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Estimating biomass of mixed and uneven-aged forests using spectral 
data and a hybrid model combining regression trees and linear models

Pablito M López-Serrano (1), Carlos 
A López-Sánchez (2), Ramón A Díaz-
Varela (3), José J Corral-Rivas (2), 
Raúl Solís-Moreno (4), Benedicto 
Vargas-Larreta (5), Juan G Álvarez-
González (6)

The Sierra Madre Occidental mountain range (Durango, Mexico) is of great eco-
logical interest because of the high degree of environmental heterogeneity in
the area. The objective of the present study was to estimate the biomass of
mixed and uneven-aged forests in the Sierra Madre Occidental by using Land-
sat-5 TM spectral data and forest inventory data. We used the ATCOR3® atmo-
spheric and topographic correction module to convert remotely sensed ima-
gery digital signals to surface reflectance values. The usual approach of mode-
ling stand variables by using multiple linear regression was compared with a
hybrid model developed in two steps: in the first step a regression tree was
used to obtain an initial classification of homogeneous biomass groups, and
multiple linear regression models were then fitted to each node of the pruned
regression tree. Cross-validation of the hybrid model explained 72.96% of the
observed stand biomass variation, with a reduction in the RMSE of 25.47% with
respect to the estimates yielded by the linear model fitted to the complete
database. The most important variables for the binary classification process in
the regression tree were the albedo, the corrected readings of the short-wave
infrared band of the satellite (2.08-2.35 µm) and the topographic moisture
index. We used the model output to construct a map for estimating biomass in
the study area, which yielded values of between 51 and 235 Mg ha -1. The use
of regression trees in combination with stepwise regression of corrected satel-
lite imagery proved a reliable method for estimating forest biomass.

Keywords: Regression Trees, Stepwise Regression, Remote Sensing, ATCOR3,
Terrain Features, Image Texture

Introduction
The Sierra  Madre  Occidental  is  conside-

red  an  area  of  special  ecological  interest
because of the high levels of biodiversity,
which are attributed to diverse physiogra-
phic  and  climatic  conditions  (Challenger
1998). The area is also important because
of the presence of  some of the most im-

portant  commercial  species  of  pine  and
oak in Mexican ecosystems (Sánchez et al.
2003).

Quantification of forest biomass and car-
bon sequestration is a relevant issue in the
management of these forest stands. Relia-
ble  information  is  required  for  accurate
biomass estimation, which should also take

into account variable external factors that
can be modeled, e.g., climate change (IPCC
2003, Ryu et al. 2004, Sun & Ranson 2009).
However,  given  the  diversity  of  environ-
mental, topographical and biophysical con-
ditions in forest ecosystems in different lo-
cations, there is no universal, transferable
technique for estimating biomass (Keller et
al. 2001,  Foody et al. 2003,  Lu 2005,  Cutler
et al. 2012).

In general, forest biomass can be measu-
red directly (destructive analysis) or it can
be  estimated  indirectly  (Brown  &  Lugo
1984). The direct method is usually accura-
te, but it is expensive and time-consuming
and can only be used in small areas (Kette-
rings et al. 2001, Zianis & Mencuccini 2004,
Walker et al.  2011).  These difficulties have
largely  been  resolved  by  the  appearance
and  further  development  of  quantitative
satellite systems and aerial remote sensing,
together with the development of parame-
tric and nonparametric statistical methods
for  modeling  variables  of  interest.  The
stand variables  usually  measured in  tradi-
tional  forest  inventories can now be esti-
mated faster, at lower cost and over larger
areas (Liang 2007). The application of spa-
tial technologies has allowed estimation of
biomass in different ecosystems (Muukko-
nen & Heiskanen 2005,  Fuchs et al.  2009,
Hernández-Stefanoni  et  al.  2011,  Aguirre-
Salado et al. 2014).
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Pre-processing of satellite imagery is im-
portant for improving the quality and inter-
pretation of data. Forest ecosystems gene-
rally  cover rough terrain where the topo-
graphic  conditions  lead  to  variations  in
reflectance values because of the position
of  the  sun  (Meyer  et  al.  1993,  Richter  &
Schläpfer  2011,  Richter  2013).  Thus,  the
quality of the final product largely depends
on accurate calibration of the sensors and
on radiometric correction to minimize dis-
tortion  and atmospheric  effects  (Li  et  al.
2010). In this respect, the use of atmosphe-
ric and topographic correction is therefore
essential  to  counteract  such  effects,  and
digital  elevation model (DEM) parameters
such  as  slope,  orientation,  shadows  cast,
sky view and altitude can be used for such
purposes  (Balthazar  et  al.  2012,  Richter
2013). These primary parameters, together
with biophysical parameters such as vege-
tation  indexes  (Gilabert  et  al.  1997)  and
indexes derived by the analysis of the ima-
ge texture (by quantification of the spatial
variation in  grey  tones  using a  grey  level
co-occurrence  matrix  –  GLCM),  are  very
useful  for  identifying  areas  or  objects  of
interest in the image (Haralick et al. 1973,
Botero & Restrepo 2010). They can also be
combined with terrain parameters to mo-
del  vegetation  characteristics  (Lu  2005,
Kayitakire  et  al.  2006,  Díaz-Varela  et  al.
2011),  as  well  as  to describe hydrological,
geomorphological  and  ecological  proces-

ses  (Moore & Nieber  1989,  Wilson & Gal-
lant 2000).

