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Analysis of factors influencing deployment of fire suppression resources
in Spain using artificial neural networks
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In Spain, the established fire control policy states that all fires must be con-
trolled and put out as soon as possible. Though budgets have not restricted
operations until  recently, we still  experience large fires and we often face
multiple-fire situations. Furthermore, fire conditions are expected to worsen
in the future and budgets are expected to drop. To optimize the deployment
of firefighting resources, we must gain insights into the factors affecting how
it is conducted. We analyzed the national data base of historical fire records in
Spain for patterns of deployment of fire suppression resources for large fires.
We used artificial  neural  networks to model  the relationships between the
daily fire load, fire duration, fire type, fire size and response time, and the
personnel and terrestrial and aerial units deployed for each fire in the period
1998-2008. Most of the models highlighted the positive correlation of burned
area and fire duration with the number of resources assigned to each fire and
some highlighted the negative influence of daily fire load. We found evidence
suggesting that firefighting resources in Spain may already be under duress in
their compliance with Spain’s current full suppression policy.
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Introduction
Wildland fires are one of the main threats

for Mediterranean forests and cause their
degradation (FAO 2013). Spain, one of the
Mediterranean  countries  most  affected,
currently sustains a full suppression policy
under which all fires are fought until extin-
guished. As in the US (Paveglio et al. 2010),
the  strategy  generally  applied  is  based
mainly on a fast and aggressive attack on
all ignition points in the territory, at every
place  and  under  all  weather  conditions.
The strategy is justified by the high values
at risk in this highly populated country. The
results  are  usually  outstanding  in  limiting
most wildfires to very small burned areas.
However,  under  certain  conditions  in  the
fire environment,  fires do escape and be-
came  large,  as  happened  in  Portugal  in

2003  and  2005,  Italy  in  2007,  southeast
France  in  2003  and  2009  and  Greece  in
2000,  2007  and  2009  (Cardil  et  al.  2014).
These  episodes  demonstrate  that  even
strong suppression resources and capabili-
ties  may  be  inadequate  when  faced,  for
instance, with extreme fire behavior (Cas-
tellnou  et  al.  2010)  or  multiple-fire  starts
linked to human risk (Rachaniotis & Pappis
2006).  The challenges related to wildfires
may  increase  with  the  predicted  climate
change, which could intensify fire propaga-
tion  and  increase  burned  areas,  hamper
fire  suppression  operations  and  increase
costs (Raftoyannis  et al.  2014),  which will
be further raised by the expansion of wild-
land-urban  interfaces  (WUIs  -  Liang et  al.
2008).

In  the  Spanish  recent  past  (1998-2009),

budget  was  not  supposed  to  be  a  con-
straint  to  forest  firefighting.  All  available
firefighting  resources  were  used  to  mini-
mize  the  damages,  whatever  the  costs,
even if these exceeded any budgetary limit
(Vélez 2009). However, budgets are a con-
straint  in  the  current  economic  recession
(2010-2014), as they will certainly be in the
future.  For  instance,  Andalusia  decreased
its  fire  suppression  budget  from €89 mil-
lion  in  2006  to  €77  million  in  2014,  and
Castile and Leon from €34.4 million in 2009
to  €22.4  million  in  2013  (García-Rey  et  al.
2014).  Consequently,  there  is  a  need  to
examine  the  amount  and  patterns  of
resource  use  in  Spain  under  the  current
scenario, because we are already forced to
re-think our strategies under rising climate-
induced  danger,  dramatic  financial  cut-
backs and rising values at risk in WUIs.

There are certainly gaps of knowledge in
Spain on many suppression-related issues,
partly due to a great variability in budgets,
operational procedures and social percep-
tions  across  the  political  regions  in  the
country.  As  agencies  responsible  for  fire
management  in  other  countries  have
aimed  to  optimize  procedures  to  reduce
costs  and  damages  without  jeopardizing
human  safety,  a  certain  amount  of  work
has  been  devoted  to  simulating  optimal
resource allocation and dispatching proce-
dures,  mainly  for  initial  attack  (Simard  &
Young 1978,  Islam & Martell 1998). A com-
prehensive review may be found in  Calkin
et al. (2011). Rachaniotis & Pappis (2006) in
Greece addressed the problem of schedu-
ling a single firefighting resource in a multi-
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ple-fire  situation.  Martin-Fernandez  et  al.
(2002) optimized wildfire combat by using
simulated  annealing  and  Bayesian  global
optimization techniques in the Northwest
Forest  of  Madrid  (Spain).  Rodriguez-Silva
(2007) described  the  SINAMI  model  for
selecting  the  optimal  resource  combina-
tion  for  a  given  fuel  type,  fire  type  and
duration in Spain. Mendes (2010) used this
model to illustrate the application of pro-
ducer  theory  and  linear  programming  to
optimize suppression.

