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Estimates of selective logging impacts in tropical forest canopy cover 
using RapidEye imagery and field data
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Selective logging is one of the leading causes of forest degradation in the Bra-
zilian Amazon region. The Brazilian Federal government has adopted a forest
concession policy as a strategy to mitigate impacts of selective logging and re-
gulate operations of the tropical  timber industry in Brazil.  This study used
fractional forest coverage derived from satellite imagery and field data to as-
sess forest degradation in two selectively logged study sites within the Jamari
National  Forest,  a protected area located in the western Brazilian state of
Rondônia.  Initially,  we  estimated  the  fractional  coverage  from  vegetation
indices using  RapidEye imagery  and compared to gap fraction data derived
from hemispherical photos acquired in the field. Subsequently, we estimated
the impacts of different types of selective logging activities (log decks, pri-
mary and secondary roads, tree fall gaps, and skid trails) on forest cover using
the fractional coverage dataset. The NDVI showed the highest R2  (0.56), indi-
cating that 56% of the sample variation in fractional coverage derived from
ground measurements can be explained by fractional coverage derived from
the NDVI model. Our results also showed that the intensity of canopy impacts
may vary according to the selective logging activity, ranging from skid trails to
log decks which had the lightest and the heaviest  canopy impacts,  respec-
tively.

Keywords:  Timber Harvesting, Hemispherical  Photographs, Satellite Imagery,
Forest Degradation, Forest Concessions, Brazilian Amazon

Introduction
Several efforts to improve the sustainabi-

lity  of  forest  resources  exploitation  have
been made throughout the world (Nasi et
al. 2011). In Latin America, national govern-
ments  have  delimited  areas  of  public  fo-
rests and granted forest rights to private
landholders and communities (Pacheco et
al.  2008).  These governments are now in
the  process  of  clarifying  rights  to  forest
resources and promoting the adoption of
reduced-impact  logging practices  (Nasi  et
al. 2011).

In 2006, the Brazilian federal government
adopted  a  new  national  forest  policy  to
respond  to  a  myriad  of  social,  economic,
and environmental pressures placed on fo-
rests of  the Brazilian Amazon (SFB 2013).

This policy is based on public concessions
to private entities, and provides that certi-
fied loggers must adopt strategies to pre-
serve  natural  forest  cycles  and  maintain
ecological functions within the area under
exploitation. More specifically, forest con-
cessions  have  been  implemented  as  a
means to control a rampaging timber indu-
stry while providing a source of timber har-
vested  on  a  long-term  sustainable  basis
(Azevedo-Ramos et al. 2015). However, for
these  targets  to  become  achievable, go-
vernmental  investments  focused  on  the
monitoring  of  impacts  related  to  timber
production chain are crucial  (Schulze et al.
2008).

Despite the ongoing conservation efforts,
selective logging is one of the main drivers

of the extensive forest degradation occur-
ring in the Brazilian Amazon (Lambin 1999,
Nepstad et al. 1999, Matricardi et al. 2013).
It is also clear that most damages caused
by  selective  logging  remain  underestima-
ted by deforestation monitoring programs
because of the intrinsic difficulties involved
in  mapping  this  type  of  land  use  using
remote sensing technologies at a regional
scale (Asner et al. 2005). As a result, uncer-
tainty  associated  with  degradation  esti-
mates is much higher than that associated
solely with deforestation data. Recent esti-
mates indicate that tropical forests degra-
ded  by  selective  logging  and  forest  fires
may  be  equal  or  exceed  the  area  being
deforested,  resulting  in  even  more  frag-
mented landscapes (Souza et al. 2013).

As a result, a more accurate and precise
way of detecting selectively logged forests
is needed to understand the spatial distri-
bution of logging activities and to estimate
their overall impacts (Anwar & Stein 2012).
An  improvement  in  the  ability  to  control
selective logging activities should be possi-
ble  using  available  remotely  sensed  data
and geoprocessing techniques.