One  of  the  methods  most  commonly
used for  this  purpose is  the  classification
and regression trees method, initially pro-
posed  by  Breiman  et  al.  (1984).  This  is  a
non-parametric,  multivariate,  supervised,
inductive  learning  method  that  basically
searches  for  classification  and  prediction
rules by recursive partitioning. In this tech-
nique, a series of binary combinations (yes,
no) expressed in terms of a single indepen-
dent variable is used to identify certain pro-
files and vectors that enable description of
the individual parameters under study (Hu
et al. 2010).

The objective of the present study was to
model  the  forest  biomass  in  mixed  and
uneven-aged  forests  in  the  Sierra  Madre
Occidental (Mexico) by using remote sen-
sing Landsat-5 TM imagery, terrain parame-
ters  and  forest  inventory  data  obtained
from a network of  permanent plots  sam-
pled in a traditional (ground based) survey.
Two different approaches were compared:
the usual  modeling method of  fitting a li-
near relationship to stand biomass and site
variables  obtained  from  remote  sensing
images, and a new approach consisting of
a hybrid model combining regression trees
and linear models for the final tree nodes.
As far as we know, this is the first time this
hybrid approach has been used to model
stand biomass with remote sensing data.

Material and methods

Study area
The study area is located in the UMAFOR-

1001 (Unidad de Manejo Forestal Regional or
regional  forest  management  unit)  in  the
Sierra  Madre  Occidental,  in  the  north  of
the state of Durango (Mexico), and covers
an area of 1 142 916 ha (Fig. 1). The vegeta-
tion comprises pine, oak, Douglas fir, pine-
oak and oak-pine forest, according to the
description  in  the  Land  Use  and  Vegeta-
tion Cover Chart, scale 1:250.000, Series V
(INEGI 2012).

Field data
A  network  of  99  permanent  sampling

plots was established during the winter of
2011,  following  the  method  described  by
Corral-Rivas  et  al.  (2009).  The plots  were
located by systematic sampling (with some
exceptions  to  avoid  non  forested  areas)
with a grid of equidistant points separated
by three to five kilometers, depending on
the orography of  the study area.  In each
plot  (50  × 50  meters),  the  tree  species
were recorded and the diameter at breast
height > 7.5 cm and total height (m) of all
standing trees were measured.

Species-specific statistical models develo-
ped by  Vargas-Larreta (2013) were used to
estimate  individual  (at  tree  level)  above-
ground  biomass.  The  goodness  of  fit  for
such statistical models ranged from 0.87 to
0.99 (R2), and the root mean square error
(RMSE) varied from 22.8 to 95.2 kg. Once
the tree aboveground biomass was estima-
ted,  all  values  from  each  sampling  plot
were  summed  and  expressed  on  a  per
hectare basis. Summary statistics including
number  of  observations,  mean,  standard
deviation, minimum, and maximum values
of the main stand variables are shown in
Tab. 1.

Datasets

Source of spectral data
Three  Landsat-5  TM  (Thematic  Mapper)

satellite images (path/row: 31/42, 32/41 and
32/42), obtained in April and May 2011 and
covering the entire study area, were exami-
ned (available from the US Geological Ser-
vice webpage - http://glovis.usgs.gov/). The
available  images  are  subjected  to  cubic
convolution  geometric  correction  for  dis-
crete data (level L1T), with a RMSE of the
geometric residuals lower than 1 pixel, and
they are therefore suitable for image pro-
cessing (Keys 1981).

Landsat-5 TM data have spatial resolution
of 30 m with a 16 day revisit  period.  The
swath width is 185 km with seven spectral
bands in the following wavelength regions
of  the  electromagnetic  spectrum:  blue
(0.45-0.52 µm),  green (0.52-0.60 µm),  red
(0.63-0.69  µm),  near  infrared  (0.78-0.89
µm), short-wave infrared (1.55-1.75 µm) and
short-wave infrared (2.08-2.35 µm).  These
wavelength regions correspond respective-
ly to bands 1, 2, 3, 4, 5 and 7 of the Landsat-
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Fig. 1 - Geographical location of the study area and sample plots used in the study.

Tab. 1 - Statistics of the main stand variables. Dominant height was calculated as the
mean height of the 100 thickest trees per hectare.