The  anticipated  complexity  of  modeling
use of firefighting resources, and the fact
that some successful applications had been
developed before for other fire problems,
led  us  to  select  artificial  neural  networks
(ANNs)  as  a  modeling  technique.  ANNs
have  been  successfully  applied  to  pro-
blems  such  as  fire  occurrence  prediction
(Vega-Garcia et al. 1996,  Vasconcelos et al.
2001,  Li  et al.  2009,  Vasilakos et al.  2009,
Karouni et al. 2014), regional forest fire su-
sceptibility (Dimuccio et al. 2011), forest fire
risk  prediction  and  firefighting  manage-
ment  in  Galicia  (Alonso-Betanzos  et  al.
2003), burned area mapping (Mitrakis et al.
2012),  fire-landscape  structure  relations
(Vega-Garcia & Chuvieco 2006, Ruiz-Mirazo
et  al.  2012),  and  the  evaluation  of  forest
regeneration after fire (Debouk et al. 2013).
ANN  models  are  a  reliable  alternative  to
traditional  statistical  methods  because
they  are  robust  pattern  detectors  even
for  unpredictable  non-linear  relationships
(Scrinzi et al. 2007), they are not affected
by multicollinearity or non-normal distribu-
tions (Hilbert & Ostendorf 2001) like statis-
tical  techniques,  and  they  are  flexible  in
terms of structure.

In this study, we analyze the main factors
influencing  fire  deployment  decisions
across Spain, especially the factors behind
management  decisions  when  resource  li-
mits are pushed during large wildland fires.
Models  for  deployment  and  containment
of large fires have very rarely been explo-
red  (Finney  et  al.  2009).  Therefore,  we
studied  fires  larger  than  100  ha  because

they cause the most serious  problems to
fire agencies and society, and because they
account for a very high percentage of the
total  burned  area  (Cardil  &  Molina 2013).
Furthermore, in large fires the fire behavior
is usually more extreme, and this can influ-
ence the risk perception of managers, and
hence their deployment decisions (Mills &
Bratten 1988).

All publications cited above were used to
identify  selected  factors  that  could  influ-
ence demands on resources in this study.
Regarding  these  factors  influencing  cur-
rent  deployment  decisions  across  Spain,
we aimed to answering the following ques-
tions: (i) was the final fire size a major fac-
tor  in  the number  of  resources  involved?
(ii) Were more resources used when there
was crown fire activity? (iii)  Did fire dura-
tion  influence  the  amount  of  resources
assigned  to  fire  suppression?  (iv)  Were
enough  suppression  resources  available
when  simultaneous  fires  occurred?  And
finally,  (v)  if  response  was  not  swift
enough,  did  a  delayed  fire  suppression
response mean that more resources would
be needed later? Deployment of different
types of resources to fight fires would be
expected  to  depend  on  factors  such  as
simultaneous fire  occurrence (Rachaniotis
&  Pappis  2006)  or  fire  size  (Liang  et  al.
2008).  However,  the  combined  influence
of these or other factors on fire manage-
ment remained unknown in the literature,
thus justifying this study.

Materials and methods

Study area
This  study  covered  the  whole  area  of

Spain (17 autonomous communities - Fig. 1)
including the Canary  and Balearic  Islands.
Most of the study area is dominated by a
Mediterranean  climate,  and  only  the  nor-
thern end has an Atlantic climate. The long
summers  of  high  temperatures  and  low
rainfall  increase  the risk  of  forest  fires  in
the Mediterranean area. However, even in
the northwestern part of Spain, which has

an Atlantic climate, forest fire incidence is
high  (Moreno  &  Chuvieco  2002,  Vázquez
de la Cueva et al.  2006). The different cli-
matic  regions,  the  complex  topography
and the socio-economic development over
millennia resulted in a very uneven spatial
distribution  of  the  vegetation,  combining
the  presence  of  medium-scale  farming
areas,  areas  with  little  natural  vegetation
cover (grasses and rangelands), extensive
shrublands,  park-like  open  forest  structu-
res with undergrowth, and high forests of
variable densities.  Verdu et  al.  (2012) cha-
racterized the relationships between diffe-
rent  climatic,  topographic  and vegetation
factors and wildfires in Peninsular Spain.

Historical fire data
The  fire  history  data  used  in  this  study

were obtained from the National Wildland
Fire Statistics (EGIF) of the Agency for Pro-
tection against Forest Fires (ADCIF) of the
Spanish Ministry of Environment and Rural
and  Marine  Affairs  (MAGRAMA).  This  na-
tional  agency is  responsible for compiling
statistics,  supporting regional  actions and
coordinating  fire  suppression  at  national
level.  However,  fire  prevention  and  sup-
pression activities are carried out indepen-
dently by the 17 autonomous communities.

The  data  were  obtained  from  standard
fire reports, which document each fire and
contain  information such as  starting date
and time, response time, fire duration, fire
type (surface or crown fire), burned area of
forest, shrubland or other land, and num-
ber  of  resources  deployed.  In  our  study,
data for the period 1998-2008 were consi-
dered. It was decided to use only this sub-
set of data because after 1998 the data col-
lection procedures  were deeply modified,
they are considered generally reliable (Ve-
lez  2000),  and  before  2008  the  financial
and  economic  crisis  in  Spain  had not yet
affected budgets.

