
Research Article - doi: 10.3832/ifor1243-007 ©iForest – Biogeosciences and Forestry

Introduction
Changes in plant size over the lifespan are

typically  characterized  by  an  S-shaped
growth trajectory (Pretzsch 2009, Weiskittel
et al.  2011,  Zeide 1993). Growth functions
represent  simple,  non-linear  equations  de-
scribing the sigmoidal change in size of an
individual  or  population  with  time.  Their
mathematical forms are derived empirically
or conceived from the biological knowledge
of the growth of living organisms (Burkhart
& Tomé 2012). Historically,  the Gompertz,
logistic, Mitscherlich or Korf’s growth mod-

els rank among the most successful functions
used  in  modeling  the  plant  growth  (Gom-
pertz  1825,  Korf  1939,  Mitscherlich  1919,
Verhulst  1838).  Currently,  the  most  used
growth  model  is  the  Richards’  function
(Richards 1959) which was obtained by the
generalization  of  the  Bertallanffy’s  growth
function  (Bertalanffy  1957).  Among  the
growth functions with unique properties, the
Weibull’s or Sloboda’s equations and the in-
creasingly  popular  Schnute’s  growth  func-
tion are also worth to be mentioned (Weibull
1951, Schnute 1981, Sloboda 1971). A com-

prehensive  survey  of  the  historical  back-
ground,  the  mathematical  and  statistical
properties of the mentioned growth functions
may be found in the works by Zeide (1993),
Seber & Wild (2003),  Tsoularis & Wallace
(2002) and Karkach (2006).

The application of growth functions is now
more common than ever.  Growth  functions
are based on relatively simple equations with
a limited number of parameters; nonetheless,
they show a good ability to encompass com-
plicated  growth  processes  (Zeide  2004).  A
direct prediction of the integral quantities of
growth at individual or population level by
means  of  simpler  growth  functions  can  be
more precise than prediction from the sum of
the individual components of growth (cells,
tissues and organs) obtained by more com-
plicated process models. In general, this can
be considered a major paradox of ecological
modeling and represents a considerable chal-
lenge  to  plant  ecology  science  (Pretzsch
2009, Seber & Wild 2003, Zeide 2003).

From a mathematical  point  of view,  each
growth function suitable for the description
of sigmoid growth must be able to describe a
nonlinear,  monotonically increasing growth
pattern  having  a  concave  shape  along  the
early life  stages.  At  later  stages,  this  turns
into a convex function which approaches a
final  asymptote.  For  these  reasons,  growth
functions are characterized by the inclusion
of three or four parameters defining the posi-
tion  and shape of the growth  curve (Feke-
dulegn et al. 1999, Fitzhugh 1976). In gene-
ral, the asymptotic parameter β0 is present in
all classical growth functions (Birch 1999),
and represents the limit (eqn. 1):

Hence,  β0  is the asymptotic value which the
growth function approaches towards the end
of an organism’s life, and which the growth
function  will  reach after an infinite  growth
period.

A  detailed  analysis  on  the  mathematical
structure  of  some  important  growth  func-
tions by Shvets & Zeide (1996) reported that
even  after  200  years  of  intensive  research,
there is still opportunity for improvement of
the  mathematical  structure  of  existing
growth  functions.  Karkach  (2006) distin-
guishes two general growth types:  determi-
nate  and  non-determinate  growth.  The for-
mer applies when the growth of an organism
terminates at a certain development stage or
at a final (maximum) size, whereas non-de-
terminate  growth  continues  throughout  the
organism’s lifespan, regardless of the degree
of  physiological  maturity  attained.  Due  to
the existence of the asymptotic parameter β0,
all classical growth functions are non-deter-
minate growth  models that implicitly entail
an infinite length of the growth period. This
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The properties and short-term prediction accuracy of a mathematical model of
sigmoid time-determinate growth, denoted as “KM-function”, are presented.
The model is suitable for representing the asymmetrical sigmoid growth of an
organism, starting at zero size and terminating when the final size is reached.
The function assumes a finite length of the growth period and includes a pa-
rameter interpretable as the expected lifespan of the organism. Moreover, the
possibility  for  growth curve  inflexion at  any age  allows  to  model  S-shaped
growth trajectories with various degree of asymmetry. The suitability of such
theoretical model to predict the real growth of trees was empirically assessed.
Three and four-parameters forms of the KM-function was compared with three
classical (Richards, Korf and Weibull) growth functions using two parametriza-
tion methods, i.e., the nonlinear least squares (NLS) and the Bayesian method.
The parametrization/validation dataset was made of 67 tree diameter series
obtained from stem analyses. Main results may be summarized as follows: (i)
the use of the three-parameter KM-function with the Bayes parametrization
method is recommended when the minimization of prediction bias is required;
(ii)  the best  short-term prediction results,  in terms of minimization of root
square error (RMSE), were obtained using the four-parameter Weibull’s func-
tion  and  the  NLS  parametrization  method;  (iii)  three-parameter  functions
parametrized by Bayesian methods show a considerably smaller  RMSE (by 15-
25%)  and  biases  (by  40-60%)  than  four-parameter  functions  using  the  NLS
method. Overall, our results confirmed the relative usefulness of the KM-func-
tion in comparison with classical growth functions, especially when combined
with Bayesian parametrization methods.
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fact is clearly not consistent with the biologi-
cal reality. The use of an asymptotic growth
function for a finite life length of every li-
ving organism is possible only because they
predict  very  small,  practically  negligible
growth rates at the oldest ages.