Remote  sensing  is  an  important  data
source for the improvement of command-
and-control  tools,  mostly  because  of  its
proven capacity to provide data relating to
large areas of continuous forest (Souza et
al. 2003, Monteiro & Souza 2012). However,
the spatial patterns of selective logging are
not always easily detectable with satellite
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imagery,  as  the  associated  damages  are
often too small  to be detected using the
spatial resolution of most images (Anwar &
Stein 2012). In addition, the detection and
mapping of selectively logged forests using
only remotely sensed data is a difficult task
because harvested areas create a complex
mosaic of undisturbed and disturbed forest
comprising  varying  features  such  as  tree
fall  gaps,  skid  trails,  logging  roads,  log
decks, and damaged canopy (Veríssimo et
al.  1995,  Uhl  et al.  1997,  Souza & Barreto
2000, Souza et al. 2003).

Several  authors  have  already  addressed
the existing technical challenges that ham-
per the efforts to detect and to map areas
disturbed  by  selective  logging  activities.
Matricardi et al. (2007) showed that, while
forests with obvious selective logging have
well-defined logging roads  and log  decks
and extensive canopy degradation, forests
tracts where subtle selective logging activi-
ties are taking place show less canopy dis-
ruption or visible infrastructure. This diffe-
rence in logging obviousness is related to
either  early  logging  activities  or  the  sub-
stantial  forest  regrowth in previously log-
ged forests (Souza et al.  2003,  Matricardi
et  al.  2007).  Moreover,  variations  in  log-
ging intensity  and the type of  harvesting
techniques applied to a given site can also
affect the remote sensing detection capa-
bility. For example, areas with low intensity
logging  activities  are  not  easily  distin-
guished  from  intact  forest  (Asner  et  al.
2004), and the regeneration signal caused
by understory  vegetation growth  and ca-
nopy closure usually becomes more signifi-
cant in the second and third year after log-
ging  activities  are  ceased  (Souza  et  al.
2005).

Despite these technical difficulties, remo-
te sensing has provided some estimates of
the extent and intensity of selectively log-
ged area in the Brazilian Amazon Basin (As-
ner et al.  2005). There are, however,  spe-
cific causes of uncertainty in monitoring se-
lective logging with remote sensing: (1) the
fine  spatial  resolution  of  canopy  damage
resulting from timber harvest activities; (2)
the fast regeneration of selectively logged
areas; and (3) the low frequency of satel-
lite image acquisition caused by persistent
cloud  cover  in  the  region  (Asner  et  al.
2004). Regardless of these challenges, dif-
ferent authors have suggested that a quan-
titative assessment of the spatial patterns
of  small-scale  disturbances  (i.e.,  canopy
openness  caused  by  selective  logging  as
reflected in satellite imagery) is important
to  improve  the  understanding  of  large-
scale forest dynamics (Shimatani & Kubota
2004, Anwar & Stein 2012).

This research aimed at improving the cur-
rently available analytical tools used to esti-
mate the impacts  of  selective  logging on
tropical forests. To achieve that, we com-
bined field data and RapidEye imagery to
estimate the impact of selective logging at
two study sites within the Jamari National
Forest (JNF), located in the western Brazi-
lian  Amazon  state  of  Rondônia.  First,  we
estimated the fractional coverage (Qi et al.
2000) derived from RapidEye images  and
then validated it using a comparison with
gap fraction data based on hemispherical
photography acquired in the field using a
fisheye lens camera. Next, we used fractio-
nal coverage to estimate the canopy open-
ness of different selective logging activities
(log decks,  primary  and secondary  roads,
tree fall gaps, and skid trails).

Material and methods

Study area
The  Jamari  National  Forest  (JNF)  was

selected  because  it  was  the  only  federal
forest concession operating at the time we
collected our data. Our study was designed
to complement the tests related to the es-
tablishment of a monitoring system of fo-
rest concessions, which have been conduc-
ted by the Brazilian Forest Service.

The JNF was created by Federal  Decree
90224/1984 as a protected area for sustai-
nable  use  only.  The  territory  of  the  JNF
includes parts of the municipalities of Ita-
puã  do  Oeste,  Cujubim,  and  Candeias  do
Jamari,  which are located in  the Western
Brazilian  Amazon  state  of  Rondônia.  The
JNF encompasses a total of 220 000 ha of
tropical  forest.  The  main  vegetation  type
found at the JNF is the dense tropical fo-
rest,  but  there  are  also  patches  of  open
tropical forest (ICMBIO 2005), which is cha-
racterized by high tree richness of spaced
individual  trees  and  includes  clusters  of
palm trees and a  high richness  of  woody
lianas and epiphytes. In addition, the forest
understory  is  mostly  composed  of  seed-
lings  and  saplings  from  tall  tree  species
(ICMBIO 2005).