The database underwent many screening
and  cleaning  processes.  We  discarded  all
records that contained non-logical informa-
tion (e.g., records with zero as the fire de-
tection  time,  zero  suppression  resources,
crown  fire  type  and  no  wooded  burned
area, and control time equal to or previous
to  time of  arrival)  and records  with  little
information  (blanks).  The  206 978  fire  re-
cords  for  the  period  1998-2008  were  re-
duced to 170 422 fires in our database, and
of  these  we selected  all  fires  larger  than
100 ha (100ha+), adding up to 1824 obser-
vations for the whole of  Spain.  The data-
base was later divided for modeling accor-
ding  to  regional  location  in  Spain  into
either  separate  autonomous communities
or  combinations  of  adjacent communities
with similar patterns in fire occurrence and
suppression, in order to have enough cases
for  analysis  across  each  territory  (Fig.  1).
Combined regions were built on the basis
of  similarity  in  terms  of  weather  condi-
tions,  fire  regime  and  fire  social  implica-
tions, and the existing fire suppression sys-
tems (all-in-one emergency agencies or fo-

139 iForest 9: 138-145

Fig. 1 - Location of
the political re-

gions of Spain. The
regions of the stu-

dy are indicated by
different filling

patterns.
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Factors in fire suppression resource use

rest  services).  Autonomous  communities
without  neighboring  similarities  and  few
large fires (fewer than 100) were discarded
for individual  models but  their  data were
considered in a general model for the who-
le of Spain. The rationale for this multiple
modeling approach was that we knew that
resources differ among regional agencies,
but  not  by  how  much.  Different  regions
can  adjust  their  resources  to  their  fire
problem  and  values  at  risk  over  fire  sea-
sons,  hence  requiring  regional  models.
Those regions  with less  local  suppression
resources,  though, receive more frequent
and  intense  support  from  national  agen-
cies (the Ministry of Environment and Rural
and Marine Affairs,  Civil Protection of the
Ministry  of  the  Interior,  and  the  Army
Emergency Unit). Therefore, we assumed a
common baseline in terms of suppression
effort across the country for the national
model.

Fire suppression resources in the 
reports: dependent variables

In the EGIF reports, three main categories
of  fire  suppression  resources  are  listed:
personnel  (P),  terrestrial  units  (TUs)  and
aerial units (AUs). The P category includes
all  different types of personnel that were
directly involved in fire suppression: forest
and fire supervisors, forest rangers, profes-
sional firefighter crews, well-organized vo-
lunteer  firefighter  crews,  other  civil  per-
sonnel,  police  officers,  and  army  person-
nel.  TUs  include  fire  trucks,  bulldozers,
farm tractors  and other  heavy machinery
used  for  fire  suppression.  Finally,  AUs  in-
clude  amphibious  airplanes,  air  tankers,
suppression helicopters, fire crew helicop-
ters and coordination aircrafts. For each of
these groups, only the number of resour-
ces deployed is reported in the EGIF data-
set.

Though available types of firefighting re-
sources may change with the region, only a
number of options are available in the EGIF
fire  report  form,  so  the  closest  resource
type is usually filled in, thus leading to inac-
curacy of the data. Therefore, we only con-
sidered the three main categories (P, TUs
and AUs) to avoid data noise. The database
lacks  any  information  about  cost  and
length (working time) of suppression acti-
vities  for  each  group.  Therefore,  it  was
impossible  to  transform  suppression  re-
sources into one monetary dependent va-
riable. We had to develop models capable

of  explaining jointly  the  three  dependent
variables  measured in  different  units:  the
quantity of P, TUs, and AUs used from each
group in each fire.

Individual fire characteristics in the 
reports: independent variables

To  explore  the  relationships  between
individual  historical  fire  (100ha+)  observa-
tions and their recorded use of suppression
resources,  a  series  of  independent  varia-
bles were considered according to the pre-
vious literature and our stated goals.  The
list  of  the  independent  variables  used  in
the models (Fire Load, Response Time, Fire
Type, Fire Duration and Burned Area), their
range of values, their description and their
use in previous references are presented in
Tab.  1.  In  selecting  these  variables  we
acknowledged that  we could  not  analyze
environmental conditions and fire behavior
because  they  were  not  compiled  in  the
database.  These  are  factors  that  would
influence  deployment,  firefighting  strate-
gies and techniques on-site. However, they
are  not  routinely  included  in  the  official
reports in Spain. Variables related to vege-
tation  are  included  in  the  EGIF  database
marginally  and  descriptively,  but  are  not
spatially  explicit.  Weather  variables  are
very limited (days from last rain, tempera-
ture, wind speed and direction and relative
humidity, just one value for the fire, at only
one time), and topography is not present
in all the records. Every EGIF fire is classi-
fied according to type of fire, but the indi-
vidual record does not contain information
on behavior or spread (intensity, direction,
flame length, etc.). Therefore, we selected
Fire Type (surface or crown fire, also in the
record)  as  the  best  proxy  variable  to  ac-
count  for  general  fuel  and  danger  condi-
tions in the fire environment.

ANN models
High  correlations  should  be  expected

between  the  variables  (e.g.,  fire  duration
and  fire  size).  Fire  suppression  resources
would be measured in different units, peo-
ple,  trucks,  helicopters  or  air  tankers,
which could not be added, but would also
be  correlated.  Multicollinearity  and  the
consideration  of  different  types  of  sup-
pression resources as joint dependent va-
riables in the same model made the choice
of ANN optimal for modeling their  use in
large fires across Spain.