Recently, two attempts to solve the afore-
mentioned issue has been reported in the li-
terature.  Yin et  al.  (2003) proposed  a new
flexibile empirical function of sigmoid deter-
minate  growth,  obtained  by  modifying  the
probability density function of the beta dis-
tribution.  Sedmák & Scheer (2012) derived
another  sigmoid  function  of  determinate
growth, called KM-function, based on a mo-
dification  of  the  Kumaraswamy’s  distribu-
tion  function  (Kumaraswamy 1980).  Gene-
rally,  both probability distributions are sui-
table for double-bounded random variables,
and consequently they are theoretically well-
suited  for  the  description  of  determinate
growth within a finite period of time.

Growth functions are used as semi-empiri-
cal  models  whose  parameters  are  inferred
from empirical measurements of the growth
of  an  organism  (Karkach  2006,  Shvets  &
Zeide  1996,  Zeide  2004).  Their  parameter

estimations are carried out by means of dif-
ferent theoretical methods, mainly based on
non-linear regressions. A wide range of me-
thods of classic (Fisherian) frequentist statis-
tics (Seber & Wild 2003) or the alternative
Bayesian statistics (Carlin & Louis 2000) are
currently used to this purpose.

To estimate  the parameters  in  the regres-
sion  models,  the  most  common  methods
used by the frequentist school are the maxi-
mum likelihood  estimation  (MLE)  and  the
ordinary least squares (OLS). The OLS me-
thod is derived from the MLE by introducing
the  simplified  assumptions  of  normality,
variance homogeneity and  uncorrelatedness
of residual deviations of the regression mo-
del. Using the OLS method, parameter esti-
mation  is  almost  exclusively related  to  the
solution of a set of non-linear equations by
numerical  techniques.  In  such  cases,  the
OLS method  is  also  called  nonlinear  least
squares (NLS) estimation.

An alternative method for the estimation of
growth  function  parameters  is  based  on  a
Bayesian approach. The basic difference be-
tween  Fisherian  and  Bayesian  statistical
schools relies on a different understanding of

the  probability  concept  (D’Agostini  2003).
In the Bayesian estimation, the a priori joint
probability distribution of possible  parame-
ter values in the model is combined with in-
formation from data represented by the like-
lihood function.

The objective  of this  study was to  assess
the performances of the KM-function in mo-
deling  the  sigmoid  determinate  growth  in
living organisms and to analyse its theoreti-
cal properties. The analysis was carried out
by comparing the properties and prediction
accuracy of the KM-function with those of
selected classical growth functions. The sta-
tistical  properties  of growth functions were
compared based on empirical data, made by
diameter  growth  series  of  individual  trees
obtained from stem analyses.  Two methods
of statistical parametrization were used: the
classic nonlinear least  squares method,  and
the Bayesian parametrization method based
on  the  Markov  chain  Monte  Carlo  proce-
dure.

Material and methods

Growth functions included into 
comparison

An overview of the growth functions used
in this study is reported in  Tab. 1. The first
function  was  a  time-determinate  KM-func-
tion  with  the following integral  form (eqn.
2):

where 0 ≤ t ≤ tmax, tmax > 0, ymax > 0, b > 0, c >
0. The parameter ymax is interpreted as the fi-
nal (maximum) size of an organism attained
at the age  tmax. If the parameter  tmax is fixed
on the basis of a clear biological interpreta-
tion,  the new function will  have only three
parameters. The parameters b and c determi-
ne the position of its inflexion point within
the life cycle. The growth rate equation can
be obtained by derivation from eqn. 2 as fol-
lows (eqn. 3):

A typical course of the KM-function over
time and that of the derived absolute and re-
lative growth rates (RGR) are shown in Fig.
1a and  Fig. 1b. In this study, the KM-func-
tion was used in two parametrization forms
with a different number of parameters (Tab.
1).  The  three-parameter  form  was  derived
from  the  four-parameter  version  by  fixing
the parameter tmax to a value of 500 years on
the basis of the maximum lifetime estimated
for beech trees in Slovakia (Pagan 1992).