Variable Mean Standard
deviation

Minimum
value

Maximum
value

Number of stems per ha 655.47 322.25 224.00 2264.00
Stand basal area (m2 ha-1) 20.30 6.42 8.22 41.12
Dominant height (m) 14.62 3.72 6.87 24.81
Stand biomass (Mg ha-1) 89.03 43.45 2.70 234.03
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Spectral data to estimate biomass in mixed and uneven-aged forests

5 TM satellite (NASA 2011).  Given its ther-
mal characteristics, band 6 was not used in
the present study.

Atmospheric and topographic correction 
(ATCOR3®)

The satellite images were subjected to ra-
diometrical, atmospherical and topographi-
cal correction using the ATCOR3® module,
regarded as particularly suitable for moun-
tainous  zones  (Geosystems 2013)  and im-
plemented  in  the  ERDAS® IMAGINE® 2013
software  (ERDAS  2013).  After  correction,
the original image digital levels (DL) were
converted to ground reflectance values for
each band.  A number of  vegetation inde-
xes and other derived parameters (Tab. 2)
were computed from the atmospherically
and  topographically  corrected  image
bands  and  then  included  in  the  biomass
estimation models  for  their  evaluation as
possible regressor variables. Vegetation in-
dexes  are regarded as good indicators of
vegetation cover “greenness” (understood
as a combination of attributes such as leaf
chlorophyll  content,  leaf  area,  canopy co-
ver and structure –  Glenn et al. 2008) and
are good indicators of  vegetation canopy
biomass. Hence, the Normalized Difference
Vegetation  Index (Rouse  et  al.  1974)  and
Soil Adjusted Soil Vegetation Index (Huete
1988) were included as indexes correlated
with green biomass content, with the for-
mer being particularly suited for scattered
vegetation land cover. The Leaf Area Index
(Baret  &  Guyot  1991)  derived  from  NDVI
was also  included  as  a  good indicator  of
green biomass.  Albedo (Asrar 1989), pho-
tosynthetically active radiation (Asrar et al.
1984) and absorbed shortwave solar radia-
tion (Brutsaert 1975) were also included as
comprehensive  indicators  of  the  interac-
tion  between  land  cover  and  solar  radia-
tion in the visible and near-infrared regions
of the electromagnetic spectrum.

The ATCOR3® module (Geosystems 2013)
first calculates the radiance at sensor level
(Wsr-1 m-2) from the image pixels DL. Seve-
ral input parameters were required for this
calculation  and  were  retrieved  from  the
image metadata (header  file):  date of  ac-
quisition, scale factors, geometry (solar ze-
nith  angle  and  solar  azimuth)  and  other
information  about  the  sensor  calibration
file  (“gain  and  bias”).  Other  parameters
were adjusted by taking into account par-
ticularities  of  the  input  datasets  and  the
conditions of the imagery dates, e.g., visibi-
lity (35 km), pixel size of the DEM (15 m),
aerosol type (rural), among others. As the
image was cloudless and no suitable water
vapor  bands  were  available,  dehazing/
cloud removal  and atmospheric  water  re-
trieval settings were retained as “default”,
which, in this case, is recommended by the
ATCOR3® User Manual (Geosystems 2013).

As a prior requisite for application of the
ATCOR3® module, three topographic para-
meters (namely slope, orientation, skyview
and  shadows  cast  –  Richter  2013)  were
computed from a DEM of  the study area

with  a  spatial  resolution  of  15  m  (INEGI
2014).  Prior  to  these  calculations,  a  low
pass filter with a 5×5 moving window was
applied  to  the  original  DEM  in  order  to
reduce the banding effects present in the
original file.

After  radiometric  correction,  the  three
scenes  corresponding  to  the  study  area
were  mosaicked  using  the  ERDAS®  IMA-
GINE® 2013 software (ERDAS 2013).

Texture parameters
With  the  aim  of  including  information

that combines the spatial and spectral do-
main of the remote sensed imagery in the

biomass estimation models,  the following
texture  parameters  were  calculated  from
the  NDVI  image  based  on  grey  level  co-
occurrence  matrices  (Tab.  3):  homogene-
ity,  contrast,  dissimilarity,  mean,  standard
deviation,  entropy,  second  order  angular
moment  and  correlation  (Haralick  et  al.
1973). Calculations were done at three dif-
ferent  analysis  scales,  corresponding  to
window sizes  of  3×3,  5×5  and  7×7  pixels,
respectively.  The  original  NDVI  image  va-
lues were resampled to a grey level depth
of  256  (8  bits)  to  reduce  computational
costs (Haralick et al. 1973). This procedure
was carried  out  using the software  pack-
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Tab. 2 - Vegetation indexes analyzed in the present study. (NIR): Near-infrared band
(0.83 μm); (RED): Red band (0.63 μm); (ρ):  Reflectance; (1-ρ(λ)):  Absorbed part of
radiation; (Eg(λ)): the global (direct plus diffuse) solar flux on the ground; (C): Con-
stant value 0.8; (A): Constant value 1; (B): Constant value 0.4; (int0.3-2.5μm): extrapola-
tion for region of the 0.3-2.5 μm (bands) of most satellite sensors; (dλ): adjustable
parameter used to derive direct albedo on solar zenith angle.

