
ii F o r e s tF o r e s t
Biogeosciences and ForestryBiogeosciences and Forestry

Coupling daily transpiration modelling with forest management in a 
semiarid pine plantation
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Estimating forest transpiration is of great importance for Adaptive Forest Ma-
nagement (AFM) in the scope of climate change prediction. AFM in the Medi-
terranean region usually generates a mosaic of different canopy covers within
the same forest. Several models and methods are available to estimate forest
transpiration, but most require a homogeneous forest cover, or an individual
calibration/validation process for each cover stand. Hence, a model capable of
reproducing accurately the transpiration of the whole canopy-cover mosaic is
necessary. In this paper, the use of Artificial Neural Network (ANN) is proposed
as a flexible tool for estimating forest transpiration using the forest cover as
an input variable. To that end, sap flow, soil water content and other environ-
mental variables were experimentally collected under five Aleppo pine stands
of different canopy covers for two years. These sets of inputs were then used
for the ANN training. Stand transpiration was accurately estimated using cli-
mate data, soil water content and forest cover through the ANN approach (cor-
relation coefficient R = 0.95; Nash-Sutcliffe coefficient E = 0.90; root-mean-
square error RMSE = 0.078 mm day-1). Finally, the input value for soil water
content (when not available)  was computed using the process-based model
Gotilwa+. Then, this computed soil water content was used as input in the
proposed ANN. This combination predicted the forest transpiration with values
of R = 0.90, E = 0.63, and RMSE = 0.068 mm day -1. Artificial Neural Network
proved to be a useful and flexible tool to predict the transpiration dynamics of
an Aleppo pine stand regardless of the heterogeneity of the forest cover pro-
duced by adaptive forest management.

Keywords: Adaptive Forest Management, Artificial Neural Network (ANN), Fo-
rest Water-use, Pinus halepensis Mill.

Introduction
Transpiration is  one  of  the  most  impor-

tant  components  in  the  terrestrial  water
cycle,  representing  80-90%  of  terrestrial
evapotranspiration (Jasechko et  al.  2013).
In  Mediterranean  ecosystems,  it  may  ac-
count for about three-quarters of the over-
all forest evapotranspiration on an annual
basis (Lawrence et al. 2007). Thus, the role
of  transpiration  in  the  water  fluxes  and
within the soil-vegetation-atmosphere sys-
tem is  crucial  to  understand forest-water
use and to implement proactive and adap-
tive measures in forests, in purview of the

global  change  (Asbjornsen  et  al.  2011,
Fitzgerald  et  al.  2013,  Ungar  et  al.  2013).
This  is  particularly  important  in  Mediter-
ranean  ecosystems,  which  are  extremely
vulnerable to global climate change (IPCC
2007,  Lindner et al. 2010,  Vargas-Amelin &
Pindado 2013).

Adaptive  forest  management  (AFM)  in
Mediterranean ecosystems seeks to couple
the concept of ecophysiology with the dry-
land  forests  management  techniques,
through the development of an ecosystem-
level water balance (Ungar et al. 2013). In
the  Mediterranean  Spain,  AFM  may  im-

prove stand resilience and the balance bet-
ween  green  (ecosystem  needs)  and  blue
(available  for  human  use)  water  budgets
(Falkenmark 2003) in  Pinus halepensis Mill.
(Aleppo pine) reforestations (Del Campo et
al. 2014), which occupy over 5×105 ha of the
region (Birot & Gracia 2011).  Thus,  predic-
tion of forest transpiration under different
forest management scenarios represents a
key factor  for  successful  and appropriate
AFM design in Mediterranean Spain.

Modeling the factors that influence tran-
spiration is quite complex due to the exis-
tence  of  non-linear  and  complex  interac-
tions  (Asbjornsen  et  al.  2011).  The  funda-
mental controls are the available water in
the  soil,  the  ability  of  plants  to  transfer
water from the soil  to leaves and the ca-
pacity  of  the  atmosphere  to  absorb  the
transpired water (Davie 2008).

Forest  transpiration  may  be  estimated
using  different  approaches.  Dekker  et  al.
(2000) reported that by considering all dif-
ferent  types  of  process-orientated  forest
transpiration  models,  four  different  per-
spectives can be deduced:  cooling of  lea-
ves,  assimilation  of  CO2,  energy  balance
and  water  balance.  All  of  these  perspec-
tives show a wide variation in physiological
details.  However,  the  most  widely  used
transpiration  models  are  based  on  the
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energy balance, which are mostly derived
from  the  Penman-Monteith’s  equation.
They generally  constitute the Process Ba-
sed Models (PBM). Nevertheless, these ap-
proaches  are  Big-Leaf  models,  whose  ap-
plication requires the assumption of a ho-
mogeneous  forest  cover  or  an  individual
calibration/validation  process  for  each
stand. Since the application of AFM usually
leads to a mosaic of different forest cover
and structures within the same forest, it is
paramount to use of a method capable of
including such heterogeneity.

Artificial  Neural  Network  (ANN)  techni-
ques  represent  an  attractive  modeling
approach to deal with this issue, as forest
cover heterogeneity can easily be included
as an input variable. ANN is a flexible ma-
thematical  structure,  which  is  capable  to
identify  complex  nonlinear  relationships
between the  input and output data sets.
Furthermore, ANN models are considered
useful and efficient, particularly when the
characteristics  of  the  processes  are  diffi-
cult  to  describe  using  physical  equations
(i.e., when the relationship between input
and output variables is not explicit –  Shir-
gure & Rajput 2011). ANNs map the implicit
relationship  between  inputs  and  outputs
through  training  on  field  observations
(Shirgure 2013). Furthermore, ANN usually
achieves  regression  coefficient  around
0.90,  thus  performing  more  accurately
than  other  approaches  such  as  statistical
or PBM.

