
typical  desert  plant,  is  the  dominant spe-
cies  in  this  area  and  the  focus  of  this 
research.  H.  ammodendron possesses  dis-
tinct structural features of xeromorphism, 
in which the leaves are reduced in size and 
degenerated or exist as basal leaves (Li & 
Li 1981).

Field measurements

Leaf-scale transpiration
The leaf-scale transpiration rate (Tr) was 

measured  using  a  portable  gas  exchange 
system (HCM-1000,  Walz,  Germany).  Diur-
nal  variation  measurements  were  made 
once per month at the key growth stages 
in  the  growing  season  from  June  to  Au-
gust. In each diurnal course measurement, 
two groups of leaves from the upper and 
lower layers of the sampling canopy were 
selected and inserted into the leaf  cham-
ber of the HCM-1000 for leaf transpiration 
measurement once per hour from 8:00 to 
18:00 local  time.  As the system measures 

the change of H2O pressure, and the tran-
spiration rate (Tr, µmol g-1 s-1) is calculated 
from the pre-set weight, the leaves placed 
in  the  chamber  were  clipped  for  fresh 
weight  measurement.  The  real  transpira-
tion rate values were then converted from 
the values recorded by the HCM-1000.

Leaf reflectance and derivative spectra
Leaf  hyperspectral  spectra  data  (350 to 

2500 nm, 1 nm step) were recorded with a 
field spectroradiometer (ASD FR Inc., Boul-
der,  CO,  USA)  equipped  with  a  leaf  clip 
which can illuminate the leaves with a con-
stant inner light source. To obtain spectra, 
five measurements were taken each time 
and the average value was used for further 
analysis.  As  the  transpiration  measure-
ments took about 10 minutes each, the leaf 
spectra  measurement  was  conducted  on 
the leaves next to those whose transpira-
tion was being measured in the meantime.

Based  on  the  original  reflectance  data, 
the  first-order  derivative  spectra  of  leaf 
reflectance were calculated using the fol-
lowing formula (eqn. 1):

where  dλ is  the  first-order  derivative  of 
reflectance at  the wavelength of  band  λ,  
Rλ+1 and Rλ are the reflectance at the wave-
lengths λ and λ+1 respectively, and Δλ is the 
wavelength  increment  of  the  spectrome-
ter.

Modeling approaches

Band selection
Selection of wavelengths is critical for the 

predictive  ability  of  the  PLSR  model  (Os-
borne et al. 1997). Using the original 1 nm 
step,  the  spectrum  had  massively  redun-
dant information. To decrease the compu-
tation time required for variable and com-
ponent  selection  (Serbin  et  al.  2012),  the 
entire spectrum from 350 to 2500 nm was 
sub-sampled by retaining every fifth band 
of the total wavelengths (almost equal to a 
5 nm resolution). Relevant spectral  wave-
lengths for PLSR models were then selec-
ted based on a  stepwise approach.  Step-
wise regression is a systematic method of 
adding and removing terms from a multi-
linear model based on their statistical sig-
nificance  in  the  regression.  At  each step, 
the p value of an F-statistic is computed to 
test the model with and without a poten-
tial  term/variable  (Jennrich  1977).  When 
the term is not included in the model, the 
null hypothesis is that the term would have 
a zero coefficient when it is added to the 
model.  If  there  is  sufficient  evidence  to 
reject  the  null  hypothesis,  the  term  is 
included in the model. Conversely, if a term 
is currently included in the model, the null 
hypothesis is that the term has a zero coef-
ficient.  If  there is  insufficient  evidence to 
reject  the  null  hypothesis,  the  term  is 
removed from the model.
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Cross-validation
With numerous X-variables, there is a sub-

stantial risk of “over-fitting” in any empiri-
cal modeling procedure. To this purpose, it 
is  necessary  to  test  the predictive  signifi-
cance of each PLSR uncorrelated principal 
components  (PCs)  generated  from  selec-
ted  spectral  wavelengths,  and  to  stop 
when components start to be non-signifi-
cant (Wold et al. 2001).