In 2008, the Brazilian federal government
allocated  96 000  hectares  of  the  JNF  for
forest  concession,  which  included  three
management  units.  Our  study  sites  were
the  first  Annual  Forest  Production  Plots
(AFPP) of Forest Management Units (FMU)
1 and 2 (Fig. 1).

The total forest area under concession in
the study sites encompasses 1662 ha (AFPP
in FMU 1  encompasses a total  of  594 ha,
and the AFPP in FMU 2 a total of 1068 ha).
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Fig. 1 - Study site loca-
tion: the Jamari National 
Forest, its Forest Man-
agement Units (FMU), 
and Annual Forest Pro-
duction Plots (AFPP).
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According to production reports from the
Brazilian Forest Service, it was harvested in
2010 and 2011 an average of 14.8 m3 ha-1 and
9.6  m3 ha-1 within  the study sites  (FMU 1
and FMU 2, respectively).

Field measurements
Gap fraction data was acquired during a

fieldwork  conducted  from  October  03  to
15,  2011.  Sampling  points  included  distur-
bed  forest  by  selective  logging  activities
(tree fall, skid trails, log decks, and primary
and  secondary  roads).  Additionally,  gap
fraction  data  was  acquired  for  unlogged
forests  and  used  for  control  data  in  the
analysis.  These sampling techniques were
previously used in gap fraction data collec-
tion by  Pereira  et  al.  (2002),  Asner  et  al.
(2004), and Matricardi et al. (2010).

The  sampling  scheme used in  the  diffe-
rent  types  of  selective  logging  disturban-
ces included the following steps: (a) mea-
surement of one third of log decks in both
study areas;  (b) measurement of  patches
of  primary  and  secondary  roads  in  each
AFPP,  by  randomly  selecting  transects  of
50 m length. The photos shots were taken
at a 10 m interval along each transect; (c)
measurement of skid trails using transects
of 50 m length to avoid tree gaps and log
decks;  (d)  forest  canopy  disturbances  by
tree  fall  gaps  were  measured  using  ran-
domly selected trees (the same number as
that of  road patches),  in the transects of
50 m  length  starting at  the  tree  stumps.
Two transects of 1000 m length were used
to sample undisturbed forests, one at each
study area. In this case, photo shots were
taken at 60 m interval along each transect.

Hemispherical photographs were taken in
the field using a 3.2 megapixel camera cou-
pled with a fisheye lens and a vertical-hori-
zontal  leveler.  These  photographs  were
taken under favorable weather conditions
and avoided the incidence of  direct  solar
radiation. All sampling points were geore-
ferenced using a  handheld GPS unit  (Gar-
min GPSMAP® 76 Cx) with locational accu-
racy of < 10 meters.

Gap fraction was estimated using the Gap
Light Analyzer (GLA) software (Frazer et al.
1999) on a semi-automated basis, as each
individual photograph required a threshold
empirically defined by the photo interpre-
ter.  The  default  threshold  automatically
estimated  by  GLA  (a  128  brightness  level
out  of  256)  was  mostly  used  and  it  was
then eventually adjusted according to the
observed sun exposure in the hemispheri-
cal  photos.  Subsequently,  a  binary  image
was  generated  for  each  photograph  to
estimate  gap  fraction  (see  Fig.  2).  For
strata data acquired in 50 m transects (pri-
mary and secondary roads, skid trails, and
tree  fall  gaps),  we  considered  just  one
observation per transect, by calculating the
mean  value  of  gap  fraction  from  the  six
points of each one.