In  recent  years,  ANNs  have  intensively
been applied in forest and agriculture hy-
drology, e.g., in estimating evapotranspira-
tion (Kumar et al. 2002, 2011, Adeloye et al.
2012, Huo et al. 2012), trunk sap flow (Liu et
al.  2009)  and  transpiration  (Zee  2001a,
2001b,  Vrugt  et  al.  2002,  Garcia-Santos
2007,  2011,  Meijun  et  al.  2007,  Li  et  al.
2009). In forest management, ANNs have
also been applied to estimate tree volume
(Gorgens et al. 2009, Silva et al. 2009, Dia-
mantopoulou & Milios 2010,  Özçelik et al.
2010,  2014,  Yu & Jia-Yin 2012), growth mo-
deling (Castro et al. 2013), tree height (Bi-
noti et al. 2013a), and to describe diameter
distribution (Leite et al.  2011,  Binoti  et al.
2013b).  However,  none  of  these  applica-
tions  include  forest  management  as  an
input variable, at least in the estimation of
transpiration.  The  use  of  this  variable
would:  (i)  extend  capabilities  and  use  of
ANN-based modeling; (ii) allow a more ac-
curate determination and quantification of

the influence of forest management prac-
tices on transpiration; (iii) increase the resi-
lience of forests to new climate conditions.

Despite the aforementioned advantages,
ANN have some limitations,  e.g., it cannot
be  applied  when  some  of  the  required
input data are not available to forest mana-
gers. Under such circumstances a combina-
tion of ANN and PBM can be a useful alter-
native. Although their sophistication theo-
retically  allow  to  reproduce  the  complex
dynamics of forest ecosystems in details, it
makes  also  difficult  their  use  and  evalua-
tion  (Van  Oijen  et  al.  2005).  Hence,  PBM
could be used in some cases to feed ANN
when  the  estimate  of  the  required  input
data is not readily available.

In this study, we aimed to develop a relia-
ble model to estimate transpiration in fo-
rest stands considering explicitly the influ-
ence of forest management as an input va-
riable. More specifically, we intended: (i) to
explore  the  relationships  between  mea-
sured  forest  transpiration  and  explicative
environmental variables to define the most
reliable  empirical  model  (Linear  Models
and ANN-based approaches);  (ii)  to incor-
porate  forest  cover  as  a  forest  manage-
ment-derived variable into the chosen mo-
deling approach and to evaluate its predic-
tive ability; (iii) to evaluate the model per-
formance  when  soil  moisture  has  to  be
derived  from  other  modeling  approaches
(Gotilwa+).

Material and methods
Sap  flow,  soil  water  content  and  other

environmental variables were recorded for
two years in five Aleppo pine stands (see
below) with different canopy covers. First,
a Multiple Linear Regression (MLR) and a
General  Linear  Model  (GLM)  using  field
data were developed and validated to ana-
lyze  the  performance  of  both  models  in
predicting transpiration.  Subsequently,  an
ANN  modeling  scheme was  used  to  esti-
mate the stand transpiration using climate
data,  soil  water content and forest  cover
as input variables. When soil water content
data  was  not  available  (only  for  medium
intensity thinning stand), it was first com-
puted using the process-based model Go-
tilwa+ and then used as an input value in
the modeled ANN.

Study site and data collection
The study site is a public forest of 4682 ha

located in the Ayora valley region (39° 5′ N,

1° 13′ W, 943 m a.s.l.) in the Southwest of
Valencia  province  (Spain).  The  climate  is
Mediterranean  with  an  average  total  an-
nual rainfall of 478 mm and a mean annual
temperature  of  13.7  °C  (1960-2010).  Soils
are Calcisols, derived from Triassic limesto-
ne (gravel and boulders) with high percen-
tage of carbonates (26-38%, pH 7.7-8.2) and
sandy-silty  loam texture.  Part  of  the area
(22%)  is  covered  by  Pinus  halepensis  Mill.
stands 50-60 years old, with high tree den-
sity (approx. 1500 trees ha-1) mainly due to
low forest management. Detailed informa-
tion about the study site is available else-
where (Molina & Del Campo 2012).

In  2008,  an  experimental  thinning  was
performed in four 30  × 30 m plots, reduc-
ing the forest  cover from 84% (C:  control
plot) to 22% (H: high intensity plot), 50% (M:
medium  intensity  plot)  and  68%  (L:  low
intensity  plot).  In  addition,  a  nearby area
thinned in  1998 (H98)  with  41%  cover  was
included  in  this  study  and  considered  as
the temporal  evolution of  the high inten-
sity (H) treatment (Tab. 1). Overall, five dis-
tinct  plots  with  different  forest  covers
were considered in this work.

Forest cover was measured in each plot
with a vertical densitometer (GRS, Arcata,
CA, USA) with 50 readings per plot in a 4 ×
4  m  grid.  Hydrological  (transpiration  and
soil moisture) and environmental variables
(T: air temperature in °C; Sr: solar radiation
in MJ m-2 day-1; Ppt: rainfall in mm; RH: rela-
tive humidity in %; and Ws: wind speed in m
s-1)  were  collected  from  June  2009  to
March 2011 (Tab. 2). Measurements of  Ppt,
T, and RH were carried out by a single sen-
sor  (HR/T  sensor,  Decagon  Devices,  Pull-
man,  USA)  placed 1  m above the ground
and  close  to  the  treatment  plot.  Values
were recorded and averaged every 30 mi-
nutes. Afterward, these data were used to
obtain values for mean, maximum and mi-
nimum daily temperature and vapor pres-
sure deficit (VPD - Allen et al. 1998).

Daily values for solar radiation and wind
speed  were  obtained  from  the  Almansa
weather  station,  located  near  the  study
site. Transpiration was measured using sap
flow  sensors  (HRM-30,  ICT  International
Pty Ltd., Armidale, Australia - Burgess et al.
2001)  in  four  trees  per  plot  according  to
the  diametric  distribution  of  trees  in  the
plot.  In  the  conversion  of  the  heat  pulse
velocity  to  sap  flow  velocity,  raw  values
were  corrected  for  probe  misalignment
(Burgess  et  al.  2001)  and  differences  in
thermal  diffusivity  and  wounding  by  exa-
mining the samples under a light microsco-
py (Barret et al. 1995). Baseline correction
in  the obtained series  was  performed ac-
cording to Buckley et al. (2012).

The accumulated daily values of sap flow
(water transpired by the entire tree) were
estimated considering a radial distribution
of the sap flux velocity in the sapwood of
each selected tree (Delzon et al. 2004). The
sapwood area per tree was measured after
extracting samples with an increment core
(5 mm) and measuring to the nearest 0.01
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Tab. 1 - Characteristics of control and thinned plots. (DBH): diameter at breast height;
(H98): plot thinned in 1998 (plots L, M and H were thinned in 2008). Adapted from Mo-
lina & Del Campo (2012).