Vegetation index Definition Author
Normalized Difference 
Vegetation Index

NDVI=(NIR-RED)/(NIR+RED) Rouse et al. (1974)

Soil Adjusted Soil Vegetation 
Index

SAVI=[(ρNIR-ρRED)∙1.5]/[(ρNIR+ ρRED)
+0.5]

Huete (1988)

Modified Soil-adjusted 
Vegetation Index

MSAVI2=[2∙NIR+1-√[(2∙NIR+1)2 
-8∙(NIR-RED)]]/2

Qi et al. (1994)

Leaf Area Index LAI=-(1/0.6)ln[(0.6-NDVI)/0.78] Baret & Guyot (1991)
Albedo a=int0.3-2.5μm [ρ(λ)d(λ)] / int0.3-2.5μm 

(dλ)
Asrar (1989)

Fraction of Photosynthetically 
Active Radiation

FPAR= C∙1–A exp(-B∙LAI)] Asrar et al. (1984)

Absorbed Shortwave Solar 
Radiation

Rsolar=int0.3-2.5μm [1-ρ(λ) Eg(λ) dλ] Brutsaert (1975)

Tab. 3 - Additional variables for biomass modelling. (N): number of grey levels; (P):
normalized  symmetric  GLCM  of  dimension N×N;  (V):  vector  difference  normalized
grey level of dimension N; P(i, j): matrix of co-occurrence normalized, so that Σ(i,j=0;N-1)

Σ(i,j=0;N-1)  P(i-j); V(k): normalized grey level difference vector  Σ(i,j=0;N-1)Σ(i,j=0;N-1)P(i-j)| i-j | = k;
(Z): Average elevation; (R): Point radio altitude units; (As): Drainage area specified;
(tan(β)): Local slope angle; (VA): Variance; (ME): Mean. D, F, G and H were derived
according to equation of Zevenbergen & Thorne (1987).

Group 
variable Variable Formula Reference

Texture 
(NDVI)

Homogeneity (HO) HO=Σ(i,j=0;N-1) i[Pi,j /1+(i-j)2]

Haralick et al. 
(1973)

Contrast (CO) CO=Σ(i,j=0;N-1) i Pi,j (i-j)2

Dissimilarity (DI) DI=Σ(i,j=0;N-1) i Pi,j (i-j)

Mean (ME) ME=Σ(i,j=0;N-1) i Pi,j

Standard Deviation (Sdt) Sdt=√VA

Entropy (EN) EN=Σ(i,j=0;N-1)  i Pi,j [-ln(i)-Pi,j]

Angular Second Moment
(ASM)

ASM=Σ(i,j=0;N-1) i P2
i,j

Correlation (CR) CR=Σ(i,j=0;N-1) i Pi,j [(i-ME)(j-
ME)/√(VAi VAj)]

Terrain 
(DEM)

Elevation Digital Elevation Model -
Slope (β) β= arctan(G2 + H2)1/2 -
Transformed Aspect 
(Trasp)

Trasp=1-cos[(π /180)(α- 30)]/2 Roberts & Cooper 
(1989)

Terrain Shape Índex (TSI) TSI=Z/R McNab (1989)
Wetness Index (WI) W= ln[As/tan(β)] Moore & Nieber 

(1989)
Profile curvature (Ø) Ø=-2[DG2+EH2+FGH]/(G2+H2)

Wilson & Gallant 
(2000)Plan curvature (ω) ω=2[DH2+EG2+FGH]/(G2+H2)

Curvature (x) x= ω - Ø
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age  PCI  Geomatica  2013® (PCI  Geomatics
2013).

Terrain variables
Terrain  variables  are  directly  related  to

forest  species  composition,  tree  height
growth,  and other  forest  stand variables,
and enable these to be modeled (McNab
1989,  Roberts & Cooper 1989). Therefore,
first and second order terrain parameters
(Tab.  3)  were  derived  from  the  5×5  low
pass  filtered DEM (INEGI  2014)  and inclu-
ded as candidate variables in the models.
The selected first order terrain parameters
were elevation, slope, transformed aspect,
profile curvature, plan curvature and curva-
ture,  while  second  order  terrain  parame-
ters were terrain shape index and wetness
index.  These  parameters  are  potentially
related  to  key  features  for  forest  stand
development, such as overall  climate cha-
racteristics, insolation, evapotranspiration,
run-off, infiltration, wind exposure and site
productivity. Some of these terrain featu-
res  are  widely  used  in  hydrological,  geo-
morphological and ecological studies (Wil-
son  &  Gallant  2000),  whereas  others  are
used more specifically  for vegetation and
forest assessment (McNab 1989, Roberts &
Cooper 1989).