An ANN is an information processing sys-

tem capable of identifying and fitting very
complex  non-linear  patterns  by  iterative
adjustment of the weights or connections
between nodes (free parameters to store
the relation between variables in the mo-
dels)  organized as input,  hidden and out-
put layers. Our models were feed-forward,
multilayered,  non-linear,  fully  connected
cascade-correlation  networks  (Fahlman  &
Lebiere 1990) built using NeuralWorks Pre-
dict® v.3.24 software (NeuralWare 2009).
The models were computed as in  Alcázar
et al. (2008) and  Debouk et al. (2013), but
with three output nodes (one for each of
the  suppression  dependent  variables).
With the cascade-correlation method,  the
architecture of any network is not set be-
forehand.  Training  based  on  an  adaptive
gradient learning rule – a variant of the ge-
neral algorithm of back-propagation (Wer-
bos 1994)  – started with no hidden layer,
and  then  hidden  units  were  tested  and
added during the training process, creating
an optimal  multi-layer  structure  (Fahlman
& Lebiere 1990) by the time the best possi-
ble correlation between observed and pre-
dicted suppression variables was achieved.

The  independent  variables  (Fire  Load,
Response  Time,  Fire  Duration,  Fire  Type
and Burned Area) went through a compre-
hensive  number  of  transformations  (e.g.,
linear  exponential,  inverse,  tanh,  log,  po-
wer functions), which were tested as possi-
ble  inputs  to  the  models  with  a  genetic
algorithm  prior  to  model  building  (as  in
Alcázar et al. 2008). Also previous to model
building,  the  national  database  of  1824
large fires was split into two subsets: 90%
of the data were used for developing the
networks (this sample was further divided
into two: 70% for training and 30% for perio-
dic  testing and  assessing  of  performance
accuracy) and 10% for independent valida-
tion (data not used for building the model).
To avoid the common problem of losing ge-
neralization capacity and the ability to per-
form well with new data in training a net-
work model, it is customary to apply early
stopping with a test set (Guan & Gertner
1991,  Hasenauer  et  al.  2001,  Corne  et  al.
2004). The database was divided according
to regional location in Spain, and separate
explanatory models were built for several
regions. The regional databases were also
split in two subsets: 10% for validation and
90%  for  developing  the  models  (training
70%, testing 30%). 

For each of the models several replicate
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Tab. 1 - List of the independent variables used in our models, value range, description and use in previous references.

Independent variables Description Previous references

Fire Load (1-169 fires/day) The number of fires occurring on the same day and in the 
same region

Islam & Martell (1998), Rachaniotis & Pappis
(2006)

Response Time (0-47.5 h) Hours between detection and arrival at the fire Islam & Martell (1998)
Fire Duration (0-236.5 h) Hours between detection and control of the fire Not used. Conceptually related but not the 

same variable
Fire Type (logical,1.2) Surface or crown fire (SF, CF) Mees & Strauss (1992)
Burned Area (100-19190.9 ha) Wooded, non-wooded area and non-forest area affected Liang et al. (2008)
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networks were simulated by changing the
random selections of fire observations fal-
ling within the validation, test and building
datasets. We wanted to check for stability
in  the  resulting  models  (convergence  to
the same solution). For each of these repli-
cate networks, at least five different initial
starting points (random weights assigned)
were set for training, to avoid local minima.
Given that some regions had a limited num-
ber  of  fires,  a  weight  decay  factor  was
applied to the learning rule for the corre-
sponding  regional  models  to  inhibit  the
complexity of the models (Hasenauer et al.
2001,  NeuralWare  2009).  Models  for  re-
gions  with  a  low  number  of  fires  should
not  have  complex  networks  with  many
weights or connections, as rules are often
applied  regarding  the  number  of  cases
needed per weight for a robust network.

If all  the resulting networks (at least 15)
converged  to  a  similar  result,  we  consi-
dered  the  solution  robust  and  chose  the
best net model.

In selecting the best ANN model, we look-
ed for a high Pearson correlation between
observed  and  predicted  fire  suppression
units,  low  root-mean-square  error,  balan-
ced  results  between  the  three  datasets
and  parsimonious  architecture.  A  sensiti-
vity  analysis  based  on  partial  derivatives
(Jutras et al. 2009) was used to determine
which independent variable had the high-
est impact on the predicted variable, since
networks were too complex for direct exa-
mination.  Finally,  the  frequency  of  selec-
tion of  each independent variable by  the
generic algorithm in each model was exa-

mined. The higher the frequency of the in-
dependent  variable,  the  more  relevant  it
was in explaining the dependent variable.
The  same  independent  variable  might
enter  any  network  twice  or  more  times,
further emphasizing its  importance in the
corresponding model (Alcázar et al. 2008).

Results
The  maximum  values  of  the  variables

were 1833  for  P,  173  for  TUs,  and 43  for
AUs. Pearson’s correlation between P and
TUs was 0.72, 0.67 for P and Aus, and 0.56
between TUs and AUs (p<0.01). Therefore,
the correlation between dependent varia-
bles  was  significant  and  more  personnel
implied  more  aerial  and  terrestrial  units
also being used.

Average values of resources used per fire
and per  burned area (100ha+)  for  the re-
gions  analyzed  in  Spain  are  presented  in
Tab. 2. In relation to the number of resour-
ces per fire, Aragon, Catalonia, the Valen-
cian  Community  and  Andalusia  had  the
highest values and Cantabria and Asturias
the  lowest.  Similar  results  were obtained
considering  the  number  of  resources  (P,
TUs  and  AUs)  per  burned  area  (Tab.  2).
Therefore,  noteworthy  differences  were
found among regions in Spain.

No  suitable  ANN  model  could  be  desi-
gned for  separately  modeling Aragon,  La
Rioja,  Madrid,  Basque  Country,  Balearic
and Canary Islands due to lack of sufficient
data (fewer than 50 cases), so we focused
our  efforts  on the  other  regional  models
with higher fire incidence.