Thinning Treatment Forest Cover
(%)

Density
(trees ha-1 )

DBH
(cm)

Height
(m)

Control (C) 84 1489 17.8 ± 5.1 11.5
Low intensity (L) 68 744 21.2 ± 4.1 12.2
Medium intensity (M) 50 478 21.7 ± 4.0 11.3
High intensity (H) 22 178 20.4 ± 1.6 12.2
High intensity-1998 (H98) 41 155 25.2 ± 5.0 12.6
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Estimating forest transpiration in a semiarid pine plantation

mm  with  a  measuring  table (LINTAB 6.0,
Frank Rinn, Heidelberg, Germany) coupled
with  the  TSAP-Win® software  package
(Rinn 2011). Total transpiration by the pine
forest  (Tr,  mm  day−1)  per  treatment  was
calculated by multiplying the daily transpi-
ration (L, day−1 tree−1) by the frequency of
diameter  class  (f)  and  the  stand  density
(trees ha−1) by the following equation (eqn.
1):

where Trn is the daily transpiration of each
treatment (mm day-1), fn is the frequency of
each tree class measured, N is the number
of trees in the stand (Tab. 1), and the de-
nominator 10000 is for conversion of litters
ha-1 into mm.

Soil  water  content (SWC,  cm3 cm-3)  was
measured every 20 minutes by capacitance
sensors (Echo, Decagon Devices Inc.,  Pull-
man,  WA,  USA)  and  averaged  to  a  daily
value.  In  each  treatment,  three  sensors
were  placed  under  the  crown-projected
area at 30 cm depth beneath two randomly
selected trees  out  of  the four  trees  sam-
pled for transpiration.  The daily  values of
the  sensors  were  individually  calibrated,
averaged and converted to obtain the daily
value per treatment. Tab. 2 summarizes the
different data collected in the present stu-
dy.

The medium intensity treatment (M) pre-
sented numerous data gaps for most varia-
bles (including transpiration and soil mois-
ture).  For  this  reason,  M  was  chosen  to
test  the model  performance with  the de-
rived  variable  (SWC)  generated  by  PBM
(objective  iii).  Hence,  this  treatment  was
discarded  for  model  building,  evaluation
and  validation  either  with  linear  or  ANN
techniques.

Transpiration modeling

Multiple Linear Regression (MLR) and 
General Linear Models (GLM)

Artificial neural networks are widely con-
sidered as a powerful tool in the identifica-
tion of  highly non-linear systems,  like the
target variable in this study (daily transpira-
tion).  Nonetheless,  a  more traditional  ap-
proach based on multiple linear regression
(MLR) is also presented, providing an inter-
esting  modeling  benchmark  using  appro-
priate final performance index (see below).
Not  only  this  classical,  well  known  MLR
approach  was  used,  but  also  a  linear  re-
gression was implemented through a sim-
plified neural network with only two layers
and linear nodes, which will be referred in
the following as general linear model (GLM
-  Özesmi  et  al.  2006).  These  two models
(MLR  and  GLM)  represent  an  adequate
benchmark to evaluate the relative merits
and performance of the neural network ap-
proach (Özesmi et al. 2006, Liu et al. 2009).
Both methods were individually applied to
each treatment (C, L, H and H98), as well

as to the data pooled together, including
the forest cover as an input variable. In all
cases, the target variable to be predicted
was  daily  transpiration.  Concerning  input
variables, a correlation analysis and a step-
wise method was previously performed to
assess variable selection process, which is
common to both the approaches (MLR and
GLM).

Transpiration based on Artificial Neural 
Network

Artificial neural network (ANN) modeling
process  comprises  three  stages:  pre-pro-
cessing (including  variable selection,  data
division,  data  scaling  and  normalization),
processing (ANN architecture and network
training  process)  and  post-processing  or
model evaluation (Gorgens et al. 2009). In
each of the mentioned stages, the criteria
listed in the next chapters were used.

Stage 1: Data pre-processing
A proper selection of relevant inputs for

ANNs is important as they strongly influen-
ce the final performance of the model, par-
ticularly  when  interrelationships  between
predictor variables are known to occur. 

 The most relevant variables affecting the
final transpiration rates are VPD, Sr, RH, T,
Ws, LAI (Liu et al. 2009), although the phy-
sical mechanisms involving groups and sub-
groups  of  variables  acting  simultaneously
are complex non-linear processes. This fact
makes the choice of optimal predictor va-
riables difficult. For this purpose, a sensiti-
vity analysis was conducted to avoid com-
binations of input variables that might yield
an ill-conditioned system (Smith 2006). Dif-
ferent groups of input variables were tes-
ted in order to find the best combinations

for  improved  transpiration  rate  predic-
tions.

The  first  issue  using  an  ANN  modeling
strategy is the division of the dataset into
the training and the test subsets, as it can
significantly affect the selection of optimal
ANN  structure  and  the  evaluation  of  its
forecasting  performance  (Zhang  et  al.
1998). A third data subset, usually named
cross-validation set,  is  also  used  to  avoid
over-training problems or to determine the
stopping  point  of  the  training  process.
Although no clear guidelines do exists for
selecting the relative size of such subsets,
we adopted the commonly used criterion
of setting the size of the training set as 70%
of the whole dataset, reserving the remai-
ning data for the test (15%) and cross-vali-
dation (15%) sets.

Obviously, the use of representative sub-
sets  is  of  significant  importance  for  the
performance of the neural network and its
final  generalization  capability.  To  account
for  it,  transpiration  data  for  each  treat-
ment  were  previously  classified  into  four
classes, with class limits set at (μ-σ),  μ and
(μ+σ), where μ is the average value and σ is
the  standard  deviation.  For  each  class,
data  were then classified  considering the
VPD range and the different seasons sepa-
rately.  Finally,  a  t-test  was applied to the
training,  test  and  cross  validation  sets  to
test  for  differences  between  sample
means. No significant statistical differences
between  sample  means  (p<0.05)  were
found.