The Richards’ function is one of the most
important growth models of the exponential
decline type  sensu Zeide (1993), and repre-
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Fig. 1 - Growth trajectory described by the sigmoid KM-function. (a): Growth period starts
at t=0 and ends at the age tmax, at which the exact final value is reached; (b): full and broken
lines show the corresponding courses of growth and relative growth rates, which are exactly
equal to zero at the age tmax.

Tab. 1 - List of the growth models compared in this study.

Model (abbr) Integral form Source
KM-function (KM3) y = ymax [1-(1-(t/500)b)c] Kumaraswamy (1980)
KM-function (KM4) y = ymax[1-(1-(t/tmax)b)c] Kumaraswamy (1980)
Richards function (R3) y = ymax(1-e-bt)c Zeide (1993)
Richards function (R4) y = ymax (1-de-bt)c Richards (1959), Fitzhugh (1976)
Korf function (KF3) y = ymax e(-bt)^c Korf (1939), Li et al. (2000)
Weibull function (W4) y = a – de-(bt)^c Weibull (1951), Ratkowsky (1983)

y= ymax[1−(1−( t
tmax

)
b

)
c
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Time-determinate growth sigmoid function 

sents  one of the most  used growth  models
worldwide. Its popularity stems from the ex-
cellent  flexibility,  along  with  a  relatively
good  extrapolation  capability.  Similarly  to
the KM-function,  the Richards’  function  is
also used in its forms including three or four
parameters.

The Korf’s growth function belongs to the
power decline type  sensu Zeide (1993), and
it is considered as the most suited to forestry
conditions of Slovakia.  It  was used for the
construction of the national growth and yield
tables (Halaj & Petráš 1998). According to
Zeide (1989), this function is especially sui-
table for the description of the diameter of a
fixed number of trees, as it is more accurate
than other traditional growth functions.

The  Weibull’s  growth  function  does  not
belong to any of the aforementioned classifi-
cation  sensu Zeide (1989). From a practical
point of view, this function has the same ad-
vantages  as  the  Richards’  function,  and  it
was included in the list of Tab. 1 because it
was derived exclusively in an empirical way,
just as the KM-function.

All  the  classical  growth  functions  descri-
bed above share the common feature of be-
ing  time-non-determinate  growth  models
with an asymptotic behavior.

Dataset
The  empirical  dataset  used  in  this  study

consisted of stem analyses for 67 beech trees
cut  in  an  80-160  years-old  mature  forest
stand  growing  in  a  good-quality  site.  The
analysis of the selected growth functions and
parametrization  methods was performed on
growth series at time intervals of five years
based on the diameter at breast height (d1.3)
measured to the nearest 1 mm. Current and
mean annual increments were inferred from
diameter growth data. Growth and increment
curves were subjected to graphical analysis,
revealing two episodes of abrupt increases in
current  increment  along  the  stand  history.
The first episode was interpreted as due to an
intensive  thinning  carried  out  prior  to  the
culmination of current increments at the age
of 50-70 years, while the other was at the be-
ginning  of  the  natural  regeneration  step  at
the age of 120-140 years. From a modeling
point of view, the increase of tree growth at
later stages due to seeding felling is in con-
tradiction  with  the  sigmoid-shaped  growth
models,  that  predict  a  reduction  of  current
increment at older ages. Therefore, each dia-
meter growth series was truncated, conside-
ring only the  data  prior  to  the start  of the
stand’s  natural  regeneration  (identified  at
age  120  years).  Moreover,  data  from trees
with  age  <  20  years  were  excluded  from
growth series, since their diameters were af-
fected by rather high measurement errors. In
total, 67 growth series with age ranging from
20 to 115 years were included in the analy-
sis. Since data were grouped in 5 years inter-

vals, each individual growth series was com-
posed by 19 measured diameters. More de-
tailed  information  on  individual  series  and
discrete  events  along  the  stand  history are
given in Tab. 2.

Error analysis
Performances of growth functions were as-

sessed by estimating the bias and accuracy of
short-term (5 years) predictions of tree dia-
meter  growth.  Comparison  of  observed  vs.
predicted values for the variables considered
represent  a commonly-used,  simple method
to  evaluate  growth  models  (Pretzsch  2009,
Vanclay  1994).  Model  validation  through
the analysis of deviations of projected values
from empirical data, allows an objective esti-
mation of the ability of growth functions to
capture  meaningful  biological  trends,  and
extrapolate growth  changes over time,  thus
assessing its suitability to modeling purposes
(Ek & Monserud 1979, Zhang 1997).