Remotely sensed data
This study used RapidEye images, ortho-

rectified at 3A level with 5 m spatial resolu-
tion. Images were acquired on September
21, 2011; this date was selected because it
was the closest to the fieldwork period. A
cloud  mask  was  applied  to  images  with
substantial  cloud cover.  However,  images
of some parts of the study area were ac-
quired  in  May  for  two  reasons:  first,  be-
cause at this time there was a lack of cloud
cover,  and  second  because  most  of  the
marketable trees at those parts had alrea-
dy been harvested in the previous year.

RapidEye  imagery  was  radiometrically
corrected using the Radiometric Scale Fac-
tor available in image metadata, then con-
verted to top of the atmosphere reflectan-
ce using earth-sun distance and exo-atmo-
spheric  irradiance  values  for  each  band
(available from RapidEye Product Specifica-
tion). The ERDAS® 9.1 software was used to
perform this calibration. Values of solar dis-
tance and the zenith angles applied in the
reflectance conversion are shown in Tab. 1.

Vegetation indices
Three vegetation indices were tested to

estimate  the  fractional  forest  coverage,
and these are summarized as follows. The
NDVI (Rouse et al.  1973), the most widely
used  vegetation  index,  and  MSAVI  and
GEMI.

The  Modified  Soil  Adjusted  Vegetation
Index (MSAVI) is a modified version of the
Soil  Adjusted Vegetation Index (SAVI)  de-
veloped  by  Huete  (1988) and  Qi  et  al.
(1994), respectively. MSAVI presents a dif-
ferent equation for the soil correction fac-
tor from that of  SAVI,  which depends on

the vegetation cover of a given area. The
MSAVI index is defined as follows (eqn. 1):

where  ρNIR is  the reflectance in the near
infrared channel and  ρR is the reflectance
in the red channel, and L is defined as (eqn.
2):

where  s is  the slope of  the soil  line com-
puted from reflectance of open areas in a
RapidEye image.

In addition,  Pinty & Verstraete (1992) as-
sessed the effects of atmospheric variables
on vegetation indices  such  as  the  Simple
Ratio (SR) and the NDVI.  Given that such
effects are greater in the red channel than
in  the  near  infrared  band,  these  authors
proposed  a  Global  Environment  Monitor-
ing Index (GEMI) for the monitoring of veg-
etation. GEMI is defined as (eqn. 3):

where ρR is the reflectance in the red chan-
nel, and η is defined as (eqn. 4):

where  ρNIR is  the reflectance in the near
infrared channel and  ρR is the reflectance
in the red channel.
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Tab. 1 - Acquisition date and the geometry of RapidEye images acquisitions used in
this study.

RapidEye
Tile

Acquisition
date

Solar
distance (AU)

Zenith
angle

2034916 May 05-2011 1.01299 32.58
2034915 September 21-2011 1.00402 11.37
2034814 September 21-2011 1.00402 11.66
2034815 September 21-2011 1.00402 11.54

Fig. 2 - Example of: (a) hemispherical photograph of a log deck; and (b) binary image
resulting from semi-automated image processing using the Gap Light Analyzer. iF
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MSAVI=[ ρ NIR−ρ R
ρ NIR+ρ R+ L]⋅(1+L)

L=[(ρ NIR−ρ R) s+1+ ρ NIR+ρ R]
2

−8.0⋅s(ρ NIR−ρ R)

GEMI=η(1−0.25η )⋅
ρ R– 0.125
1– ρ R

η=2
(ρ NIR2−ρ R2)+1.5 ρ NIR+0.5ρ R

ρ NIR+ρ R+0.5
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Fractional forest cover
A mixture model was used to derive the

fractional forest cover based on the vege-
tation  indices.  In  this  model,  the  reflec-
tance of each pixel was defined as the sum
of  the  individual  reflectance  values  of  all
components weighted by its proportion in
the total coverage (Qi et al. 2000). In this
analysis, we applied two endmembers: fo-
rest canopy and open areas with bare soil,
while intermediate values of fractional co-
ver were assigned to pixels with interme-
diate  vegetation  cover.  We  did  not  use
Spectral Mixture Analysis (SMA) due to the
lack of spectral data acquired in the field to
support a proper endmember selection in
this remote sensing approach, which is cri-
tical to estimate fraction images (Asner et
al. 2005, Souza et al. 2005).