Cross-validation  is  a  model  validation 
technique for assessing how the results of 
a  statistical  analysis  will  generalize  to  an 
independent data set. Cross-validation was 
used to determine the number of principal 
components of  the PLSR models by mini-
mizing  the  predicted  residual  sums  of 
squares  (PRESS  –  Chen  et  al.  2004).  The 
“leave-p-out cross-validation” (LpO CV) ap-
proach, which implies the use of p observa-
tions for the validation set and the rest as 
the training set (Shao 1993), was applied in 
this  study.  Seven (15%) out of 45 samples 
were used for validation, while the remai-
ning 38 samples were included in the trai-
ning set.

Partial least squares analysis
To calculate the spectral loadings (or re-

gression coefficients) of bands, a standard 
PLSR approach was applied, using the rele-
vant spectral wavelengths selected by the 
stepwise  regression,  and  the  number  of 
components  determined  by  cross-valida-
tion. PLSR is a basically linear way to esti-
mate  relevant  parameters  in  a  model  by 
reducing  the  large  number  of  measured 
collinear spectral variables to a few uncor-
related principal components (PCs), which 
represent the relevant structural  informa-
tion contained  in  the measures  of  reflec-
tance (Hansen & Schjoerring 2003).  More 
details  about  the  PLSR  technique can  be 
found in Wold et al. (2001).

The coefficient of determination (R2) and 
the  root  mean  square  error  (RMSE)  bet-
ween  measured  and  estimated  transpira-
tion values were then calculated and used 
to quantify the performance of  the PLSR 
model.  Of  course,  an effective model  for 
assessing the transpiration should  have a 
high R2 and small RMSE.

Results

Transpiration, reflectance, and their 
correlations

Diurnal variation in leaf transpiration was 
evident  throughout  the  daytime,  with  a 
double-peak trend. Leaf transpiration rate 
rises in the morning, reaches the first peak 
around 11:00 local time, and then drops to 
low levels until about 17:00, due to the high 
temperature and the intensive light. Later, 
the transpiration rate rises again reaching a 
second peak, and then drops to the trough 
as the temperature falls, at the end of the 
daytime. Based on our field measurements 
taken from June to August, seasonal chan-
ges in leaf transpiration rate were not fully 
evident,  but  transpiration  rates  appeared 

to be higher in June than in July/August.
To generate the PLSR model for the esti-

mation of leaf transpiration,  both original 
reflectance  and  the  first-order  derivative 
spectra were examined. Generally, the lea-
ves have the highest reflectance in August, 
though this trend was partially confounded 
by  the  diurnal  variation  in  reflectance. 
Although  monotonic  variations  in  the  re-
flectance and  in  the first-order  derivative 
spectra cannot be identified over the who-
le  range  (350-2500  nm),  consistent  chan-
ges  at  some particular  wavelengths  were 
detected  based  on  their  high  correlation 
coefficients with the transpiration rate.

The  first-order  derivative  spectra  clearly 
captured leaf transpiration more effective-
ly,  with  higher  correlation  coefficients  at 
many featured wavelengths (Fig. 1). In ge-
neral,  negative  (though  non-significant) 
correlations  between  the  original  reflec-
tance  wavelengths  and  leaf  transpiration 
were identified throughout the range 350-

2500 nm, with the highest correlation coef-
ficient at the wavelength of 463 nm. Con-
trastingly,  using  the  first-order  derivative 
spectra several significant correlations with 
leaf  transpiration  were  identified  around 
the wavelengths 1190, 1470, and 1910 nm, 
across  the  NIR  (near-infrared)  and  SWIR 
(short-wave infrared) regions.

PLSR model based on original 
reflectance

Stepwise  regression  analysis  based  on 
the original reflectance data and transpira-
tion rate was carried out first. Ten different 
wavelengths  (465,  1545,  375,  1860,  440, 
1400, 1800, 1795, 370, and 1885 nm) were 
finally selected for the PLSR analysis based 
on the results  of  the stepwise regression 
analysis.