Each  growth  series  was  divided  into  two
parts for parametrization and validation pur-
poses. The parametrization step was carried
out on sequences of 18 measurements at the
age ranging from 25 to 110 years covering
all the life stages (juvenility, maturity, senes-
cence). The validation step was carried out
on one measurement at the age of 115 years.
This measurement was omitted from the exi-
sting growth series and used for comparison
of real diameter at this age with the diameter
estimated  by  forward  extrapolation  of  the
parametrization sequences.

Relative errors of extrapolation for tree dia-
meters were calculated at the validation step
as  e% = (dp -  dr) /  dr · 100, where  dp is the
predicted diameter and dr is the real diameter
at  age  115  years.  Every  selected  growth
equation was parametrized for every indivi-
dual  tree.  Therefore,  a set  of 67 individual
errors were obtained for every used growth
function. The arithmetic mean of individual
tree errors e% was calculated as a measure of
bias, and the root mean square error (RMSE)
as a measure of the absolute size of errors,
thus indicating the practical applicability of
the function considered.

Parametrization
As for classic (frequentist) approach, para-

metrization  of  growth  functions  was  done
using the NLS method implemented  in  the
software  package  STATISTICA

® v.  10.0  (Stat-
Soft 2010). Among different numerical opti-

mization methods, the derivative Levenberg-
Marquardt  method  was  primarily  chosen;
when convergence using this method failed,
the more robust non-derivative techniques of
direct search, the Hooke-Jeeves and Rosen-
brock  methods,  were  applied  instead.  The
simple form of the NLS method was used,
despite  the  inherent  heteroscedasticity  and
autocorrelation of growth residuals. Indeed,
autocorrelation and non-homogeneity of the
variance of residual deviations do not repre-
sent a serious problem for predictions, since
parameters  estimates  of  growth  models  are
not biased, as previously reported by several
authors  (Bock  &  du  Toit  2004,  Vanclay
1994).

Bayesian  parametrization  starts  with  the
formulation of the a priori probability distri-
butions of individual growth functions para-
meters. The marginal a priori parameter dis-
tribution represent the probability of occur-
rence  of  parameter  values  for  the  selected
growth functions, when modeling of diame-
ter  growth  is  applied  to  individual  beech
trees  growing  in  different  social  positions
and in sites of varying quality under natural
conditions  of  Slovakia.  Such  distributions
were mathematically formalized (elicited) by
a  special  mathematical-statistical  procedure
based on the calculation of percentiles of the
empirical  diameter  distributions  (for  a  de-
tailed description, see  Sedmák 2009).  Halaj
(1957) reported the empirical distribution of
the  relative  frequencies  of  2-cm  diameter
classes in 420 beech stands, according to dif-
ferent stand mean diameters (from 10 to 50
cm, scaled by 2 cm), along with the so-called
“degree  of  stand  volume  variance”  (lower,
average and  higher  degree).  Such  informa-
tion  has  been  included  in  the  National
growth  and  yield  tables  (Halaj  &  Petráš
1998). By combining the information on age
and site class, mean stand diameter may be
predicted at any age for different site class,
and consequently the percentiles of the cor-
responding  diameter  distribution  (99  per-
centile  growth series for percentiles  1-100)
may be obtained.  The percentile growth se-
ries simulate the growth in diameter of indi-
vidual beech trees growing in different social
position. Fitting all growth functions to these
series  using the NLS method,  we obtained
information  on  possible  values  of  function
parameters for each site class. Consequently,
we could  infer  the  probability  distribution,
mean values, variance and covariance of in-
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Tab. 2 – Main statistics of the empirical growth series analyzed. (SD): Standard deviation;
(dbh): diameter at the breast height.

Statistics
Current incre-
ment culmina-

tion (yrs)

Mean incre-
ment culmi-
nation (yrs)

Age of 1st

release
(yrs)

Beginning of
regeneration

 (yrs)

Cut down
age (yrs)

Cut down
dbh
(cm)

Minimum 27 33 25 75 85 17.3
Mean ± SD 72 ± 14 95 ± 20 61 ± 18 114 ± 18 131 ± 17 37.1 ± 9.7
Maximum 100 145 110 150 165 54.4



Sedmák R & Scheer L - iForest 8: 631-637 

dividual  parameters for  each selected func-
tion.  Then,  convenient  marginal  probability
distributions  of  individual  parameters  were
found by Pearson’s χ2 test. The elicited mar-
ginal  a priori distributions of individual pa-
rameters had a form of either lognormal or
Gamma distribution. Joint  a priori distribu-
tions  of multiple  parameters  were obtained
as the simple product  of marginal  distribu-
tions of individual parameters.