The variables under consideration in this
research span different ranges. In order to
ensure that  all  variables  receive equal  at-
tention  during  the  ANN  training  process,
the original data were transformed to the
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Tab. 2 - Mean values ± standard deviation of the recorded variables in each treatment
(years 2009-2011). (N): number of days available for analysis; (Tr): Transpiration (mm
day-1); (SWC): average daily soil water content (cm3 cm-3); (Ppt): precipitation (mm);
(Tmax, Tmin and T): maximum, minimum and mean temperature, respectively (oC); (RH):
relative humidity; (VPD): vapour pressure deficit (kPa); (Ws): wind speed (m s-1); (Sr):
solar radiation transformed in equivalent evaporation (mm day -1). Solar radiation ex-
pressed in MJ m-2 day-1 was converted to equivalent evaporation in mm day -1 as the
inverse of the latent heat of vaporization (1/L = 0.408 - Allen et al. 1998).

Variable
Thinning
intensity 2009 N 2010 N 2011 N

Tr High 0.44 ± 0.26 187 0.34 ± 0.20 309 0.14 ± 0.10 90
High-1998 0.29 ± 0.15 187 0.22 ± 0.13 128 - 90
Medium - - 0.19 ± 0.12 99 0.13 ± 0.09 90
Low 0.31 ± 0.18 187 0.38 ± 0.26 309 0.19 ± 0.14 90
Control 0.32 ± 0.26 187 0.47 ± 0.36 309 0.25 ± 0.19 90

SWC High 0.19 ± 0.06 187 0.26 ± 0.06 309 0.28 ± 0.02 90
High-1998 0.11 ± 0.04 187 0.19 ± 0.03 128 0.20 ± 0.03 90
Low 0.13 ± 0.07 187 0.19 ± 0.06 309 0.19 ± 0.04 90
Control 0.15 ± 0.07 187 0.22 ± 0.06 309 0.22 ± 0.03 90

Tmax - 23.2 ± 9.42 187 20.1 ± 8.94 309 11.0 ± 4.33 90
Tmin - 11.2 ± 6.08 187 8.5 ± 5.91 309 2.3 ± 3.43 90
T - 16.9 ± 7.52 187 13.9 ± 7.16 309 6.1 ± 3.22 90
RH - 0.6 ± 0.20 187 0.7 ± 0.15 309 0.8 ± 0.12 90
VPD - 1.0 ± 0.88 187 0.7 ± 0.59 309 0.3 ± 0.17 90
Ppt - 1.5 ± 4.32 187 1.8 ± 4.67 309 1.9 ± 5.06 90
Ws - 2.3 ± 1.32 187 2.3 ± 1.30 309 2.4 ± 1.53 90
Sr - 7.7 ± 3.81 187 7.2 ± 3.35 309 4.8 ± 2.11 90
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interval [0;1], with the exception of forest
cover and VPD, according to the following
equation (eqn. 2):

where xnorm is the normalized value, x0 is the
original value, x̄ is the average value of the
original series, and xmax and xmin are its maxi-
mum and minimum value, respectively.

In the case of forest cover,  no transfor-
mation was required as original  values al-
ready lie  in  the interval  [0;1].  The second
exception  is  VPD variable.  In  neural  net-
work modeling, the probability distribution
of input data does not need to be strictly
known (Burke & Ignizio 1992), although in
some cases a skew reduction in the original
data can be desirable, particularly when it
is  very  significant.  In  present  study,  this
was the case of  the variable  VPD,  which
was transformed with an exponential func-
tion (eqn. 3):

Obviously the direct output of the neural
network (transpiration) is a scaled or nor-
malized value,  which needs to be conver-
ted to its original range before proceeding
to the model performance evaluation pro-
cedure (Taylor & Smith 2006).

Stage 2: ANN architecture and training 
algorithm

In this study a feed-forward artificial neu-
ral  network (FFNN) is  proposed as  a  ma-
thematical model to predict forest transpi-
ration rates. It consists of a set of sensory
units that constitute the input layer, one or
more  hidden  layers  of  computational  no-
des and an output layer of computational
nodes  producing  the  output  of  the  net-
work  (Haykin  1994).  Information  passes
only in one direction, from the input nodes
to those in the succeeding layers up to the
output layer. The strength of connections
between nodes of  successive layers is  re-
presented by the weight values, acting as
parameters of the neural network model.

In general, the output layer has as many
nodes as target variables. In our case, it will
include  only  one  node,  corresponding  to
the  sole  target  variable  (daily  transpira-
tion).  Concerning  the  number  of  hidden
layers,  no  consolidated  theory  currently
exists  on  the  number  of  hidden  layers
needed for accurate predictions, although
it has been proved that only one layer of
hidden units with non-linear nodes is suffi-
cient  to  approximate  any  function  to  an
arbitrary  level  of  precision  (Hornik  et  al.
1989). Accordingly, a topology of three la-
yers with a single output node in the third
layer was designed. The number of nodes i
in the input layer is the number of predic-
tor variables used.

A common problem in  FFNN  building is
the specification of  the number of  nodes
required in the hidden layer. It is worth to

notice that the more complex is the map-
ping  between  the  variables,  the  larger  is
the number of  hidden nodes  required.  In
this  study,  a  range  of  neural  networks
were tested varying the number of hidden
nodes from  i/2 to 2i, in order to select the
optimal  dimension  of  the  network.  In  a
similar way, a family of activation functions
in the hidden and output layer were tested
(logistic, hyperbolic tangent, and exponen-
tial  for  the hidden layer;  exponential  and
identity  function  in  the  output  node  -
Vrugt et al. 2002, Meijun et al. 2007, Liu et
al. 2009).

The training algorithm can be addressed
as  an  unconstrained  non-linear  minimiza-
tion  problem  in  which  weight  values  are
iteratively modified to minimize the overall
mean squared error  between the desired
and actual output values of scaled transpi-
ration. A variety of powerful algorithms are
reported in the  literature,  but  in  practice
none of them guarantee the global optimal
solution for a general  nonlinear  optimiza-
tion problem, with efficiency and computa-
tional  performance  depending  largely  on
the  structure  and  characteristics  of  the
unknown error function.