The results of the cross-validation carried 
out  to  determine  the  number  of  compo-
nents for PLSR analysis are reported in Fig.
2. The predicted residual sums of squares 
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Fig. 1 - Correlation 
between reflec-
tance/first-order 
derivative spectra 
and leaf transpira-
tion.

Tab. 1 - The coefficients of the ten wavelengths from the original reflectance data set 
that were included in the PLSR model. (Int): intercept.

Int
Wavelength (nm)

370 375 440 465 1400 1545 1795 1800 1860 1885
2.96 -488.15 900.42 -716.20 216.04 -750.42 1672.63 -395.58 -623.18 465.25 -297.06

Fig. 2 - Cross-vali-
dation results for 
the original re-
flectance data set: 
relationships bet-
ween the numbers 
of components 
and the predicted 
residual sums of 
squares (PRESS).
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(PRESS) of the training set decreases mo-
notonically  with  the  number  of  compo-
nents, while the values of the validation set 
initially  decrease  and  then  increase  later. 
The predictive ability of  the PLSR compo-
nents  started  to  be  non-significant  after 

the 8th PLSR component was added to the 
model, thus seven components were selec-
ted to develop the PLSR model in the fol-
lowing analysis.

Tab. 1 lists the coefficients of the 10 wave-
lengths finally included in the PLSR model 

using  the  original  reflectance  data.  The 
relationship  between  the  observed  leaf 
transpiration and its estimate obtained by 
the  PLSR  model  is  shown  in  Fig.  3.  The 
results  reveal that the PLSR model based 
on original reflectance measures does not 
perform very well  in  estimating leaf  tran-
spiration, although the above relationship 
was statistically significant. The coefficient 
of determination (R2) for transpiration esti-
mation was 0.43, with an RMSE of 2.6 µmol 
g-1 s-1 (p<0.001).  Despite leaf  transpiration 
could be captured by reflectance measures 
to some extent, the PLSR model based on 
the  original  reflectance  data  yielded  only 
fairly good results.

PLSR model based on derivative spectra
Stepwise regression analysis, cross-valida-

tion, and PLSR analysis were carried out as 
described above on the first-order deriva-
tive spectra  of  leaf  reflectance,  obtaining 
much  better  performances  in  model  pre-
dictions (Fig. 4).

Unlike  the  original  spectra  data,  wave-
lengths of the first-order derivative spectra 
selected  by  stepwise  regression  analysis 
(9)  were  mainly  distributed  within  the 
SWIR domain, and were namely 2435, 2355, 
1190, 2180, 2445, 2470, 2275, 2440, and 675 
nm.  Cross-validation  results  showed  that 
the optimal number of components for the 
PLSR analysis was seven. The PRESS values 
obtained for the training set and the valida-
tion set were 1.61 and 1.66, respectively.

The PLSR model was finally run based on 
the  above  nine  wavelengths  of  the  first-
order derivative spectra of leaf reflectance. 
Their coefficients obtained from the model 
are listed in Tab. 2. The coefficient of deter-
mination (R2) for the transpiration estimate 
reached 0.78, and the RMSE between the 
observed  and  predicted  values  was  1.62 
µmol  g-1 s-1 (Fig.  5),  clearly  indicating  the 
superiority of the use of first-order deriva-
tive spectra for the prediction of leaf tran-
spiration rate. We concluded that the PLSR 
model could predict leaf transpiration with 
higher accuracy when first-order derivative 
spectra were used, as compared with the 
original reflectance data.

Discussion

Important wavebands identified for leaf  
transpiration estimation

In the scientific literature, reflectance has 
rarely been related to plant ecophysiologi-
cal  variables  as  compared with  plant  bio-
chemical  parameters,  whose relationships 
with reflected wavelengths have been wi-
dely analyzed (Chappelle et al. 1992, Peñue-
las & Filella 1998). Indeed, only a few stu-
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Tab. 2 - The coefficients of the nine selected wavelengths of the first-order derivative spectra included in the PLSR model.