Integrated  models  for  the three  depen-

dent variables (P, TUs and AUs) were suc-
cessfully built using different combinations
of the independent variables Fire Load, Fire
Duration, Fire Type and Burned Area.  The
variable Response Time was discarded ear-
ly in the development of the models as it
showed no significance during any of the
building  processes.  In  total,  we  obtained
eight  models,  one  for  each  of  the  seven
regions and one for the whole of Spain.

General  model  diagnostics  (Pearson’s  R
and  network  architecture)  for  the  best
eight  models  are  presented  in  Tab.  3,
where the network architecture for all the
best models is also listed, referring to the
number of input, hidden and output nodes.
ANN architectures were not too complex,
but they were more substantial  in Castile
and Leon and Cantabria and Asturias, with
a  larger  number  of  nodes  in  the  hidden
layer.

The ANN fittings (Pearson’s R) between
predicted and observed values of the Spa-
nish model training data were 0.66 for P,
0.54 for TUs and 0.59 for AUs, with a 5-11-3
structure. Correlations between predicted
and observed values of the Spanish model
validation  data  were  0.70  for  P,  0.65  for
TUs and 0.60 for AUs.

By regions,  Castile  and Leon and Galicia
showed  the  most  complex  architectures
(24 nodes  in  the  hidden layer),  while  the
other models had a similar architecture to
that of the global model. The best results
by  regions  were  obtained  in  Castile-La
Mancha  and  Castile  and  Leon  (0.80  and
0.66 Pearson’s R values averaged over the
three datasets and resource types) and the
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Tab. 2 - Average values for each resource (personnel: P; aerial units: Aus; terrestrial units: TUs) per large fire and per 100 ha burned
across regions in Spain, with the corresponding standard deviation. Regions: Castile and Leon (CL); Andalusia (AN); Castile-La Man -
cha (CM); Catalonia and Valencian Community (CV); Extremadura (EX); Galicia (GA); Cantabria and Asturias (CA).

Regions Large Fires (N) Av.P/F Av.TUs/F Av.AUs/F Av.P/100ha Av.TUs/100ha Av.AUs/100ha
Spain 1824 110.92 ± 153.92 9.85 ± 13.82 5.08 ± 5.5 41.32 ± 48.96 3.83 ± 5.4 2.05 ± 2.43
CL 507 90.28 ± 123.35 7.08 ± 9.81 3.72 ± 4.43 34.95 ± 46.29 2.77 ± 4.14 1.45 ± 1.78
AN 151 233.15 ± 210.03 12.95 ± 10.48 10.50 ± 7.12 84.59 ± 58.88 5.19 ± 4.74 4.26 ± 3.34
CM 134 112.48 ± 134.38 11.63 ± 10.28 5.42 ± 5.98 39.66 ± 48.7 4.32 ± 3.97 1.93 ± 2.33
CV 118 277.37 ± 279.7 33.65 ± 32.5 10.81 ± 7.38 80.80 ± 86.77 10.68 ± 13.26 3.62 ± 3.47
EX 181 82.80 ± 74.69 7.69 ± 9.37 3.91 ± 4.29 34.66 ± 28.52 3.07 ± 3.32 1.51 ± 1.6
GA 497 66.37 ± 57.56 7.32 ± 6.48 4.50 ± 4.26 29.84 ± 23.96 3.36 ± 3.32 2.09 ± 2.32
CA 127 27.97 ± 28.57 1.70 ± 2.43 1.41 ± 2.14 13.59 ± 12.86 0.85 ± 1.19 0.69 ± 1.15

Tab. 3 - General diagnostic with Pearson’s R and architecture of the best eight artificial neural network (ANN) models for all autono-
mous communities and for the whole of Spain for the period 1998-2008. Regions: Castile and Leon (CL); Andalusia (AN); Castile-La
Mancha (CM); Catalonia and Valencian Community (CV); Extremadura (EX); Galicia (GA); Cantabria and Asturias (CA).

ANN 
architecture Set

Spain CL AN CM CV EX GA CA

5-11-3 7-24-3 4-8-3 3-9-3 3-10-3 4-4-3 5-24-3 5-2-3
Personnel Train 0.662 0.637 0.809 0.744 0.588 0.700 0.662 0.428

Test 0.699 0.508 0.805 0.773 0.779 0.582 0.560 0.685
Validation 0.698 0.851 0.357 0.944 0.599 0.571 0.574 0.397

Terrestrial 
units

Train 0.542 0.522 0.706 0.666 0.601 0.720 0.596 0.244
Test 0.545 0.528 0.677 0.745 0.380 0.370 0.456 0.668
Validation 0.651 0.808 0.412 0.908 0.505 0.733 0.395 0.740

Aerial units Train 0.594 0.567 0.741 0.784 0.494 0.616 0.513 0.323
Test 0.606 0.628 0.706 0.739 0.483 0.641 0.448 0.447
Validation 0.600 0.866 0.644 0.931 0.628 0.687 0.500 0.441
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worst in Cantabria and Asturias (0.49). The
average sensitivity  indicates  the  direction
of  change  (Tab.  4)  and  the  factors  that
influence the number of resources (P, TUs
and AUs). In order to more accurately illus-
trate the impact of inputs on outputs, we
ran the network model for Spain with ave-
rage input values for crown or surface Spa-
nish fires, and then we shifted them up and
down  for  crown  fires  (the  most  dange-
rous).  The  effects  of  changing  Burned
Area,  and  increasing  or  decreasing  Fire
Duration and Load (± 5 units) is reported in
Tab. 5.