For most practical applications, the faster
convergent and more efficient algorithms
are  the  second-order  methods,  like  the
Broyden,  Fletcher,  Goldfarb  and  Shanno
(BFGS),  Levenberg-Marquardt  and  conju-
gate gradient (Zhang et al. 1998), although
first-order  method  algorithms  have  also
been  successfully  used  in  many  relevant
applications. Therefore, some popular me-
thods were initially tested in our network,
including  the  well-known  standard  back-
propagation algorithm with variable learn-
ing rate (Kumar et  al.  2002),  the resilient
backpropagation (Riedmiller & Braun 1993,
Igel & Hüsken 2003), and the backpropaga-
tion  algorithm  with  weight  decay  (Berg-
meir & Benitez 2012). However, in our case
BFGS algorithm provided apparently better
performance,  showing faster  training and
superior  generalization abilities  of  the re-
sulting networks (Vojislav 2001, Igel & Hüs-
ken 2003,  Nawi et al. 2006,  Jing-Hua et al.
2010).  This  powerful  technique is  particu-
larly  suitable when a large number  of  to-
pologies and activation functions are to be
tested, as it was the case in this study. To
avoid  weights  with  high  values  in  the
selected networks, a regularization weight
decay procedure was incorporated in the
training process (Bishop 1995), that essen-
tially consists  of  an addition of a term to
the error function, penalizing the solutions
with large weight values.

Stage 3: Model evaluation
The accuracy of predictions of the obser-

ved transpiration values can be measured
using a  variety  of  metrics,  thus  assessing
the  performance of  the  different  models
tested. Common statistics were computed,
including R,  E  and RMSE (see below),  no
matter the type of model under examina-
tion.

Process-based model
In  this  study,  the  PBM  GOTILWA+  was

applied  to  estimate  SWC,  a  variable  that
might not be readily available to forest ma-
nagers. GOTILWA+ is an improved version
of  GOTILWA  described  by  Gracia  et  al.
(1999) and  Kramer (2001). It can estimate
accurately the water flux of Mediterranean
forest  ecosystems  (different  single-tree
species stands: coniferous or broadleaved,
evergreen  or  deciduous)  under  changing
environmental conditions, due to either cli-
mate or forest management. For this rea-
son, GOTILWA+ was used here to estimate
both transpiration (directly) and soil water
content (to fed the ANN).

This model requires a number of inputs to
simulate  forest  growth  parameters  at  a
daily  time  scale.  The  inputs  describe  the
forest structure and physiology, soil and cli-
mate conditions. The forest structure was
considered heterogeneous in terms of dia-
metrical distribution, which was defined ac-
cording  to  the initial  tree  inventory.  Leaf
photosynthesis  and stomata  conductance
parameters for Pinus halepensis were inclu-
ded in the GOTILWA+ model based on mea-
sured  data  from  experimental  plots  in
Collserola  (Catalonia  –  data  available  at
http://www.creaf.uab.es/gotilwa+/SParame
ters.htm).  Soil  parameters  were  obtained
from  an  earlier  study  (Del  Campo  et  al.
2008). Daily climatic data were obtained as
previously  described.  GOTILWA+  perfor-
mance was analyzed comparing the mea-
sured and estimated transpiration with soil
moisture values,  considering the index of
model evaluation (see below).

Model evaluation
For comparisons between the measured

and simulated transpiration using the ANN
model,  the  multiple-linear  regression
(MLR),  the  general  linear  models  (GLM)
and GOTILWA+, three indexes were used:
(i) the coefficient of correlation (R, eqn. 4);
(ii) the Nash-Sutcliffe Efficiency (E, eqn. 5),
which  compares  the  performance  of  the
model to a model that only uses the mean
of the observed data (1 = perfect model; 0
= performance no better than simply using
the  mean;  negative  values  =  bad  perfor-
mance -  Bennett et al.  2013);  and (iii)  the
root mean squared error (RMSE, eqn.  6),
which  measures  the  deviation  of  model
predictions from the observed data (Whit-
ley et al. 2012 – eqn. 4, eqn. 5, eqn. 6):
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−Ȳ sim)

2

E=1−
∑
i=1

n

(Y simi
−Y obsi

)
2

∑
i=1

n

(Y obsi
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where n is the number of data considered,
Yobs_i is the daily transpiration observed by
heat pulse method for the i-th value, Ysim_i is
the  simulated  transpiration  for  the  i-th
value,  Yobs and  Ysim are the average values
of corresponding variables, respectively. In
addition, a graphical analysis was used to
compare and verify presence of heterosce-
dasticity in the dataset.

Results

Linear analysis
The  linear  correlation  matrix  between

input variables and daily transpiration sho-
wed  that  correlations  differ  significantly
among  the  different  treatments  (plots)
considered in  this  study (Tab.  3).  Correla-
tion values tend to be higher for intensive
thinning, and lowest for the control treat-
ment. It should be noted that in the case of
strongly  physically  interrelated  variables
(i.e.,  VPD and  transpiration),  expected
high values can be as low as 0.29 for the
control treatment. Other variables, such as
wind  speed,  precipitation  and  soil  water
content, showed negative, modest correla-
tions  in  both  individual  treatments  and
grouped  data.  Based  on  these  results,  it
follows that some variables do not signifi-
cantly  contribute  to  explain  transpiration
(e.g.,  Ws,  which was  not  further  conside-
red).  On  the  other  hand,  the  co-linearity
between variables made advisable to con-
sider only those showing the highest corre-
lations (as in the case of RH with Ppt).

Linear  based  models  (MLR  and  GLM)

were  developed  for  transpiration  estima-
tion,  both  for  each  individual  treatment
and for the grouped treatments.  In total,

ten  different  models  were formulated by
varying the input variables under conside-
ration. For each model, R, RMSE and E va-
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Fig. 1 - Observed
vs. estimated va-

lues of stand
transpiration by
Multiple Linear

Regression. (a):
High intensity

thinning treat-
ment; (b): high
intensity 1998;

(c): low intensity;
(d): control; (e):

all treatments
pooled; (f): re-

sidual values for
all treatments

pooled.

Tab.  3 -  Linear  correlation  matrix  between  input  variables  and  daily  transpiration
(mm) in each treatment. (Tmax,  Tmin and T): maximum, minimum and mean tempera-
ture, respectively (oC); (RH): relative humidity; (VPD): vapour pressure deficit (kPa);
(Ppt): precipitation (mm); (Ws): wind speed (m s-1); (Sr): solar radiation, transformed
in equivalent evaporation (mm day-1); (SWC): average daily soil water content (cm3

cm-3).