Intercept
Wavelength (nm)

675 1190 2180 2275 2355 2435 2440 2445 2470
3.06 23001.37 87810.41 23790.46 -50988.63 -51988.05 20650.22 18325.10 16480.77 7987.47

Fig. 3 - The 
observed versus 

estimated leaf 
transpiration va-

lues from the PLSR 
model based on 

the original reflec-
tance data.

Fig. 4 - Cross-vali-
dation results for 
first-order deriva-

tive spectra mode: 
the relationships 

between the num-
bers of compo-

nents and the pre-
dicted residual 

sums of squares 
(PRESS).
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Fig. 5 - The 
observed versus 

estimated leaf 
transpiration va-

lues from the PLSR 
model based on 

the first-order 
derivative spectra.
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dies have attempted to relate plant physio-
logical  parameters  with  hyperspectral  re-
flected  properties  so  far.  Recent  reports 
suggested  that  full-spectrum  optical  pro-
perties can potentially  be used for  asses-
sing  photosynthetic  parameters  such  as 
Jmax and Vcmax (Doughty et al. 2011, Serbin et 
al.  2012).  The  only  study  in  the  literature 
focusing on the assessment of the whole 
tree  transpiration  using  canopy  spectral 
reflectance indexes  also showed that  the 
water index (WI – R900/R970) is well correla-
ted with the whole plant transpiration (R2 = 
0.668 – Marino et al. 2014).

In this study, the observed high collinea-
rity throughout the full spectrum and poor 
knowledge of the feature wavelengths for 
transpiration  led  to  the  difficult  task  of 
selecting  the  relevant  information  to  be 
included in the PLSR model.  Stepwise re-
gression analysis was performed to select 
the wavelengths to be considered in the-
model,  instead  of  using  the  entire  spec-
trum (350-2500 nm). Tab. 3 shows the num-
ber of wavebands of the first-order deriva-
tive  spectra  as  well  as  the  original 
reflectance  selected  within  the  visible 
(VIS),  NIR,  shortwave  infrared  1  (SWIR1), 
and shortwave infrared 2 (SWIR2) spectral 
regions.

To assess the reliability of the band-selec-
tion  approach  described  above,  we  che-
cked  the  performance  of  PLSR  analysis 
using  the  entire  spectrum  (350-2500  nm) 
of  first-order  derivative  data  rather  than 
the  selected  bands  only.  The  generated 
PLSR  model  showed poor  predictive  per-
formances in the estimation of leaf transpi-
ration (R2  = 0.21, RMSE = 3.07 µmol g-1 s-1). 
The low effectiveness of this model is rea-
sonably  due  to  large  noise  derived  from 
the  inclusion  in  the  model  of  a  large 
amount of irrelevant information from the 
full spectrum.

High  linear  correlations  between  leaf 
transpiration  and  the  original  reflectance 
were  frequently  noted  within  the  wave-
lengths of 400-800 nm and around 1400 or 
1900 nm (Fig. 1). The wavebands selected 
by  stepwise  regression  analysis  for  PLSR 
modeling were also distributed in the VIS 
(350-700  nm)  and  SWIR1  (1300-1900  nm) 
regions, with four and six wavebands, res-
pectively (Tab. 3). The lower performance 
of  the PLSR model  based on the original 
reflectance is likely due to the fact that the 
selected  wavelengths  are  mainly  related 
with  other  leaf  parameters  rather  than 
transpiration  or  gs.  Indeed,  wavebands 
such as 430-445 nm are known to be re-
lated to carotenoids, bands 531-570 nm to 
xanthophylls,  and  550-680  nm  and  the 
“red-edge” position to chlorophyll (Peñue-
las  &  Filella  1998),  which are  not  directly 
related to the water cycle.