According to  Maas  (2000) and  Qi  et  al.
(2000),  the  green  fractional  percentage
can be estimated by using a simple linear
mixture model and two spectral endmem-
bers (forest  canopy and bare soil).  Based
on it, the Fractional Coverage (FC) applied
to a vegetation index can be approximated
as (eqn. 5):

and it can be rewritten as (eqn. 6):

where  IVsoil is the vegetation index value
of an open area (bare soil) and IVveg is the
vegetation index value of a typical vegeta-
tion pixel.

The values of  the vegetation indices for
the two endmembers employed in the mo-
del were determined from histogram ana-
lysis and visual inspection of VI images. A
pixel value from a deforested area and the
average value of vegetation in undisturbed
forests were used for bare soil and vegeta-
tion values, respectively. When a linear mo-
del  with  more  than  two  components  is
used, eqn. 6 cannot be considered because

the analytical model  assumes that a pixel
can  only  consist  of  soil  and  vegetation
components.

Data processing
A  fractional  coverage  (FC)  image  was

estimated for each vegetation index. Along
with the gap fraction data acquired in the
field, the  FC images were used to assess
the applicability of the FC technique in es-
timating the rate of canopy openness with-
in selectively logged areas and undisturbed
forests.

Each location point acquired in the field
was associated with a specific type of se-
lective logging environment and,  the gap
fraction  data  derived  from  hemispherical
photos were then linked with the attribute
table of each point location. One hundred
and  sixty  four  points  for  disturbed  and
undisturbed forests were used in the analy-
sis.  A  10-m  buffer  zone  was  generated
around  each  point  to  estimate  the  arith-
metic mean of pixels values from fractional
coverage  images  within  this  area.  These
buffer zones were created to minimize the
uncertainty related to the positional accu-
racy  of  the  GPS  field  point  locations  and
image geometric corrections.

Gap  fraction  measurements  of  164 field
sample points and their associated fractio-
nal  coverage values  derived from vegeta-
tion indices were used as input for the sta-
tistical  analysis.  As  a  result,  the  contribu-
tion of each type of forest disturbance by
selective logging compared to undisturbed
forests was assessed.  Fig. 3 shows further
details  on  the  relationship  between  gap
fraction data collected in the field and the
FC data derived from vegetation indices.

Data analysis
The  relationship  between  the  fractional

coverage retrieved from vegetation indices
and the gap fraction measured in the field
using  hemispherical  photos  were  tested
using a linear equation model. The best fit
equation was employed to select the opti-

mum  vegetation  index.  Additionally,  we
applied the criteria suggested by Draper &
Smith  (1998) to  validate  the  selection  of
the  best  adjusted  equation  as  following:
graphical analysis of the residuals, standard
error of the estimate (Syx) and the coeffi-
cient of determination (R²). In this analysis,
33 out of 164 randomly selected observa-
tions were used to validate the previously
defined regression model.

Canopy  cover  impacts  by  selective  log-
ging were assessed using multiple regres-
sion analysis. The fractional coverage esti-
mated from the best vegetation index was
used  as  the  dependent  variable,  and  the
location of the five types of logging activi-
ties  were used  as  the  independent  varia-
bles.  Field  measurements  of  undisturbed
forests  spatially  located  contiguously  to
disturbed  forests  were  used  as  control.
Multiple  regression  analysis  is  a  useful
technique for estimating the partial effects
of  independent  variables  because  it  con-
trols  other  factors  that  could  simultane-
ously affect the dependent variable (Ott &
Longnecker 2010). In our analysis, the mul-
tiple  linear  regression model  was  defined
as (eqn. 7):

where  DV is  the dependent variable (the
fractional  forest  coverage  retrieved  from
the  selected  vegetation  index),  β0 is  the
constant  of  the  equation  or  the  Y-axis
intercept,  β1 is  the  coefficient  associated
with  the  independent  variable  X1 (log
decks), β2 is the coefficient associated with
the  independent  variable  X2 (primary
roads), β3 is the coefficient associated with
the  independent  variable  X3 (secondary
roads), β4 is the coefficient associated with
the independent variable X4 (tree fall gaps)
and β5 is the coefficient associated with the
independent  variable  X5 (skid  trails).  The
variable  υ is  the  associated  error,  which
includes  factors  other  than  the  indepen-
dent variables considered in this model.