Dataset integration
The  sample  plots  were  geopositioned

with the aim of extracting the pixel value
average with an associated buffer of 25 m
for  each  potential  predictor.  This  extrac-
tion  was  carried  out  using  the  statistical
software  R  (R  Core  Team  2014)  and  the
“raster” package.  Finally,  a database was
constructed with the mean biomass values
for each plot:  the corrected bands of the
Landsat-5 TM sensor (6 bands: 1, 2, 3, 4, 5
and 7), the vegetation indexes (6 indexes),
the texture variables derived from the Nor-
malized Difference Vegetation Index (NDVI
–  24  variables),  and  the  terrain  variables
derived from the DEM (8 variables).

Models fitted
The biomass of the sample plots was esti-

mated using two different methods. In the
first, the ordinary least squares (OLS) me-
thod was used to fit a linear model to esti-
mate stand biomass. The best set of inde-
pendent  variables  was  selected  by  using
the  stepwise  variables  selection  method.
The  second  method  consisted  of  a  two-
step hybrid  approach.  In  the first  step,  a
regression  tree  was  used  to  classify  the
sample plots  in  homogeneous groups  ac-
cording to their biomass values by a binary
rule-based method. In the second step, the
ordinary least square method was used to
fit linear models to estimate stand biomass
for each group by using the stepwise varia-
ble selection method to select the best set
of independent variables. In both methods,
the 45 spectral,  texture and terrain varia-
bles  were taken  into  account  as  possible
independent variables.

Regression tree analysis (CaRT) is a non-

parametric  technique  for  the  sequential
partitioning of  a  data set  composed of  a
continuous response variable and any num-
ber of potential continuous or categorical
predictor variables, by using dichotomous
criteria  (Breiman  et  al.  1984).  After  each
split, the algorithm identifies the predictor
variable  that  provides  the  most  effective
binary separation of the range in the res-
ponse variable. As a result, predictor varia-
bles  can  be  used  more  than  once.  The
regression  tree  analysis  was  performed
using the “rpart” package in R (Therneau &
Atkinson 2012, R Core Team 2014). This ap-
proach partitions the data set sequentially,
considering  two-way  splits  at  each  tree
node. The best split at each node  t is  the
split that maximizes the following quantity
(eqn.1):

where  PL and  PR are  the  proportions  of
sample  plots  that  fall  respectively  to  the
left and right branch of node t;  Err(tL) and
Err(tR)  are the error of  the left  and right
branches;  Err(t) is the mean square error
at node t given by (eqn. 2): 

and  yt is  the  stand  biomass  assigned  to
node t, calculated as the mean of the stand
biomass of all the sample plots in node t.

Instead of applying stopping rules, a se-
quence  of  sub-trees  was  generated  by
growing a  large tree  and pruning it  back
until only the root node was left. The error
of  each  sub-tree  was  then  estimated  by
cross-validation, and the sub-tree with the
lowest error was chosen by analyzing the
values  of  the  complexity  parameter  defi-
ned by Breiman et al. (1984).

Once the sample plots of each final node
were obtained, a multiple linear model was
fitted to estimate the stand biomass, using
stepwise selection methods to select  the
best set of independent variables, with the
SAS/STAT® software package (SAS Institute
Inc 2007). Two criteria were considered for
the evaluation of model performances: the
coefficient  of  determination  (R2)  and  the
RMSE. The expressions of  these statistics
are summarized as follows (eqn. 3, eqn. 4):

where  yi,  yi and  y are  the  observed,  esti-
mated and mean biomass values,  n is  the
total  number  of  observations  used  to  fit
the model,  and  p is the number of model
parameters.

The main  problem associated with  such
multiple linear models is the multicollinea-

rity.  This  refers  to  the  existence  of  high
correlations between certain independent
variables representing or measuring similar
phenomena.  Although  the  least-squares
estimates of regression coefficients remain
unbiased and consistent under the presen-
ce of multicollinearity, they are no longer
efficient  (Myers  1990).  This  may seriously
affect  the  standard  errors  of  the  coeffi-
cients, thus invalidating statistical tests and
confidence  intervals  (Neter  et  al.  1990).
One of the main sources of multicollineari-
ty is the use of overfitted models that in-
clude several polynomial and cross-product
terms.  To evaluate the presence of  multi-
collinearity  between  variables  in  the  mo-
dels, the condition number, defined as the
square root of  the ratio of  the largest to
the smallest eigenvalue of the correlation
matrix,  was  used.  According  to  Belsey
(1991),  condition numbers between 5 and
10 indicate that multicollinearity will not be
a major problem, while those in the range
30-100 indicate moderate  multicollinearity
and those in the range 1000-3000 indicate
severe  multicollinearity.  Therefore,  inde-
pendent variables with condition numbers
higher  than 30 were not used in the mo-
dels.

Finally,  since the  quality  of  fit  does  not
necessarily reflect its predictive performan-
ce (Myers 1990), an assessment of the va-
lidity  of  the models  with  an independent
dataset  is  recommended (Kozak & Kozak
2003).  Due  to  the  difficulties  associated
with collecting such data,  cross-validation
was applied in this study. Validation of the
model  fitted  to  the  complete  database
(method 1) and of the model of each final
node was thus based on the values of coef-
ficient  of  determination  and  root  mean
square error,  using the predicted residual
sum of squares (PRESS),  i.e., each sample
plot  is  removed in turn and the model  is
refitted using the remaining sample plots.
The out-of-sample predicted value is calcu-
lated for the omitted sample plot in each
case, and the PRESS statistic is calculated
as the sum of the squares of all the resul-
ting prediction errors.