More accurate predictions of leaf transpi-
ration were obtained when first-order deri-
vative spectra of the leaf reflectance were 
included in the PLSR model.  Tab. 3 shows 
that  most  of  the  wavebands  selected 
(seven out nine) were within the domain of 

SWIR2 (1900-2500 nm), which is negatively 
related  to  leaf  water  content.  However, 
the only waveband within the NIR domain 
(700-1300 nm) was almost independent of 
the  variation  in  water  content  (Knipling 
1970,  Tucker  1980,  Raymond  Hunt  et  al. 
1987,  Ceccato et al.  2001,  Panigrahy et al. 
2009).

The  importance  of  the  different  wave-
bands selected can be identified from the 
loading  weights  on  principal  components 
extracted by the PLSR model. High numeri-
cal values indicate high importance of the 
reflected wavelength in the PLSR analysis 
(Hansen & Schjoerring 2003 -  Tab. 4). Wa-
vebands at  2435,  2445,  and 2470 nm had 
much higher  loading weights  on the first 
PC,  with values of  3.68 × 10 -4,  3.60 × 10-4, 
and 3.28 × 10-4, respectively. In addition, the 
wavelength of 2440 nm showed high load-
ing  weights  on  the  fourth  and  fifth  PCs. 
Therefore, we concluded that the first-or-
der derivative spectra at 2435, 2440, 2445, 

and 2470 nm were critical  to  predict  leaf 
transpiration using PLSR models.

Superiority of derivative spectra over 
original spectra

PLSR analysis based on first-order deriva-
tive  spectra  yielded  much  more  accurate 
estimations of leaf transpiration. Similarly, 
more accurate indexes of canopy transpira-
tion could be identified based on derivative 
spectra in a former study (Jin & Wang, un-
published). This confirms that the derived 
spectra can improve the efficiency of tran-
spiration predictions using PLSR models.

As already mentioned, the high accuracy 
of transpiration estimation based on deri-
vative  spectra  may  be  primarily  due  to  a 
better  signal-to-noise  ratio,  according  to 
Demetriades-Shah et al. (1990) and  Yao et 
al. (2014). It has been reported that chloro-
phyll-induced changes can be captured in 
the primary derivatives of  the reflectance 
spectra (Kochubey & Kazantsev 2007). Fur-
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Tab. 3 - The number of wavebands selected for transpiration estimation PLSR model-
ing within the visible (VIS), near-infrared (NIR), short-wave 1 (SWIR1), and short-wave 
2 (SWIR2) spectral regions.

Origin
PLSR

components

Number of wavebands

350-2500 
nm

VIS
(350-

700nm)

NIR
(700-

1300nm)

SWIR1
(1300-

1900nm)

SWIR2
(1900-

2500nm)
Original 
reflectance

7 10 4 0 6 0

Derivative 
spectra

7 9 1 1 0 7

Tab. 4 - Loading weights (LW, × 10-4) of each waveband for the PLSR model based on 
the first-order derivative spectra of reflectance for the estimation of leaf transpira-
tion. (a): high absolute numerical values indicate a high loading weight of the wave-
band to the given principal component (PC).

Axis
Wavelength (nm)

675 1190 2180 2275 2355 2435 2440 2445 2470
PC1 -0.28 0.51 -0.41 0.59 0.38 3.68 a -0.20 3.60 a 3.28 a

PC2 -0.25 -0.08 0.41 -0.93 -0.71 2.42 a -0.72 0.18 -6.72 a

PC3 -0.20 -0.83 1.06 -1.45 -1.55 -0.78 0.29 -1.21 2.91 a

PC4 0.64 0.79 -0.66 1.24 -0.05 -0.49 2.99 a 0.99 -0.71
PC5 0.73 0.65 -0.44 -0.25 -0.68 -0.53 -2.56 a 0.29 0.14
PC6 0.10 0.84 -0.07 -0.02 1.12 1.66 0.84 -2.17 a 0.32
PC7 -0.78 0.09 0.49 -1.06 0.51 -1.03 0.04 1.34 -0.19

Tab. 5 - Correlation matrix between leaf transpiration (Tr) and the original reflectance 
of wavelengths involved in the PLSR model.