The null hypothesis were defined as: each
independent  variable  (log  decks,  primary
roads, secondary roads, tree fall gaps, and
skid  trails)  used  in  the  regression  model
has no effect on fractional forest cover. A
95% confidence level was adopted. Simple
and  multiple  linear  regression  analyses
were  performed  using  the  R  statistical
package, version 3.0.1.

Results

Fractional forest coverage
The  simple  linear  regression  analysis

showed  the  best  relationship  between
fractional coverage derived from NDVI and
gap fraction measured using hemispherical
photos.  Fig.  4a  shows  the  residuals,  and
Tab. 2 shows further statistical results for
the adjusted and validated models of each
vegetation index.

NDVI’s least residual dispersion between
the  estimated  and  observed  values,  R²
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Fig. 3 - Flow dia-
gram of the rela-

tionship bet-
ween gap frac-
tion from field
data and frac-

tional coverage
derived from

vegetation
indices.
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DV=β 0+β 1 X 1+β 2 X 2+β 3 X 3+

β 4 X 4+β 5 X 5+υ

FC=
V− IVsoil

IVveg−IVsoil

IV=FC⋅IVveg +(1−FC ) IVsoil
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value,  absolute  and  relative  standard  er-
rors,  and  correlation  coefficient  between
the observed and estimated values confir-
med this index as the most accurate of the
three tested. As a whole, the NDVI model
outperformed to estimate forest fractional
cover when compared to MSAVI and GEMI.

Complementarily,  the  validation  analysis
confirmed that NDVI was the best index as
input of a linear mixing model to estimate
canopy openness.  Fig.  4b shows the resi-
dual dispersion based on the 33 randomly
selected field observations from the origi-
nal database. Tab. 2 shows the lower abso-
lute  and  relative  standard  errors  for  the
NDVI and the highest correlation between
the  estimated  and  observed  values  from
this index as compared with the MSAVI and
GEMI.

Based on these overall results, the NDVI
was selected as the most accurate vegeta-
tion  index  to  estimate  canopy  openness
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Tab. 2 - Statistics of adjusted and validated Fractional Coverage models. (β0): Regres-
sion constant; (β1): coefficient for the independent variable; (R²): adjusted coefficient
of determination; (Syx): standard error of the estimate in units of the estimated va-
riable and in %; (ryx): correlation between observed and estimated values.

Model β0 β1 R² Syx
(adj)

Syx (%)
(adj)

ryx

(adj)
Syx
(val)

Syx (%)
(val)

ryx

(val)

FC NDVI 64.82 0.25 0.56 4.04 5.68 0.75 5.38 6.47 0.71
FC GEMI 63.12 0.29 0.48 4.41 6.52 0.69 5.57 6.74 0.68
FC MSAVI 72.25 0.21 0.51 4.31 8.37 0.71 5.55 6.72 0.68

Tab.  3 -  Coefficients  of  multiple  regression  model  for  the  fractional  forest  cover
derived from the NDVI.

Parameter Estimate Std. error t value p-value
Intercept 83.9 2.2 38.4 0.00
Log decks -33.2 2.8 -11.9 0.00
Primary roads -20.6 3.4 -6.1 0.00
Secondary roads -3.2 2.9 -1.1 0.27
Tree fall gaps -6.2 3.5 -1.8 0.07
Skid trails -0.2 3.5 -0.0 0.96

Fig. 4 - Residual
dispersion of

adjusted (a) and
validated (b)

models for esti-
mation of frac-

tional canopy
coverage,

retrieved from
NDVI, GEMI , and

MSAVI.

Fig. 5 - Distribution of fractional coverage derived from NDVI (left) and residual distribution (right) per each selective logging activ -
ity. (LD): log decks, (PR): primary roads, (SR): secondary roads, (TG): tree fall gaps, (ST): skid trails, (UF): undisturbed forests.
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for our study sites.