Treatment Tmax Tmin T RH VPD Ppt Ws Sr SWC
High intensity 0.86 0.75 0.84 -0.76 0.82 -0.32 -0.17 0.85 -0.35
High intensity-1998 0.82 0.69 0.79 -0.75 0.73 -0.47 -0.27 0.76 -0.31
Low intensity 0.58 0.45 0.55 -0.53 0.46 -0.28 -0.16 0.64 0.03
Control 0.42 0.30 0.38 -0.40 0.29 -0.25 -0.14 0.53 0.22
All grouped 0.59 0.47 0.56 -0.53 0.49 -0.29 -0.16 0.63 0.02

Tab. 4 -  Goodness-of-fit statistics for Multiple Linear Regression (MLR) and General
Linear Method (GLM). (R): correlation coefficient; (RMSE): root mean squared error;
(E): Nash-Sutcliffe efficiency; (Tmax, Tmin and T): maximum, minimum and mean tempe-
rature, respectively; (RH): relative humidity; (VPD): vapour pressure deficit; (Sr): solar
radiation; (SWC): soil water content; (Cover): forest cover.

Model Treatment R RMSE E Inputs
MLR High intensity 0.91 0.093 0.84 Tmax, T, Sr, RH, SWC

High intensity-1998 0.87 0.071 0.76 Tmax, Tmin, Sr, RH,VPD, SWC
Low intensity 0.81 0.135 0.66 Tmax, Tmin, T, Sr, RH, VPD, SWC
Control 0.79 0.194 0.63 Tmax, T, Sr, RH, VPD, SWC
All grouped 0.77 0.161 0.59 Tmax, T, Sr, RH, VPD, SWC, Cover

GLM High intensity 0.91 0.093 0.84 Tmax, Tmin, T, Sr, RH, VPD, SWC
High intensity-1998 0.87 0.071 0.76 Tmax, Tmin, T, Sr, RH, VPD, SWC
Low intensity 0.81 0.135 0.66 Tmax, Tmin, T, Sr, RH, VPD, SWC
Control 0.79 0.193 0.63 Tmax, Tmin, T, Sr, RH, VPD, SWC
All grouped 0.75 0.166 0.56 Tmax, Tmin, T, Sr, RH, VPD, SWC, Cover
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lues  were  computed  (Tab.  4),  attaining
fairly similar performances using both the
MLR and GLM approaches. This was expec-
ted as both models comprise essentially a
linear regression between inputs and out-
put. On the other hand, the type of treat-
ment was affecting significantly the predic-
tion  ability  of  the  models,  with  E  coeffi-
cient  ranging  from 0.63 to  0.84  (Tab.  4).
Fig. 1 shows the estimated vs. observed va-
lues  of  transpiration  obtained  by  MLR.
Although results can reasonably be accep-
table,  a  systematic  underestimation  was
detected for larger values of transpiration,

regardless  the treatment considered (Fig.
1a-d). The inclusion of an input variable re-
lated to forest management (forest cover)
did not  improve the model  performances
in either case (GLM nor MLR, All grouped -
Tab. 4). Conversely, such inclusion decrea-
sed both the Nash-Sutcliffe (E < 0.6) and
the R coefficients, worsening the model’s
predictive ability  at  high transpiration va-
lues (Fig. 1e-f). However, the stepwise pro-
cedure of MLR showed better results than
GLM on the pooled data (Tab. 4), although
Tmin was  used  as  input  only  in  H98 and  L
treatments.

Transpiration based on ANN
A  sensitivity  analysis  was  conducted  to

identify the importance of different predic-
tors used for estimating the forest transpi-
ration. The error function showed the grea-
test  increase  when  SWC (soil  moisture)
was dropped out from the model, and thus
it was considered as a key variable in the
input family. The two subsequent variables
that  most  affected  the  prediction  error
were  Sr and  Tmax.  All  the  ANN  models
tested  included  these  three  variables,
while  all  other  predictors  were  included
following a stepwise procedure.  The best
results  were achieved when the input fa-
mily included the variables  Tmax,  Tmin,  Tmean,
Sr,  RH,  VPD,  SWC and  Cover (Tab. 5). The
optimal  number  of  hidden nodes  (nh)  for
the best network performance was 9, thus
the network 8-9-1 was finally selected.  Fig.
2 shows the values  of  E  and RMSE  after
training  the  networks  with  the  different
sizes  of  the hidden layer.  Concerning the
activation function,  the best  results  were
attained using a  hyperbolic  tangent  func-
tion in the hidden nodes and an exponen-
tial function in the single node of the out-
put layer.

Fig. 3 shows the relationship between the
predicted  and  observed  values  of  stand
transpiration. Results were quite accurate,
with  E  values  ranging  from  0.82  to  0.92.
Prediction accuracy did not significantly dif-
fer  when  the  network  with  pooled  data
was considered (Fig. 3e) or when networks
were used separately  for  each treatment
(Fig. 3a-d). Tab. 6 shows the average error
obtained in estimating the stand transpira-
tion in different seasons. Significant diffe-
rences in model performance were detec-
ted  depending  on  the  season,  with  the
worst results obtained for autumn (Fig. 4).
Finally,  estimation  errors  were  larger  for
high  values  of  transpiration,  as  inferred
from the residuals analysis (Fig. 3f).

Use of the PBM Gotilwa+
Gotilwa+ predicted acceptable values  of

43 iForest 9: 38-48

Tab. 5 -  Comparison between measured and simulated transpiration for each treat-
ment, using the selected Artificial  Neural Network (8-9-1).  Last row represents the
ANN general performance. (R): correlation coefficient; (RMSE): root mean squared
error; (E): Nash-Sutcliffe Efficiency; (Tmax,  Tmin and T): maximum, minimum and mean
temperature,  respectively;  (RH):  relative  humidity;  (VPD):  vapour  pressure  deficit;
(Sr): solar radiation; (SWC): soil water content; (Cover): forest cover.

Treatment R RMSE E Inputs
High intensity 0.96 0.065 0.92

Tmax, Tmin, T, Sr, 
RH, VPD, SWC, Cover

High intensity-1998 0.91 0.060 0.82
Low intensity 0.94 0.081 0.88
Control 0.96 0.092 0.91
All grouped 0.95 0.077 0.90
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Fig. 2 - Nash-Sutcliffe efficiency (E) 
and root mean square error (RMSE)
of the different architectures of the
tested artificial neural network.