Tr
Wavelength (nm)

370 375 440 465 1400 1545 1795 1800 1860 1885
Tr 1.00 - - - - - - - - - -
370 -0.05 1.00 - - - - - - - - -
375 -0.04 0.99 1.00 - - - - - - - -
440 -0.18 0.77 0.80 1.00 - - - - - - -
465 -0.18 0.71 0.75 0.99 1.00 - - - - - -
1400 -0.06 0.53 0.57 0.90 0.92 1.00 - - - - -
1545 -0.02 0.51 0.55 0.88 0.90 0.99 1.00 - - - -
1795 -0.01 0.48 0.53 0.86 0.88 0.99 1.00 1.00 - - -
1800 -0.01 0.48 0.53 0.86 0.88 0.99 1.00 1.00 1.00 - -
1860 -0.04 0.50 0.54 0.87 0.90 0.99 0.99 0.99 0.99 1.00 -
1885 -0.08 0.58 0.63 0.91 0.92 0.98 0.97 0.96 0.96 0.97 1.00
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thermore,  increased  reflectance  of  SWIR 
wavelengths is the most consistent respon-
se of leaf reflectance to plant stress, inclu-
ding water  stress  (Carter  1994,  Panigrahy 
et al. 2009). As the SWIR band is known to 
provide information on the water content 
of plants, it has been widely used to assess 
the  water  stress  of  plants  (Tucker  1980, 
Ahlrichs & Bauer 1983, Raymond Hunt et al. 
1987,  Baret  et  al.  1988,  Chuvieco  et  al. 
2002).

To further illustrate such relationship, we 
carried  out  a  correlation  analysis  of  leaf 
transpiration with each wavelength selec-
ted  for  the  PLSR  models  based  on  both 
original reflectance and derivative spectra 

(Tab. 5 and  Tab. 6, respectively).  Selected 
wavebands from original  reflectance data 
showed  much  lower  correlation  coeffici-
ents with leaf transpiration than the bands 
selected from derivative spectra. The high-
est  negative  correlation  coefficients  bet-
ween  transpiration  and  reflectance  only 
reached  -0.18  (wavelengths  440  and  465 
nm). On the contrary, the correlation coef-
ficients for derivative spectra bands excee-
ded  0.4  at  two  wavelengths  of  2435  nm 
(0.49)  and  2445  nm  (0.40).  Furthermore, 
the pairwise correlations between the se-
lected  bands  were  much  higher  for  the 
original  reflectance  data  (all  above  0.48, 
most > 0.8 - Tab. 5). Contrarily, the pairwise 

correlation  coefficients  between  the 
selected  wavelengths  of  the  PLSR  model 
based on the derivative spectra had much 
lower  correlations  (generally  below  0.4  - 
Tab. 6). This confirms that the use of deri-
vative  spectra  may  potentially  provide 
more information when a limited number 
of  wavelengths  are  included  in  the  PLSR 
analysis.

Potential large-scale applications with 
satellite-borne hyperspectral data

Two  important  criteria  should  be  taken 
into  account  for  extending  in  situ results 
(such as  those obtained  in  this  study)  to 
monitoring  transpiration  at  large  scale  in 
the field using satellite-born hyperspectral 
data.  The  first  is  the  width  of  the  bands 
considered, that should be as close as pos-
sible to the resolutions of the available hy-
perspectral  sensors;  the  second  is  that 
noise bands should be excluded from the 
analysis  through  a  suitable  selection  pro-
cess. Bandwidths taken at 10 nm intervals 
are close to those of some popular hyper-
spectral  sensors  currently  available,  such 
as  Hyperion  and  AVIRIS  (Imanishi  et  al. 
2004),  and  the  spectral  regions  350-399, 
1355-1420, 1810-1940, and 2470-2500 nm are 
known as noise regions (Curran 1994,  Tian 
et al. 2001,  Kumar et al. 2002,  Mutanga et 
al. 2004, Zhao et al. 2007, Abdel-Rahman et 
al. 2012) and should therefore be removed 
from any further analysis. 