Assessment of selective logging impacts
using fractional coverage

The  existing  gradient  among  different
type  of  selective  logging  environments
was assessed by applying a multiple linear
regression  model  using  the  fractional  fo-
rest coverage estimated from the NDVI as
the dependent variable. The statistical re-
sults obtained from our regression model
were: R² = 0.58; standard error of the esti-
mate in units  of  the estimated variable =
11.55; standard error of the estimate in per-
centage =  16.30;  correlation between ob-
served and estimated values = 0.77.

Forest  cover  was  estimated  as  percen-
tage values and our results are very explicit
regarding the impact (estimated losses of
canopy coverage)  of  selective logging on
the forest. At a 95% confidence level,  the
contribution  of  log  decks  and  primary
roads  in  the  decrease  of  forest  canopy
cover were significant, while the effect of
secondary  roads,  tree  fall  gaps  and  skid
trails  were  not  (Tab.  3).  The  estimated
coefficients  for  the  harvested  environ-
ments were: -33.2 for log decks; -20.6 for
primary  roads;  -3.2  for  secondary  roads;
-6.2 for tree fall gaps and -0.2 for skid trails.

The multiple regression model showed a
coefficient of determination of 0.58, attri-
buted to the high variation present in the
data.  The  standard  error  of  the  estimate
(percentage)  was  approximately  16%.  The
forest canopy environments that sustained
the most damage (i.e.,  log decks and pri-
mary roads) had the largest contribution to
the observed variation (Fig. 5).

Discussion

Detection of selective logging impacts 
with optical satellite imagery

The NDVI index showed the best perfor-
mance  to  estimate  forest  canopy  cover
compared to the MSAVI and GEMI. Despite
the initial  expectation that  correcting the
atmosphere and soil effects would benefit
the  performances  of  both  GEMI  and
MSAVI,  our  results  did  not  confirm  this
hypothesis.  The  essence  of  the  mapped
targets may partially explain these results.
Roads, log decks and tree fall gaps opened
during  logging activities  reveal  small  por-
tions of bare soil beneath the dense forest
canopy. It is likely that, in our case study,
the soil signal coming from these features
improved the performance of NDVI.

Selective  logging  activities  cause  diffe-
rent  degrees  of  canopy  openness  (Matri-
cardi et al. 2005). As reported by Pinagé et
al. (2014), log decks and primary roads sho-
wed the  highest  degree of  canopy open-
ness  as  they  involve  forest  clear  cutting
and removal. Indeed, log decks and prima-
ry roads provide the main evidence of se-
lective logging occurrence in optical satel-
lite imagery.

Further selective logging activities cause
less canopy damage, such as tree fall gaps,

secondary roads and skid trails, as most of
their impact occurs at the ground level. As
a  result  of  those  intrinsic  characteristics
and  the  adoption  of  reduced  impact  log-
ging techniques in Brazilian forest conces-
sions, these activities caused cryptic forest
degradation that could not be properly de-
tected  by  our  remote  sensing  approach.
Optical  remote  sensing  can  detect  selec-
tive logging based on contextual elements
(network of roads and log decks and asso-
ciated canopy damage), but it has limited
capacity to distinguish the structural chan-
ges that occur below the canopy (Coops et
al.  2007).  Therefore,  we  could  not  reject
the  null  hypothesis  for  tree  fall  gaps,  se-
condary roads and skid trails at a 95% confi-
dence level, which indicated that their im-
pacts are not significantly affecting forest
canopy, even when using the high spatial
resolution RapidEye imagery.

The adjusted regression model  used for
selecting  a  vegetation  index  for  deriving
forest cover indicated that 56% of the varia-
tion in  fractional  canopy  cover  estimated
with field data can be explained by varia-
tions in the fractional forest cover estima-
ted  from  the  NDVI.  However,  the  coeffi-
cient of determination needs to be evalua-
ted with great caution and whenever possi-
ble,  along  with  other  criteria,  as  recom-
mended by  Gujarati  & Porter  (2008). It  is
also important to emphasize that the cal-
culated standard error of the estimate was
5.68%. The model comprises only the varia-
tion related to selective logging activities,
and  other  sources  of  variation  in  forest
cover, including natural causes (i.e., natural
canopy gaps, different forest types) were
not accounted for.