Bayes theorem was applied as a combina-
tion  of  a  normal  likelihood  function  with
joint  a  priori distributions  determined  by
elicitation. According to the Bayesian appro-
ach, parameter estimates were calculated by
the Gibbs sampling method using the soft-
ware  package  WINBUGS 1.4  (Lunn  et  al.
2000). The Gibbs method belongs to a group
of numerical methods of integration of mul-
tiple  integrals  referred to  as Markov Chain
Monte Carlo (MCMC) methods. To generate
the numerical estimates of the parameters for
the  growth  functions  to  be  compared,  11
MCMC chains  were  used  and  a posteriori
parameter  distributions  were  composed
based  on  numerical  generation  of  about
500 000 values. With regard to multimoda-
lity of some a posteriori marginal parameter
distributions,  the  final  parameter  estimates
were obtained as the medians of the a poste-

riori distributions. In total, 804 parametriza-
tions  of  the  six  selected  growth  functions
were done on a sample of 67 trees using the
two estimation methods.

Results
A summary of error statistics in the predic-

tion of individual tree diameters at age 115,
according  to  the  selected  growth  functions
and the parametrization  method chosen are
given in  Tab. 3.  Tab. 4 reports the derived
ratios  of  RMSE  or  biases  of  a  particular
combination of growth function and parame-
trization method against the minimal RMSE
or bias from all function/parametrization me-
thod combinations (6 functions × 2 parame-
trization methods = 12 combinations). Ratios
of RMSE and bias reported in Tab. 4 facili-
tates the comparison of growth functions and
parametrization methods according to possi-
ble aims of the modeling. The common aim
of modeling in forestry and ecology is either
the minimization of bias in order to ensure
the accuracy of predictions (“bias” columns -
Tab. 3,  Tab. 4), or the minimization of the
magnitude  of  total  errors,  to  guarantee  the
practical applicability of the model (columns
“RMSE” - Tab. 3, Tab. 4).

In  general,  absolute  values of RMSE and
biases of the five-year diameter predictions

are rather small (Tab. 3). Most of the RMSE
lie within the interval of 3.7-8.6%, with two
exceptions  approaching  the  limit  of  20%.
Similarly, most of biases were ranging 1.1-
7.5%,  with  only  one  exception  reaching
17.6%. Most of the bias signs were positive,
indicating  a  tendency  to  overestimation  of
real  diameters  in  the  prediction  of  future
growth.

The  results  of  the  comparison  of  para-
metrization  methods  regardless  of  the  re-
spective  growth  function  (columns  “NLS”
and “Bayes” -  Tab. 3) showed that the Ba-
yesian  parametrization  was  moderately  to
significantly better as for RMSE in four out
of six growth functions, though in two cases
it  was significantly worse.  From the view-
point of bias, the situation is more balanced
(3× better NLS, 3× better Bayes). However,
in cases where NLS gave better results,  its
prevalence  was  pronounced,  whereas  in
cases where better results were obtained us-
ing  the  Bayesian  approach,  its  prevalence
was only moderate.

Regardless the parametrization method, the
analysis  of  growth  function  efficiency  ac-
cording to a number of parameters (columns
and  lines  “Average”-  Tab.  4)  showed  that
three-parameter functions perform better for
both aims of modeling. Differences in mean
RMSE ratios averaged across functions and
parametrization  methods  are  much  smaller
than  in  mean  bias  ratios.  This  means  that
three-parameter  functions  performed  only
slightly better for error magnitude, but their
predictions are clearly less biased; therefore,
three-parameter functions remarkably produ-
ced more realistic predictions.

A  comparison  of  the  function  categories
(three  or  four-parameter)  within  a  specific
parametrization  methods  (Tab.  4,  columns
“NLS”  and  “Bayes”,  lines  “Average”)
showed  that  three-parameter  functions  per-
formed much better for both modeling aims
within  Bayesian  parametrization  and  were
also less biased when the NLS parametriza-
tion  method  is  used.  Four-parameter  func-
tions are much more suitable for a minimiza-
tion of RMSE within NLS, although they are
somewhat more biased.

A more  detailed  comparison  of  the  most
successful combinations of function category
and methods (three-parameter growth  func-
tions/Bayes  parametrization  and  four-para-
meter growth functions/NLS) led to the con-
clusion  that  three-parameter  growth  func-
tions  combined  with  the  Bayesian  para-
metrization  method  gave  better  results  for
both  modeling  aims.  The  combination  of
three-parameter  growth  functions  with  the
Bayesian approach (column “Bayes” -  Tab.
3)  showed a smaller  RMSE by 15-25% as
well as smaller biases by 40-60% than four-
parameter functions combined with the NLS
parametrization  method  (column  “NLS”  -
Tab. 3).
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Tab. 3 - Error statistics of diameter predictions for trees at the age 115 years according to
growth  functions  and parametrization  methods.  (NLS):  nonlinear  least  squares;  (RMSE):
root mean square error; (1): highlighted are minimal values of the statistic within each mo-
deling aim (minimization of bias or RMSE); (2): only absolute value of biases are divided to
analyze their magnitude irrespectively of their sign; (3): only absolute value of biases were
averaged for the same reason than in (2).