In this context, an additional PLSR analy-
sis based on the first-order derivative spec-
tra was carried out excluding all the above-
mentioned noise bands by retaining every 
tenth  wavelength  in  the  spectrum  350-
2500 nm. Such procedure finally resulted in 
191 out of 2150 wavelengths being involved 
in the analysis. Eight wavelengths of 1450, 
1960, 2000, 1070, 1980, 970, 920, and 2060 
nm were then selected by stepwise regres-
sion  analysis  and  included  in  the  PLSR 
model.  Six  components  were  determined 
through  cross-validation  analysis  (Fig.  6). 
The coefficient  of  determination (R2)  was 
0.76, with an RMSE of 1.69 μmol g -1 s-1 (Fig.
7), which is comparable to the results ob-
tained using 5 nm intervals presented abo-
ve.  These  findings  highlight  a  promising 
strategy  for  developing  remote  sensing 
methods to characterize leaf transpiration 
at a broad scales.

Conclusions
To verify  straightforward statistical  rela-

tionships  between  leaf  transpiration  and 
reflectance and its  derivative spectra,  we 
applied PLSR analysis  based on transpira-
tion  measures  and  canopy  reflectance 
spectra  (as  well  as  its  first  derivatives) 
taken simultaneously. This was carried out 
on  a  dominant  native  plant  Haloxylon  
ammondendron, which is well distributed in 
the  deserts  of  central  Asia.  The  results 
demonstrated that the PLSR model based 
on the first-order derivative spectra of leaf 
reflectance  can  trace  leaf  transpiration 
with high accuracy, while lower performan-
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Tab.  6 -  Correlation matrix  between leaf  transpiration (Tr)  and the first  derivative  
spectra of reflectance of wavelengths involved in the PLSR model.

Tr
Wavelength (nm)

675 1190 2180 2275 2355 2435 2440 2445 2470
Tr 1.00 - - - - - - - - -
675 -0.03 1.00 - - - - - - - -
1190 0.27 0.08 1.00 - - - - - - -
2180 0.07 -0.19 -0.70 1.00 - - - - - -
2275 -0.12 0.14 0.59 -0.71 1.00 - - - - -
2355 -0.25 0.16 0.39 -0.33 0.32 1.00 - - - -
2435 0.49 -0.12 0.34 -0.16 0.13 0.22 1.00 - - -
2440 0.01 0.05 0.15 -0.12 0.39 0.27 -0.07 1.00 - -
2445 0.40 -0.08 0.24 -0.32 0.26 0.12 0.39 -0.04 1.00 -
2470 0.13 0.00 -0.03 -0.05 0.15 0.09 -0.14 0.08 0.14 1.00
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Fig. 6 - Cross-vali-
dation results for 

the first-order 
derivative spectra 

with removal of 
known noise 

regions for canopy 
data: the relation-

ships between the 
numbers of com-
ponents and the 

predicted residual 
sums of squares 

(PRESS).

Fig. 7 - The 
observed versus 

estimated leaf 
transpiration va-

lues from the PLSR 
model based on 

the first-order 
derivative spectra 

with removal of 
known noise 

regions for canopy 
data.
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ces were obtained when the original reflec-
tance data were considered. Furthermore, 
the accuracy was also relatively stable for a 
spectral resolution of 10 nm, which is close 
to the specification  of  several  hyperspec-
tral sensors such as Hyperion and AVIRIS. 
This  supports  the  feasibility  of  directly 
applying  satellite-borne  data  to  trace  the 
dynamics  of  leaf-scale  transpiration.  Our 
results also suggested that first-order deri-
vative  spectra  at  2435,  2440,  2445,  and 
2470 nm were critical for the prediction of 
leaf  transpiration  by  PLSR  models.  The 
results  obtained in this study should help 
to  lay  the  basis  for  developing  remote 
sensing  methods  aimed  at  characterizing 
leaf transpiration at broad scales.
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