In the global Spanish model (all the data)
the  average  absolute  error  was  approxi-
mately 60 for P, 6 for TUs and 3 for AUs (all
similar  for  training,  testing and validation
data samples). The variables with the high-
est  weight  for  the  fire  suppression  re-
sources (P,  TUs and AUs) were Fire Load
(negative) and Burned Area (positive), fol-
lowed by Fire Duration and crown Fire Type
(both positive). Thus, the number of forest
firefighting  resources  is  higher  in  larger
fires when regional  fire  frequency is  low,
and in long-duration crown fires.

The  average  absolute  error  of  the  re-
gional models is widely variable, being the
highest in Catalonia and the Valencia Com-
munity  and  the  lowest  in  Cantabria  and
Asturias. The value ranges were 15-135 for
P,  1.5-20  for  TUs,  and  1.5-5  for  AUs.  The

number of selected variables in each model
is  uneven,  being  only  two  (Fire  Duration
and Burned Area) for the Andalusian mo-
del. The behavior of their variables is simi-
lar  to the global  Spanish model,  in which
Fire  Load  was  negatively  related  to  the
number  of  resources  (or  not  affecting
them),  while  Fire  Duration,  Burned  Area
and crown Fire  Type were positive.  Thus,
the number of resources for extinguishing
a fire  was  greater  in large,  long duration
crown fires, as expected.

Tab.  4 shows  some  special  patterns.  In
the  Cantabria  and  Asturias  region,  more
firefighting  resources  were  allocated  to
surface fires than to crown fires. Fire Dura-
tion in Castile and Leon was negatively cor-
related with  the number  of  TUs,  and the
correlation between Burned Area and TUs
and  AUs  was  stronger  in  Andalusia  and
Extremadura than in other regions.

Discussion
Cascade-correlation  ANNs  were  used  to

model the relationships between suppres-
sion resources deployed in large wildland
fires  (100ha+)  and  several  independent
variables  (Fire  Load,  Fire  Duration,  Fire
Type and Burned Area) in Spain. Our mo-
dels  had  a  similar  behavior  and  architec-
ture, and replicates converged even when
observations were randomly shifted in the
training,  testing  and  validation  datasets.

These findings  agree with  those of  other
works  (Scrinzi  et  al.  2007,  Alcázar  et  al.
2008) and indicate that  the models  were
robust and the databases were suitable for
identifying the trends in the data through
the analysis  of  input/output relationships.
However, it would be advisable to improve
the data collected in order to obtain more
accurate  analyses  in  the  future,  including
other  information than the  quantification
of resources used by type (e.g., economic
information).

As  a  general  observation,  modeling  of
TUs  showed  slightly  worse  results  than
that of AUs and P, and P showed the best
prediction accuracy within the same model
and across all  models. Trends in dispatch-
ing TUs could be related to the proximity
and accessibility of the TUs to the fire loca-
tion. Local factors such as distance, access,
the presence and steepness of forest roads
are instrumental, as Mees & Strauss (1992)
mentioned,  and  could  explain  the  higher
use of TUs in the densely populated east-
ern and southern Spanish regions in large
wildland fires and the lower use in Castile
and Leon.  Castile  and Leon  is  the largest
region in both total  area and total  forest
area, but it has one of the lowest popula-
tion  densities  (27  inhabitants  per  square
kilometer).

Different  considerations  may be applied
to  P  and  AU.  According  to  Ganewatta  &
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Tab. 4 - Interactions between independent and dependent variables in each region and the whole Spain. Values of average sensitiv-
ity for the period 1998-2008. Regions: Castile and Leon (CL); Andalusia (AN); Castile-La Mancha (CM); Catalonia and Valencian Com -
munity (CV); Extremadura (EX); Galicia (GA); Cantabria and Asturias (CA).

ANN 
architecture Variables Spain CL AN CM CV EX GA CA

Personnel Fire Load -1.033 -0.065 0 0 0 0 -0.208 -0.006
Fire Duration 0.206 0.173 0.641 0.187 0.108 0.0005 0.263 0.337
Fire Type Crown 0.045 0.028 0 0.006 0.064 0.0561 0.035 0

Surface 0 0 0 0 0 0 0 0.063
Burned area 0.652 0.047 2.693 0.089 0.270 2.165 0.111 0.219

Terrestrial 
units

Fire Load -0.802 -0.079 0 0 0 0 -0.202 -0.073
Fire Duration 0.061 -0.114 0.598 0.279 -0.070 0.0003 0.366 0.187
Fire Type Crown 0.050 0.030 0 0.053 0.102 0.0306 0.050 0

Surface 0 0 0 0 0 0 0 0.051
Burned area 0.777 0.056 3.238 0.346 0.467 10.747 0.131 0.155

Aerial units Fire Load -1.344 -0.104 0 0 0 0 -0.277 -0.009
Fire Duration 0.512 0.855 0.848 0.372 0.121 0.0002 0.246 0.182
Fire Type Crown 0.065 0.057 0 0.004 0.082 0.0418 0.027 0

Surface 0 0 0 0 0 0 0 0.046
Burned area 0.879 0.054 5.656 0.153 0.517 2.127 0.074 0.091

Tab. 5 - Simulation of input-output effects in the model for Spain.