The  equations  obtained  with  the  best
method  were  finally  used  to  generate  a
map of biomass by means of the map alge-
bra and conditional tools of the GIS packa-
ge ArcGIS 10® (ESRI 2012) from the vector
vegetation layer (INEGI 2012).

Results
The  parameter  estimates  of  the  linear

model  fitted  to  the  complete  database
using OLS and the stepwise variables selec-
tion  method  is  shown  in  Tab.  4.  All  the
parameters were significant at a 5% level,
and  up  to  5  independent  variables  were
included in the model without generating
multicollinearity  problems.  The  model  ex-
plained 58.83% of the observed stand bio-
mass variability with a RMSE of 27.88 Mg
ha-1 (31.32%  of  the  mean  stand  biomass).
Based  on  the  results  of  cross-validation,
the  model  explained  51.33%  of  the  total
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observed variation in stand biomass with a
RMSE value of 30.31 Mg ha-1 (34.04% of the
mean stand biomass).

The regression tree shown in  Fig.  2 was
generated in the first  step of  the second
methods.  This  tree  has  a  root  node  that
contains all 99 sample plots with an assig-
ned mean biomass value of 89.03 Mg ha-1.
The limiting value of 121.5, for the variable
albedo,  divided  these  samples  into  two
groups of  plots. Each subgroup was then
sequentially divided by the limiting values
of the variables band 7, band 5, LAI,  con-
trast texture with a 5×5 window and wet-
ness index.

However,  the  problem  with  the  regres-
sion trees method is that it tends to overfit
the data, and therefore the most general
model  may not be obtained when a  new
set of independent data is used (Breiman
et al. 1984). These authors suggested that
once the tree is constructed, it should be
exhaustively pruned by successively remo-
val of branches or terminal nodes that con-
tribute  little  to  explaining  the  response
variable,  to  yield  an  appropriately-sized

tree.  The  mean  value  of  the  complexity
parameter (CP) defined by  Breiman et al.
(1984) and  obtained  by  cross-validation,
was used in this case to select the number
of branches on the final tree, and the result
is shown in Fig. 3 (the number of tree input
variables  was  reduced  to  three,  namely
albedo, band 7 and wetness index).

Direct application of the regression tree

to the data from the 99 permanent sample
plots used in this study resulted in 56.76%
of the observed variability in stand biomass
being  explained  by  the  model,  with  an
RMSE value of 28.57 Mg ha-1 (32.09% of the
mean  stand  biomass).  Once  the  four
groups shown in Fig. 3 were obtained from
the tree, linear models were fitted to each.
The  parameter  estimates,  their  standard
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Fig. 2 - Classification tree
obtained by the regres-

sion tree method. n is
the number of sample

plots in each node and W
is the biomass value for

each node (Mg ha-1).

Tab. 4 - Model obtained for the total database by OLS with stepwise selection of inde-
pendent variables (*): RMSE expressed as a percentage of mean stand biomass.

Parameter Estimate Standard
error

OLS Cross-validation

RMSE
(Mg ha-1)

R2 RMSE
(Mg ha-1)

R2

Intercept 572.4939 172.2304

27.88
(31.32%)*

0.5833 30.31
(34.04%)*

0.5133

SAVI -0.3673 0.1566
Band 7 -2.7166 0.6893
Abs. Shortw. solar rad. 0.0797 0.0245
LAI 0.0166 0.0037
Modified SAVI -2215.8205 717.3984
NDVI 2072.8881 628.6811
Wetness index 3.4027 1.5666
Contrast 7×7 0.2073 0.0926

Fig. 3 - Classification tree obtained by pruning the regression tree (left) and plot of the relationships between the cost-complexity
parameter (CP), the cross validation error (x-val Relative Error) and tree size (number of nodes). The dashed vertical line represents
the maximum number of nodes (corresponding cost-complexity parameter) for which the cross validation error is greater than the
standard error (right).
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errors and the goodness-of-fit statistics ob-
tained  by  cross-validation  are  shown  in
Tab. 5.

The intercepts of models for groups A, B
and D were not significant at the 5% level,
and  therefore  the  models  were  refitted
without this term. In all cases, the parame-
ters  were  significant  and  the  condition
number values indicate no problems asso-
ciated  with  multicollinearity.  Analysis  of
the graph of the residuals plotted against
the predicted values also indicated the ab-
sence of problems associated with varian-
ce heterogeneity or lack of normal distribu-
tion of the residuals (Fig. 4).