No.
Parameters

Growth
function

Parametrization methods

NLS Bayes Bayes/NLS ratio

RMSE
%

Bias
%

RMSE
%

Bias
%

Ratio of 
RMSEs

Ratio of
Biases(2)

3-parameter
functions

Korf (KF3) 6.4 4.9 5.9 3.7 0.92 0.76
Richards (R3) 6.8 5.0 5.5 3.9 0.81 0.77
KM-function (KM3) 17.8 -1.1(1) 4.3(1) 2.1(1) 0.24 1.93
Average 10.3 3.7(3) 5.3 3.2 0.66 1.15

4-parameter
functions

Weibull (W4) 3.7 2.1 6.1 3.8 1.68 1.82
Richards (R4) 7.2 6.4 6.7 5.9 0.93 0.92
KM-function (KM4) 8.6 7.5 19.8 -17.6 2.30 2.36
Average 6.5 5.3 10.9 9.1 1.64 1.707

Tab. 4 - Ratios of the RMSE and bias vs. minimal values of the RMSE and bias reported in
Tab. 3. (NLS): nonlinear least squares; (RMSE): root mean square error; (1): best ratios ac-
cording to the modeling aim (minimization of bias or RMSE).

No.
Parameters

Growth
function

Parametrization methods
NLS Bayes Average

RMSE Bias RMSE Bias RMSE Bias
3-parameter
functions

Korf (KF3) 1.73 4.41 1.37 1.76 1.55 3.09
Richards (R3) 1.84 4.50 1.28 1.86 1.56 3.18
KM-function (KM3) 4.81 1.00 (1) 1.00 (1) 1.00 (1) 2.91 1.00 (1)

Average 2.79 3.31 1.22 1.54 2.00 2.42
4-parameter
functions

Weibull (W4) 1.00 (1) 1.89 1.42 1.81 1.21 (1) 1.85
Richards (R4) 1.95 5.77 1.56 2.81 1.75 4.29
KM-function (KM4) 2.32 6.76 4.60 8.38 3.46 7.57
Average 1.76 4.80 2.53 4.33 2.14 4.57
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Comparison of individual growth functions
regardless  of  the  parametrization  method
showed that the Weibull (W4) and the KM3
functions were the most successful. The W4
function gave better results from the point of
view of RMSE, while the KM3 function per-
formed better from the point of view of bias
(columns “Average” - Tab. 4). It is worth to
notice that the KM3 function produced bet-
ter results in combination with the Bayesian
parametrization,  while  the  W4  function  in
combination  with  the  use  of  the  NLS
method. Also, the KM3 function gave three
times better  results  for  a  various  combina-
tions of modeling aims and parametrization
methods  (Tab.  4),  in  particular,  the  KM3
function was the best for combinations bias/
NLS, bias/Bayes and RMSE/Bayes (Fig. 2).

Comparing  the  selected  growth  functions
across  parametrization  methods,  the  W4
function  produced  more  robust  results  and
smaller  differences  among  parametrization
methods.  Moreover,  the KM3 function  can
produce excellent results as far as biases are
concerned.  However,  when  using  the  NLS
method, the small bias was offset by a signi-
ficant  decrease  in  the  overall  accuracy  of
predictions. Furthermore, the four-parameter
version of the KM-function resulted among
the worst  functions,  especially in  combina-
tion  with  the  Bayes  parametrization.  This
evidence is exactly the opposite of that ob-
tained  from  the  results  of  three-parameter
version. Similar considerations hold for the
three  and  four-parameter  versions  of  the
Richards  function.  In  the  latter  case,  the
three-parameter function was similarly better
than  the  four-parameter  version  for  both
parametrization methods and modeling aims,
although  differences  were  not  so  pronoun-
ced.

Discussion
The  most  important  characteristic  of  the

KM-function is its time-determinate feature,
i.e., the function predicts the complete termi-
nation of growth when the organism reaches
its final size. A more detailed analysis of the
integral  and  differential  forms  of  the  KM-
function showed that:
1. The integral form (eqn. 2) admits the pos-

sibility of starting the growth at the age of
t(0)=0 ,and at a given age, it simultaneous-
ly admits the possibility y(0)=0. The diffe-
rential  form (eqn.  3)  at the age of  t(0)=0
predicts dy/dt=0; RGR at the age of t(0)=0
is not defined. However, it holds true that
if  t(0)→0, RGR is limited in its approach
to infinite RGRmax.