Sensitivity Variable
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Sensitivity 
Spain model

Avg. Values for Surface Fire 21 20 1 0 301 49 4 2
Avg. Values for Crown Fire 23 28 0 1 731 107 9 5

Crown fires 
sensitivities

Avg. Burned Area + 1STD ha 23 28 0 1 2463.2 113 10 6
Min. Burned Area 100 ha 23 28 0 1 100 58 4 3
Avg. Values Fire Load +5 fires 28 28 0 1 731 102 9 5
Avg. Values Fire Load -5 fires 18 28 0 1 731 114 10 6
Avg. Fire Duration +5 h 23 33 0 1 731 111 10 6
Avg. Fire Duration -5 h 23 23 0 1 731 101 9 5
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Handmer  (2009),  AUs  are  only  justified
when other resources cannot reach the fire
site, but in Spain they are routinely used in
many cases and scenarios. This means that
AU  dispatching  could  also  depend  on  li-
mited  access  to  the  fire  site  by  other
resources  (interaction  effects).  AU  use  is
usually  restricted  by  weather  conditions
and geographic or socio-economic factors
(Donovan  &  Rideout  2003,  Gebert  et  al.
2007, Kaval 2009).

For  the  general  model  at  the  national
level,  the  number  of  forest  firefighting
resources is higher in large, crown and long
duration fires when regional fire frequency
is low. The fire load negatively influenced
deployment  to  large  fires,  as  found  in
other environments for fire suppression in
the USA (Gonzalez-Caban 1986, Donovan &
Rideout 2003).  Islam & Martell (1998) also
found an effect of fire load on aerial initial
attack range in Ontario. Our findings appa-
rently  contradict  those  of  Hunter  (1981),
who concluded that response time and dis-
patching  decisions  were  not  affected  by
multiple-fire occurrences in Montana, USA,
though the US environment and the forest
fire  policy  greatly  differ  from the  current
Spanish situation.

Not  surprisingly,  at  the  national  level
when the burned area increases, the num-
ber  of  dispatched resources  increases,  as
was also found by  Liang et al. (2008). The
behavior of the independent Fire Type va-
riable  seemed  to  capture  the  general
knowledge that  crown fires are the most
severe and destructive type  of  fires  (Ale-
xander & Cruz 2014),  thus requiring most
suppression resources  (Dupuy 2009).  The
fire duration variable showed that the lon-
ger the fire, the more resources would be
assigned  for  suppression  activities.  How-
ever, this was more likely for AUs than for
TUs,  in  agreement  with  Castellnou  et  al.
(2010).  Sensitivity  analysis  of  the national
model  shows,  for  instance,  that  a  reduc-
tion  from  average Burned  Area  in  crown
fires (731 ha) to the minimum considered in
the study of 100 ha saves 49 personnel, 5
machines  and  2  aircraft  from  being  de-
ployed.  An  increase  in  simultaneous  fire
occurrence by 5 more fires in the same day
and region means that 5 fewer people will
be deployed to any crown fire. A delay of 5
hours in controlling a crown fire causes on
average an increase of  4  people,  one TU
and one AU.

Our  7  regional  models  showed a similar
behavior  and  structure  to  the  national
Spanish model,  but not all  of them achie-
ved equally good results or used the same
variables,  indicating  different  regional
trends in the use of firefighting resources
across  Spain.  The  NW  regions  (Galicia,
Cantabria  and  Asturias)  had  lower  good-
ness-of-fit  (network  Pearson’s  R  correla-
tion) values than central Spain (Castile and
Leon  and  Castile-La  Mancha)  and  the
Mediterranean regions (Catalonia and the
Valencian  Community  region).  The  NW
regions  also  had  lower  average  absolute

errors,  but  this  is  a  consequence  of  the
lower  number  of  resources  usually  de-
ployed in these regions and not an indica-
tion of better model fit.

Regarding Fire Type, in the NW region of
Galicia  crown  fires  also  appeared  to  be
important  for  resource  deployment,  but
Fire Load, Fire Duration, and Burned Area
(the last one to a lesser extent) were far
more influential  variables in the best mo-
del.  The  model  also  confirmed  that  the
influence  of  fire  simultaneity  in  Galicia  is
the highest in Spain (Chas-Amil et al. 2010).
Also, this NW region was more difficult to
model in terms of fire occurrences (Padilla
&  Vega-Garcia  2011),  indicating  that  the
general  fire  environment  (social  and  bio-
physical)  and  related  patterns  of  use  of
suppression  resources  are  more  complex
than elsewhere in Spain.

Although  similar  to  other  variables,  the
combined  region  of  northern  Cantabria
and Asturias showed an opposite pattern
in Fire Load (resulting negligible) and Fire
Type,  with  more  resources  being  dispat-
ched to surface fires.  Surface fires create
the  most  relevant  problems  in  these  re-
gions,  where  large  tracts  of  shrub  lands
with the worst fire behavior have been cre-
ated by abandonment of productive range-
land. Moreover, when compared with the
nearby  Galicia,  Cantabria-Asturias  exhibits
more  topographic  complexity  and  lower
forest  property  fragmentation,  which  fa-
vors  lower  transmittance  of  fire  to  tall
forests (Rodriguez LA, Head of Prevention
and Training of the Emergency Service of
Asturias,  pers.  comm.).  Castile  and  Leon
showed  a  pattern  similar  to  Galicia,  but
with lower influence of the Fire Load varia-
ble.