Tab. 6 - Average of observed (Obs) and estimated (Est) stand transpiration (mm day -1)
using the Artificial Neural Network per season and treatment. Difference (in mm day -1)
represents the average error per season and treatment.

Season N
High

intensity

High
intensity-

1998

Low
intensity Control

D
if

fe
re

n
ce

Obs Est Obs Est Obs Est Obs Est
Summer 2009 284 0.166 0.156 0.097 0.101 0.082 0.077 0.077 0.072 0.016
Autumn 2009 352 0.089 0.084 0.069 0.057 0.086 0.080 0.095 0.085 0.034
Winter 2009-10 180 0.029 0.022 0.021 0.020 0.031 0.026 0.034 0.031 0.015
Spring 2010 321 0.087 0.086 0.060 0.069 0.120 0.115 0.156 0.158 -0.005
Summer 2010 300 0.164 0.169 0.028 0.027 0.174 0.168 0.202 0.209 -0.005
Autumn 2010 273 0.094 0.100 - - 0.084 0.101 0.102 0.106 -0.027
Winter 2010-11 270 0.037 0.045 - - 0.052 0.060 0.066 0.071 -0.021
Spring 2011 93 0.051 0.057 - - 0.067 0.070 0.091 0.093 -0.011
Difference - -0.0020 0.0015 -0.0010 -0.0022 -0.0037
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SWC (E from 0.47 to 0.68), though the esti-
mated  values  for  stand  transpiration
revealed a  poor  predictive ability  of  such
model,  except for the high intensity thin-
ning  treatment  (E=0.57  -  Tab.  7).  Compa-
ring ANN and GOTILWA+ performances in
terms of stand transpiration, the prediction

accuracy achieved with the former model
was higher than that obtained with the lat-
ter (Tab. 7). The performance of ANN-GO-
TILWA+  combination  was  validated  com-
paring measured and estimated transpira-
tion values of control,  high, low and high
1998 thinning intensities  (Tab.  7).  Though

the  ANN-GOTILWA+  combination  perfor-
med  worse  than  ANN  alone,  predicted
transpiration values were still  accurate (E
ranging from 0.52 to 0.77), justifying its fur-
ther  use  to  estimate  stand  transpiration
when  SWC data  are  not  available.  There-
fore, these results support the use of PBM
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vs. estimated va-

lues of stand
transpiration by

ANN. (a): High
intensity thinning

treatment; (b):
high intensity
1998; (c): low
intensity; (d):

control; (e): all
treatments

pooled; (f): re-
sidual values for

all treatments
pooled.

Fig. 4 - Observed
vs. estimated va-

lues of stand
transpiration by

ANN with indica-
tion of the sea-

son: winter (black
squares), spring

(purple dia-
monds), summer
(red circles) and

autumn (blue
triangles). 
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to feed the ANN as a modeling strategy to
estimate  the  stand  transpiration  when
some of the ANN input data are not readily
available.  In  this  sense,  ANN-GOTILWA+
was used to predict transpiration values of
the  medium  thinning intensity  treatment,
where  SWC data  were  not  available.  The
results  showed  that  ANN-GOTILWA+  pre-
dicted  accurately  the  stand  transpiration,
significantly  increasing  the  E  value  from
-6.99 (Gotilwa+) to 0.63 (ANN-GOTILWA+ -
Fig. 5, Tab. 7).

Discussion
In this study, the influence of adaptative

forest  management  (AFM)  on  different
transpiration  modeling  approaches  in  a
semiarid  pine  plantation  has  been  con-

sidered.  Similarly  to  Asbjornsen  et  al.
(2011), the application of a linear approach
allowed to identify variables such as  SWC,
T, Sr, RH and VPD as the inputs that mostly
affect the forest transpiration. Such linear
approach showed acceptable performance
only for some of  the treatments conside-
red (Tab. 4). Other studies reported similar
R  values  when  predicting  transpiration
with linear models (Lagergren & Lindroth
2002,  Liu  et  al.  2009,  Ungar  et  al.  2013).
However, we observed that model perfor-
mance  decreases  as  the  forest  cover  in-
creases (Tab. 4), probably due to the stand
competition (canopy closure) as a primary
determinant of transpiration over the envi-
ronmental  variables.  The  inclusion  of  the
forest  cover  in  the grouped  linear  model

clearly worsened its performance. This indi-
cates that even under identical site and cli-
matic conditions, input variables for model-
ing  stand  transpiration  may  be  different
depending  on  forest  cover,  affecting  the
potential  benefits  of  the model  in  opera-
tional  forest  management.  The  common
strategy in these cases is the development
of specific models in response to threshold
behavior of  environmental  drivers (Lager-
gren & Lindroth 2002,  Mackay et al.  2012,
Ungar et al. 2013), like soil moisture or fo-
rest cover. Such type of models are appli-
cable  only  under  the  specific  conditions
where they were originally developed.

The  artificial  neural  network  modeling
approach  showed  better  performance
than the two linear models applied (MLR
and GLM) in predicting stand transpiration.
In particular, neural network modeling sho-
wed  an  improved  accuracy  in  predicting
higher values of transpiration, giving high E
values (>0.80 -  Tab. 5).  Nevertheless, pre-
diction accuracy was not the same for all
seasons. In particular, the performance of
ANN for autumn was not as good as it was
for the rest of the year. When larger pre-
diction errors occurred, they could partially
be explained by the variability of weather
conditions  along  the  day.  However,  this
daily variability was not considered in our
model, as only a single daily value was used
for each variable. In any case, the relative
average error in stand transpiration predic-
tion was quite low, even in autumn (< 11%).

Previous studies have established a rela-
tionship between forest transpiration and
season,  and found differences in the per-
formance of models depending on the sea-
son (Farrington et al. 1994, Borghetti et al.
1998,  Schiller  & Cohen 1998,  Cohen et  al.
2008,  Whitley  et  al.  2009,  Chirino  et  al.
2011). Such a different behavior of transpi-
ration is  common in geographical  regions
with marked seasonal variations in the rela-
tionships  between  soil  water  availability,
air temperature, vapor pressure deficit and
rain distribution.