Cross-validation of the hybrid model com-
prising the pruned regression tree (Fig. 3)
and  the  linear  models  for  each  terminal
node explained 72.96% of the observed va-
riation in stand biomass, with a RMSE value
of 22.59 Mg ha-1 (25.37% of the mean stand
biomass).

The  spatial  distribution  of  the  biomass
estimation (Mg ha-1) in the study area ob-
tained  by  application  of  the  classification
rules included in the regression tree model
and  the  posterior  estimations  yielded  by
multiple linear regression are shown in Fig.
5.  The  grey  and  green  pixels  reflect  bio-
mass contents lower than 80 Mg ha-1 and
between 80 and 157 Mg ha-1, respectively,
whereas  the yellow and red pixels  repre-
sent  the highest  biomass values found in
temperate forest (mainly pine and pine-oak
cover)  in  the  study  area,  in  accordance
with the INEGI’s Land Use and Vegetation
chart, series V (INEGI 2012).

Discussion
The results of the present research sho-

wed  that  integration  of  spectral  informa-
tion,  texture  variables  derived  from  the
NDVI and terrain indexes (DEM) was essen-
tial for forest biomass estimation. Indeed,
these variables were reported in previous
studies as being closely related to the de-
velopment and growth of this type of eco-
system and are also useful for ecosystem
evaluation  and  monitoring  (McNab  1993,
Chen et al. 2004, Díaz-Varela et al. 2011).

The combined use of regression trees and
linear  models  including  spectral,  texture
and terrain variables proved to be a good
method  for  identifying  patterns  and  defi-
ning biomass trends in the study area. The
independent  variable  albedo,  defined  as
the average solar reflectance (Liang 2000),
was the main discriminating factor  in the
regression tree, and highest values occur-
red  in  the  areas  with  the  lowest  forest
biomass. Kuusinen et al. (2014) obtained si-
milar results and observed an inverse rela-
tionship between stand age and albedo, so
that the value of this variable was lower in
mature stands because of the lower level
of  incident  radiation  absorbed  in  such
stands. This relationship can be used to dis-
criminate zones with different levels of fo-
rest  biomass.  The  other  two discriminant
variables were spectral band 7 (short-wave
infrared) and the topographical wetness in-
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selection of  independent variables  (*):  RMSE expressed as  a  percentage of  mean
stand biomass; (**): percentage difference between the cross-validation RMSE of the
hybrid model compared with the same statistic obtained by cross-validation of the li-
near model fitted to the complete database.

Group Parameter Estimate Standard
error

Cross-validation RMSE 
reduction**

(%)
RMSE

(Mg ha-1)
R2

A Abs. Shortw. solar rad. 0.1004 0.0523

19.85
(38.57%)*

0.2605 14.73%
Entropy 3×3 -143.8093 32.8994
Correlation 3×3 -35.0613 11.0553
Dissimilarity 5×5 12.3776 2.9020
Mean 7×7 1.6886 0.4856

B Band 1 4.5965 0.7375 16.87
(21.42%)*

0.2591 18.97%
Band 5 -2.1912 0.5013

C Intercept 360.9605 102.8189
26.71

(25.76%)*
0.1382 1.05%Band 1 -4.7552 1.9528

Correlation 3×3 -137.3135 41.1643
D Flow solar rad. -0.2223 0.0667

31.38
(20.38%)* 0.6149 46.14%NDVI 745.2892 112.9641

Stand. Dev. 7×7 -7.0717 2.0254

Fig. 5 - Biomass distribution in the study area.

Fig. 4 - Plot of residual values against estimated biomass for groups obtained from the
classification tree.
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dex. Because of its spectral characteristics,
band 7 is  directly  related to the moisture
content of soil and vegetation recorded by
the  image.  Thus,  the  reflectivity  in  this
band increased as the surface wetness cap-
tured  by  the  sensor  decreased.  In  affo-
rested areas, this band displays low reflec-
tivity; as moisture levels are high in forest
stands,  the  highest  values  for  this  band
represent lower amounts of biomass in the
classification tree. These results are similar
to those  reported by  García  et  al.  (2005)
for pure stands of  Pinus halepensis and  P.
sylvestris in Spain, i.e., there was an inverse
relationship between the values for band 7
of the Landsat-5 TM sensor and the mois-
ture  content  of  the  residual  forest  bio-
mass. Finally, inclusion of the topographic
wetness  index in  the model  confirms the
previous  findings,  as  high  values  of  this
index  are  associated  with  high  levels  of
moisture,  which coincide with zones with
high  amounts  of  biomass.  In  various  stu-
dies,  use of  the relationship between the
wetness index and the vegetation biomass
has  enabled identification of  the distribu-
tion of vegetation (Moore et al. 1993, Zinko
et al.  2005) and of potential  areas for es-
tablishing  forest  plantations  (Holmgren
1994). These results indicate water availa-
bility  as  a  key  factor  controlling  biomass
production  in  arid  and  semi-arid  environ-
ments such as the Sierra Madre Occidental
(Salinas-Zavala et al. 2002, Méndez-Barroso
et al. 2009,  Zhao & Running 2010,  Forzieri
et al. 2014).