The individual patterns of Mediterranean
regions  were  completely  different,  with
Burned Area playing a major role in Extre-
madura  and  Andalusia.  The  relation  bet-
ween  Burned  Area  and  resources  (both
TUs  and  AUs)  was  stronger  in  southern
Spain  than  in  other  regions.  This  finding
may be explained by the fact that popula-
tion density in the other regions is higher,
therefore  availability  of  local  firefighting
resources  (especially  personnel)  is  also
higher.

Interestingly, daily fire load was not rele-
vant in central-southern and eastern Spain.
Fire Load did not imply a reduction in fire-
fighting  resources  deployed  to  large,  100
ha+ fires in four of these regions. This find-
ing may indicate that the occurrence thre-
shold (number of fires) above which avai-
lable resources are under duress may not
yet  have  been  reached,  and  that  the  na-
tional model is influenced by the high num-
ber of fires in NW Spain.

Some regional differences should be ex-
pected as different fire regimes in Atlantic
(NW Spain) and Mediterranean Spain have
been identified in previous studies (Verdu
et al. 2012, Cardil & Molina 2013, Moreno et
al.  2014),  and  agencies  naturally  adjust
their  deployment  protocols  to  the  differ-

ent  ignition  and  propagation  conditions
and  the  values  at  risk.  Resource  use  in
large fires in the Mediterranean areas was
substantially  above  the  Spanish  average.
Lower  resource  use  in  the  Atlantic  likely
indicated that burning conditions were not
as extreme as in the Mediterranean (assu-
ming  no budgetary  restrictions  for  either
regions in 1998-2008). However, the influ-
ence of fire load in three regional models in
the northwest, and very especially in Gali-
cia, proved that the occurrence of multiple
fires reduced available resources for large
fires in these Spanish regions.

Management  implications  for  regions
with high fire occurrence need to be con-
sidered in our current scenario of a full sup-
pression policy. If fire load is high, tempo-
ral constraints in use may occur, meaning
that late-arrival fires will use fewer resour-
ces or none. When these constraints are in
place, there is the possibility of improving
the efficiency by training fire managers in
advanced analysis of fire behavior and me-
teorology (Molina et al. 2010) and by opti-
mizing the selection and distribution of re-
sources (Martin-Fernandez et al. 2002,  Ro-
driguez-Silva 2007), even leaving lower pri-
ority  fires  watched  but  unattended.  And
when  fire  load  is  high,  social  preventive
action is essential (Raftoyannis et al. 2014).

In the future,  we can expect  worse fire
danger  conditions  in  all  regions,  a  more
complex  WUI  environment  and  constrai-
ned budgets (García-Rey et al. 2014,  Liang
et al. 2008, Raftoyannis et al. 2014), leading
to  the  conclusion  that  new  management
strategies are required not only for Spain,
but also for other Mediterranean countries
with similar conditions (Mendes 2010). The
potential impact on budgets should be ca-
refully evaluated (Gebert & Black 2012) and
anticipated. Environmental conditions and
fire behavior factors that would influence
deployment,  firefighting  strategies  and
techniques  could  not  be  included  in  our
models because they were not available in
the official Spanish fire database, but they
should  be  included in  future  work.  Some
recent extreme behavior fires have already
offered reduced opportunities for fire sup-
pression,  being beyond suppression capa-
city (Molina et al. 2010,  Cardil et al. 2014).
The current pattern of adding suppression
resources when fires grow in size or dura-
tion will not be the solution for future fire
control,  especially  if  resources are increa-
singly  limited  by  higher  human  risk  and
lower budgets. It may be advisable to re-
vise the current policy of suppression of all
fires, as other countries have done before
(USA and Canada, for instance). The hete-
rogeneous regional environmental and the
managerial characteristics and fire regimes
(Moreno & Chuvieco 2002) make fire pre-
vention the focus for the future control of
forest fires (Fernandes et al. 2013). Forest
and  fire  prevention  management  alterna-
tives for safer landscapes,  including redu-
ced fuel hazards arising from technical use
of  fire  (Cassagne  et  al.  2011,  Ager  et  al.
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2013,  Fernandes  et  al.  2013)  and informa-
tion and education campaigns (Raftoyannis
et al. 2014), should be a priority for Spain.

Conclusions
ANNs were successfully applied to model

regional  patterns  of  firefighting  resource
deployment in Spain. Our models sugges-
ted  that  Spanish  agencies  generally  res-
pond  to  large  fires  by  adding  more  re-
sources as the fires grow either in size or
duration,  but  in  some  regions  (especially
those in NW Spain) multiple-fire situations
divert  resources  from  their  use  on  large
fires. However, national level analyses may
mask the fact that trends of regional fire-
fighting resources differ across Spain. Effi-
ciency  can  be  improved  by  training  deci-
sion  makers  on  advanced  analysis  of  fire
behavior  and meteorology,  but  in  the  fu-
ture  we  can  expect  worse  danger  condi-
tions,  a  more  complex  WUI  environment
and constrained budgets. The full suppres-
sion  policy  being  applied  should  be  re-
examined.  The  current  pattern  of  just
adding suppression resources with exten-
ded  fire  duration  or  size  will  not  be  the
solution  for  future  fire  control,  thus  fire
prevention should be a priority for Spain.
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