The  relationship  between  fractional  fo-
rest  cover  estimated  with  field  data  and
that obtained with remotely sensed data is
not  linear.  With  higher  canopy openness,
the difference between the two data sour-
ces  is  quite  large,  mainly  because  of  the
wide angle of the fisheye lens that shows
vegetation pixels at the image edges even
in open areas. Satellite images do not have
this constraint, especially those with higher
spatial resolution, which results in a reduc-
tion in the spectral mixture in the pixels.

We  minimized  potential  autocorrelation
among samples by adapting our sampling
scheme. We accepted, however, some de-
gree of spatial autocorrelation (Global Mo-
ran’s I = 0.1639, p = 0.007, inverse distance
parameter) for the NDVI fractional covera-
ge estimated at our study site, by assuming
that  spatial  distribution  of  impacts  from
selective logging activities is not homoge-
neous within a logged forest.

Although a buffer zone surrounding the
georeferenced  field  points  was  used  to
reduce uncertainties, we acknowledge that
the resolution of the remote sensing data
is coarser than the GPS locational accuracy.
The  accuracy  of  field  data  has  been  pre-
viously  reported as  negatively  influencing
predictions of forest attributes (McRoberts
2010). However, Zald et al. (2014) reported

that improved GPS plot locations had little
influence  on  the  accuracy  of  predictive
maps  that  link  remote  sensing  and  field
data in their study. These authors affirmed
that  factors  other  than  accuracy  of  field
data in relation to the spatial resolution of
explanatory data are more relevant in de-
termining  the  overall  accuracy,  and  that
standard  plot  locations  are  sufficient  for
large-landscape mapping.

Applied issues for selective logging 
monitoring

The intensity of impacts caused by selec-
tive logging in tropical forests is usually re-
lated to the adopted harvesting techniques
and  intensities,  with  different  levels  of
ground and canopy structural damage, as
well  as the subsequent losses of  biomass
and the forest recovery time (Asner et al.
2004,  Matricardi  et  al.  2005).  Those  im-
pacts  affect  unequally  forest  biodiversity
and other components of a forest, such as
water  availability,  micro-climate,  and  car-
bon pools.

In  this  study,  we estimated  the  specific
contribution  of  logging  operations  to  da-
mages  occurring  to  the  forest  structure.
Our results showed that log decks and pri-
mary roads were responsible for the great-
est impacts on forest canopy. Based on this
result,  we emphasize that  an appropriate
forest planning is required before the be-
ginning of selective logging operations to
minimize the impacts caused by those fo-
rest activities. Additional care should be ta-
ken  during  the  implementation  of  forest
management plans (secondary roads con-
struction, tree felling and skidding).

Recent studies (Sist et al. 2014, Berenguer
et  al.  2014)  indicate that  the mortality  of
large trees injured during logging activities
significantly contributes to the annual los-
ses  of  aboveground  biomass.  These  au-
thors  also  observed  that  higher  biomass
reduction occurs mostly in the initial years
after logging operations. The mitigation of
logging damages is extremely important to
increase  post-logging  biomass  because
large trees play an important role in carbon
dynamics and overall carbon stocks. There-
fore, appropriate monitoring of the forest
management would improve the role pla-
yed  by  conservation  and  sustainable  fo-
restry, and it would ultimately enhance fo-
rest carbon stocks in REDD+ initiatives.

Despite the fact that our findings are de-
rived from a single case study in the Wes-
tern Brazilian Amazon, we believe that our
results can be extrapolated to other tropi-
cal ecosystems that are currently experien-
cing selective logging activities. This asser-
tion  is  supported  by  the  accuracy  of  the
techniques we used to assess canopy cover
variations in tropical forests under timber
exploitation. Nonetheless, we recommend
additional  research  to  be  conducted  for
the improvement of the methods used to
quantify selective logging impacts on tropi-
cal forest canopy. Potential areas of inves-
tigation could include the use of additional
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sensors and different forest types, and the
assessment of alternative selective logging
strategies to be used in public forest con-
cessions and private projects.

Finally,  our  findings  may  contribute  to
improve the monitoring tools and policies
of  forest  concessions  conducted  by  go-
vernmental agencies and civil society orga-
nizations in tropical regions.
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