The hybrid model combining the nonpa-
rametric  method  of  regression  trees  and
multiple linear models yielded a reduction
in the RMSE (25.47%) and an increase in  R2

(42.14%) with respect to the same statistics
obtained  by  cross-validation  of  the  linear
model  fitted  to  the  complete  database.
According to the results shown in  Tab. 5,
the main RMSE reduction was obtained in
group  D  (46.14%),  probably  because  this
group is associated with sample plots with
higher stand biomass values. On the other
hand,  the  reduction  in  RMSE  in  group  C
was only 1.05%, possibly because this is the
group with the lowest coefficient of varia-
tion  of  stand  biomass  (27.23%  compared
with a mean value of 48.56%).

The  parameters  selected  by  the  hybrid
model  included  single  band  values  in  the
visible  (Band  1-blue)  and  mid  infrared
(Band  5)  regions  of  the  electromagnetic
spectrum.  The  mid  infrared  regions  have
already been included and discussed in the
initial  (Band  5  and  Band  7)  and  pruned
(Band 7) regression tree model, indicating
a  relationship  between  the  biomass  and
spectral  response  of  forest  cover  in  the
imagery  bands  related  to  water  content.
As  expected,  vegetation  indexes,  such as
NDVI, and other indicators of the radiation-
land  cover  interaction,  such  as  the  Ab-
sorbed  Shortwave  Solar  Radiation,  also
emerged as valuable predictors of biomass
due  to  their  potential  relationship  with
biomass. The relationship between remote

sensed NDVI and biomass content,  which
has  been  the  matter  of  discussion  as
strongly dependent on the scale of analy-
ses and characteristics of the imagery, has
nonetheless  been  regarded  in  the  litera-
ture as one of the most widely used predic-
tors of biomass content (Foody et al. 2003,
González-Alonso et al. 2006).

Interestingly,  apart  from these variables
in the pure spectral domain, up to five va-
riables of the spectral-spatial  domain (i.e.,
texture variables Entropy 3×3,  Correlation
3×3,  Dissimilarity  5×5,  Mean  7×7,  Stand.
Dev. 7×7) were included in the mixed mo-
del.  This  indicates  the  importance  of  the
spatial  arrangement  of  spectral  values  at
different spatial  scales (from a 3×3 kernel
corresponding with an area of 0.81 ha to a
7×7 kernel  corresponding with an area of
4.41 ha) for forest stand characterization,
as reported in previous studies (Franklin et
al. 2001,  Kayitakire et al. 2006,  Díaz-Varela
et al. 2011, Nichol & Sarker 2011).

The value of  R2 finally obtained with the
hybrid  model  (0.7296)  is  slightly  higher
than that obtained by Sun et al. (2011) in a
study carried out in the US, with high reso-
lution  LIDAR  sensors  and  SAR  data,  to
model  field-measured  biomass  by  linear
models and stepwise selection of variables
(R2, 0.71 and RMSE, 31.33 Mg ha-1).

Estimates  obtained with  sensors  of  me-
dium  spatial  resolution  usually  display  a
low predictive power for each band of the
sensor. Thus, Foody et al. (2003) found the
strongest  predictive  relationship  for  bio-
mass with a sampling network specifically
designed for different sites (r > 0.71) based
on indexes obtained for tropical forest in
Brazil  by  using  Landsat  TM  data.  On  the
other  hand,  Houghton  et  al.  (2007) esti-
mated the biomass  of  Russian forests  by
using data  derived from  a  MODIS  sensor
and regression trees in 500×500 m plots, in
which  the  percentage  of  variance  explai-
ned by regression trees ranged from 1 to
67%.

In the present study, the consideration of
biophysical variables derived from satellite
images  along  with  other  complementary
data and the use of  nonparametric multi-
variate techniques, improved the quality of
the estimates, thus indicating that this is a
promising line of research.

Conclusions
This  study  explored  possible  improve-

ments  in  forest  biomass  prediction  invol-
ving use of field data and geodata derived
from  atmospherically  and  topographically
corrected satellite images (provided by the
Landsat-5 TM sensor), texture indexes and
DEM-derived  terrain  variables.  A  new  ap-
proach  combining  the  nonparametric  re-
gression trees method and multiple regres-
sion analysis of the groups defined in the
pruned tree was compared with the usual
method  of  fitting  a  linear  model  to  the
complete  database.  Cross-validation  of
both methods indicated that the proposed
new approach improved the performance

of the linear model. Moisture content was
an important  covariate in the final  model
and was directly related to biomass distri-
bution  in  the  temperate  forest  under
study.  The  proposed  approach  deserves
further attention in future studies aimed at
estimating stand variables by using remote
sensing  data,  especially  for  more  compli-
cated stand structures, such as mixed and
uneven aged forests, in which the use of a
mean  value  for  each  node  cannot  accu-
rately represent the intra-node stand varia-
tion.
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