The structure of the neural network pro-
posed here is a typical FFNN of three fully
connected layers with standard configura-
tion,  with  only  one  node  in  the  output
layer.  Once  the  input  variables  are  selec-
ted, the most relevant decision that deter-
mines  the  dimension  or  the  geometry  of
the network is the number of hidden nodes
(nh)  in  the  hidden  or  intermediate  layer.
Optimal  network  geometry  is  highly  pro-
blem-dependent  (Maier  &  Dandy  2000).
We applied a trial-and-error approach,  i.e.,
training  a  number  of  different  networks
with different hidden layer sizes. Best per-
formances were obtained for  nh=9,  which
can  be  considered  a  “medium  size”  net-
work performing adequately and adapted
to  the  problem  characteristics.  Indeed,
such structure has sufficient  free weights
to capture the essential  relationships bet-
ween variables, but at the same time not
too many weights to produce over-fitting
of the training data, thus affecting the ge-
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Tab. 7 - Comparison between observed and estimated Soil Water Content (SWC) using
Process-based Model (GOTILWA+). Observed and estimated transpiration (Tr) using
GOTILWA+, the selected Artificial Neural Network (ANN), and the combination ANN-
GOTILWA+(SWC). (R): coefficient of correlation; (RMSE): Root Mean Squared Error;
(E): Nash-Sutcliffe Efficiency.

Treatment Stats SWC
(GOTILWA+)

Tr
(GOTILWA+)

Tr
(ANN)

Tr
(ANN+GOTILWA+)

High R 0.8 0.8 0.96 0.95
RMSE 0.002 0.152 0.065 0.112
E 0.63 0.57 0.92 0.77

High - 98 R 0.70 0.73 0.91 0.91
RMSE 0.037 0.130 0.060 0.082
E 0.47 0.19 0.82 0.68

Low R 0.86 0.68 0.94 0.9
RMSE 0.036 0.427 0.081 0.124
E 0.68 -2.38 0.88 0.71

Control R 0.84 0.79 0.96 0.85
RMSE 0.039 0.463 0.092 0.220
E 0.64 -1.11 0.91 0.52

Medium R - 0.87 - 0.90
RMSE - 0.318 - 0.068
E - -6.99 - 0.63
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Fig. 5 - Observed vs. estimated values of stand transpiration in the medium intensity
thinning treatment using the parameter soil water content (SWC) generated by the
software GOTILWA+.
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neralization ability of the network (Kumar
et al. 2011). Several options were tested for
the  activation  functions  representing  the
individual  node’s  internal  operation.  The
hyperbolic tangent activation function cho-
sen for the hidden nodes has been applied
for similar problems, such as transpiration
and trunk sap flow (Meijun et al. 2007, Liu
et al.  2009), with satisfactory results.  The
most extended option for the output layer
is that of linear activation functions (Vrugt
et al. 2002, Garcia-Santos 2011), as it avoids
directly the limitation of the range of possi-
ble output values. However, in our case the
tests carried out with this option yielded a
systematic  underestimation of  the higher
values  of  transpiration.  To  overcome this
problem,  the exponential  activation func-
tion in the output node has been used, pro-
ducing  better  stand  transpiration  predic-
tions, and reducing the observed tendency
to underestimate the higher values.

The overall good performance shown by
the  selected  neural  network  makes  such
modeling approach a promising tool  with
several  practical  implications  in  forestry.
Indeed,  the  selected model  is  capable  to
estimate  forest  transpiration  under  diffe-
rent silvicultural treatments, using not only
the common meteorological variables and
soil  water content as inputs, but also the
forest cover. In other words, it can success-
fully be applied to estimate forest transpi-
ration in a  wide range of  conditions,  and
can effectively  incorporate diverse scena-
rios  including  climate  change projections.
As  such,  it  constitutes  a  useful  modeling
support  to forest  managers for  assessing
the effect of different thinning intensities
on forest transpiration.

GOTILWA+ reproduced accurately the soil
water content, while transpiration was sys-
tematically  underestimated.  Some studies
compared simulated and measured forest
stand transpiration using GOTILWA+ (Kra-
mer et al.  2002,  Morales et al.  2005), but
none used direct sap flow measurement in
Aleppo pine  stands.  Kramer  et  al.  (2002)
reported a general systematic discrepancy
between  observed  and  predicted  stand
transpiration  using  GOTILWA+,  with  an
underestimation  particularly  relevant  at
high radiation levels and low temperatures.
In the same way,  Morales et al. (2005) ap-
plied  GOTILWA+  to  estimate  the  actual
evapotranspiration of different vegetation
types, finding an actual evapotranspiration
underestimated  by  40-50%.  Despite  the
above discrepancy, the use of GOTILWA+ is
still justified, at least in the case when the
daily soil water content is not available as
input data for ANN models.

Conclusions
In this study, the prediction of stand tran-

spiration  based  on  artificial  neural  net-
works gave promising results, to be consi-
dered a useful basis for future potential ap-
plications  in  water-oriented  forestry  and
applied  hydrology.  ANN  computational
schemes has been successfully applied for

the prediction of actual measured transpi-
ration rates of forests from climatic  data,
soil  water  content  and  forest  attributes.
According to our results,  ANN showed an
improved capability of transpiration predic-
tion as  compared to other linear  models.
This outcome is consistent with the inher-
ently  non-linear  relationships  associated
with  the  complex  physical  mechanisms
underlying the transpiration process. 

The use of prediction methods based on
advanced mathematical tools like the ANN
can  effectively  reduce  the  experimental
field  work  to  be  held  (e.g.,  sap-flow  me-
thod) for assessing the stand transpiration,
without  significantly  affecting  the  overall
estimate of the expected transpiration ra-
tes,  for  a  given  area  and  a  given  forest
treatment. Furthermore,  silvicultural  prac-
tices (represented in this  work by the fo-
rest cover variation among treatments) are
an  input  to  the  neural  network,  clearly
extending  the  practical  benefits  of  the
method. In this sense, forest transpiration
can  be  estimated  under  a  wide  range  of
conditions, for instance, a variety of mana-
ging scenarios or even climate change pro-
jections. From this perspective, the present
approach represents  a  useful  model  stra-
tegy to  provide recommendations  for  fo-
rest management in the light of the forest
water use.
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