2. The position of the inflexion point within
the life cycle is not fixed. The inflexion of
the  growth  curve can  occur  at  any age  t
and value y.

3. In  the  period  of  growth  cessation  at  the
time  t=tmax, the integral form (eqn. 2) pre-
dicts y=ymax, and simultaneously (eqn. 3) at

the age of  t=tmax it holds true that  dy/dt=0
and consequently, RGR = 0.
Property (1) is shared by Richards, Weibull

and  KM functions  and  contributed  signifi-
cantly to their popularity. It does not contra-
dict  the  known  biological  laws and  contri-
butes to the feasibility of growth modeling at
the early life stages. The Korf function at the
age of  t(0)=0 has neither the defined value
y(0) nor the value dy/dt, thus the possibility
for growth to start from the zero point is ex-
cluded.

From properties  (2,  3)  it  follows  that  the
KM-function is a model of time-determinate
asymmetrical growth starting at zero size of
an organism and terminating when it reaches
its  final  size.  Since  the  KM-function  does
not merely approach asymptotically, but ex-
actly reaches both the starting and the final
size, the equation assumes a finite length for
the growth period of an organism. This re-
presents  an  independent  parameter  in  the
equation  tmax and  can  be  satisfactorily  esti-
mated by means of the maximum age of the
tree species under the particular natural con-
ditions.  Simultaneously,  the  age  of  growth
rate culmination can occur at any time t  [0,∈
tmax] and at any value y, resulting in the capa-
bility of the growth function to represent any
degree of time growth asymmetry.

The growth function Beta (Yin et al. 2003)
is  the only other  function  known  from the
literature which is able to describe in a con-
tinuous way the determinate growth of living
organisms. It  is based on the application of
the frequency function of Beta distribution,
which  is  a  more  general  alternative  to  the

KM-distribution.  As  a  result,  a  number  of
common properties  are  shared  by the  Beta
and the KM-function.

Yin et  al.  (2003) point  out  the following
properties of the Beta function: (i) its flexi-
bility – the point of inflexion of the growth
trajectory  may  occur  at  any  position;  (ii)
good  parametrization  properties  resulting
from clear interpretability of parameters, and
in particular (iii)  the possibility to estimate
the final value of yield at the end of the pro-
duction  period.  These  advantages  are  also
true  for  the  KM-function,  especially  in  its
three-parameter version.

Easy  and  stable  parametrization  of  the
three-parameter KM-function results from a
good  biological  interpretability  of  parame-
ters, likely stemming from its smaller intrin-
sic  curvature.  Indeed,  the  integral  form of
the KM-function does not contain any expo-
nential  terms  (eqn.  2).  Consequently,  the
equation is similar to Hossfeld and Levako-
vić growth functions (Zeide 1993 – eqn. 4,
eqn. 5):

According to  Kiviste (1988),  Zeide (1993)
reports that these equations are surprisingly
accurate,  though they are among the oldest
growth functions known.

On the other hand, the four-parameter KM
function  version  provided  poor  predictions
on the dataset tested in this study. Also, the
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Fig. 2 - Ranking of the analyzed growth functions according to the modeling aim (minimiza-
tion of bias or RMSE) and the parametrization method used (NLS or Bayesian).

Hossfeld : y=
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three-parameter  KM  function  along  with
NLS parametrization method provided rela-
tively large RMSE. The above facts suggest
that, despite its expected small intrinsic cur-
vature, the KM function may have a rather
large parameter-effect curvature.  The inclu-
sion of an additional parameter into the KM
function led to the instability in the estima-
tion of parameters, and consequently the ac-
curacy was notably reduced, even for short-
term  predictions.  The  same  scenario  hold
also for the Richards’ function. 

The problem of the relatively large parame-
ter-effect curvature of the KM-function may
be  solved  by  the  inclusion  of  biologically
meaningful  constraints  into  the  process  of
parameter  estimation.  For  example,  fixing
the parameter value tmax based on its biologi-
cal interpretation (i.e., the expected lifespan
of the organism considered) has proven to be
useful,  especially when  further  information
on  other  parameters  was  included  into  the
estimation  process by the Bayesian  estima-
tion  procedure.  As a result,  the three-para-
meters KM function was assessed as the se-
cond most successful function.

A  good  accuracy  of  the  KM-function  is
also expected based on additional theoretical
reasons.  Despite  several  shared  properties,
KM and Beta functions also show some dif-
ferences.  The  differential  form of  the  Beta
function,  obtained  from  the  original  fre-
quency function of the Beta distribution un-
der the assumption  t(0)=0 and arbitrarily fi-
xing the parameter  δ = 1,  is  the following
(Yin et al. 2003 - eqn. 6):

where  ti is the time of growth rate culmina-
tion  and  c is  the  maximum growth  rate  at
time  ti. The above function has both expan-
sion and restriction elements linked to age,
i.e., the expansion element is a power func-
tion  and  the  restriction  element  is  a  linear
function of age. The biological rationale for
the linearity of the Beta function restriction
element  is  problematic:  the  problem origi-
nates from the fixation of  δ in the original
Beta function because of the need for analy-
tical integrability of the eqn. 6. In the KM-
function,  both  elements  represent  a  power
function of age, thus being theoretically bet-
ter fitting to empirical data.

Linkage  to  t of  expansion  and  restriction
elements  of the differential  form is a quite
rare  property.  The  age  t  has  both  positive
and negative influence on growth rate dy/dt,
though  the  negative  influence  prevails  in-
creasing the age.  The only other  well-esta-
blished function having this property is the
Weibull growth function, whose differential
form is as follows (eqn. 7):

Another similar growth function was pro-
posed by Sloboda (eqn. 8):

whose expansion element is linked to the in-
teraction of age and size. In almost all other
growth  functions,  the expansion  element  is
linked to size  y and the restriction compo-
nent  to  age  t.  Consequently,  KM,  Weibull
and Sloboda’s  functions  admit  the possibi-
lity of initial age t(0)=0, assuming dy/dt = 0
at  this  age.  On  the  other  hand,  classical
Weibull and Sloboda’s equations are typical
representatives  of  non-determinate  growth
models,  in which  if  t→ , then  ∝ y→ymax and
dy/dt→0, i.e., they implicitly assume an infi-
nite lifespan for the organism studied.

The KM, Beta  and  Weibull  growth  func-
tions,  along  with  the  Richards  and  Korf
functions,  share  an  additional  feature:  all
functions have y(0)=0 at the age t(0)=0, that
is, they do not have a defined RGR (i.e., if
t→0 then RGR→ ). Unlike the above equa∝ -
tions,  the  integral  form  of  the  Sloboda’s
model does not allow the possibility  y=0 at
any age, thus RGR is defined and equal to 0
at the age t(0)=0. Based on the above consid-
erations,  it  follows  that  Weibull,  Beta  and
KM functions are not suitable for modeling
the  exponential  growth  in  the  initial  life
stages  (e.g.,  at  t<1),  since  the  classical
growth analysis assumes that the growth rate
is proportional to size, i.e., the final RGR ap-
proaches the final maximum value.

Comparison  of  the  selected  growth  func-
tion properties proved the usefulness of the
KM-function for growth modeling purposes.
The  three-parameter  version  (KM3),  com-
bined  with  the  Bayes  parametrization  me-
thod,  was the second most successful func-
tion for short-term predictions of tree diame-
ter growth on the studied dataset. In particu-
lar, such model was suitable for bias mini-
mization. 

As expected,  results of this  study showed
that  the  Bayesian  parametrization  method
performs  slightly  better  in  minimizing  the
modeling  errors.  Also,  NLS  was  slightly
more suitable when minimization of biases is
required in short-term predictions. However,
differences in RMSE and biases among the
parametrization  methods  used  were  rela-
tively small, probably due to the fairly large
number  of  measurements  covering most  of
the life cycle of trees. Using high quality em-
pirical measurements, the above differences
are diminished because the importance of  a
priori parameter  distributions  quickly  de-
creases in the Bayesian procedure (Bock &
du Toit 2004).

Conclusions
The  analysis  carried  out  revealed  several

useful theoretical properties of the KM-func-
tion:

• good fitting to empirical data and high in-
terpolation accuracy, due to the possibility
of inflexion at any y value and the power
form of both key components in the diffe-
rential equation;

• realistic  growth  reconstruction  of  back-
ward  extrapolations  based  on  empirical
measures, thanks to the possibility of pre-
dicting  y(0)=0  and  dy/dt =  0  at  the  age
t(0)=0, consistently with known biological
growth laws.

• realistic growth predictions of forward ex-
trapolations based on empirical measures,
thanks to the  a priori  inclusion of a para-
meter related to the final length of life cy-
cle and the final size of the organism.
Results of the comparison of the KM-func-

tion with selected classical growth functions
proved  its  usefulness  for  modeling  the
growth  in  diameter  of  individual  trees,  in
particular  in  its  three-parameter  form com-
bined  with  Bayesian  parametrization  when
minimization  of  prediction  bias  is  needed,
while  the  use  of  four-parameter  Weibull
function  combined  with  the  NLS  para-
metrization method is recommended for the
short-term prediction of diameter growth.
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