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Introduction
Basal  area is a key descriptor  of a forest 

stand,  and  is  often  used  to  estimate  other 
forest attributes such as biodiversity indices 
(Motz  et  al.  2010),  as  a  key parameter  of 
ecological  habitat  models  (Zielinski  et  al. 
2006, Floyd et al. 2009) or as validation data 
for large scale ecosystem models (Bugmann 
& Solomon 2000). National Forest Invento-
ries comprise large bodies of individual tree 
measurements, usually derived from intensi-
ve field sampling. Such inventories were tra-
ditionally designed to efficiently estimate the 
standing  stock of  timber  available  in  large 
spatial areas, but this data is increasingly be-
ing used in  other,  more ecologically based 
applications.  However,  for  inventories  that 
use the common “sampling proportional  to 
size”  design  (angle-count  plots  -  Bitterlich 
1948) the data available for individual plots 
is  a  point  estimate  (not  a  spatially explicit 

measurement  as  available  from  fixed-area 
plots).  Large  numbers  of angle-count  plots 
must thus be aggregated to attain an adequa-
te estimate of mean basal area. This is pro-
blematic in applications where the data from 
each single plot is assumed to be a reasona-
bly accurate representation of conditions on 
that plot and regressed against some predic-
tion or dependent variable. This problem is 
particularly  acute  when  angle-count  inven-
tory data is used to evaluate the performance 
of forest growth models (i.e., Eastaugh et al. 
2011,  Huber et al. 2013); while the full in-
ventory (aggregating all points) may be ideal 
for assessing model bias, the uncertainty of 
the individual plot-level data makes evalua-
tion  of  model  precision  impossible.  We 
present  here  a  new  method  of  obtaining 
more useful estimates of basal area on single 
angle-count plots through the resampling of 
a National Forest Inventory (NFI) database.

When inventory data is used for its desi-
gned purpose (the assessment of mean basal 
area or volume over large areas) the impreci-
sion of individual plot data is not relevant, as 
(presumably) the sample design of the inven-
tory uses sufficient plots to reduce standard 
errors  to  useful  limits.  Recently  however 
large-scale  inventory data  is  being  used  in 
carbon budget  studies  (i.e.,  Bellassen et  al. 
2011, Mohren et al. 2012), to derive estima-
tes  of  historic  forest  management  practices 
(Eastaugh & Hasenauer 2011, 2012), to mo-
del  forest  growth  dynamics  (Didion  et  al. 
2009,  Lichstein et al. 2010), to study forest 
damage (Jalkanen & Mattila 2001) and in a 
host  of  other  applications.  Mäkelä  et  al. 
(2012) have pointed  out  the  advantages  of 
using permanent plot NFI records for model 
development  and  calibration,  highlighting 
the  broad-scale  representativeness  of  the 
datasets.

Sophisticated  forest  models  usually  have 
intensive data requirements, and NFI data is 
potentially  an  extremely valuable  resource. 
Many models  can be run  in  a point-based, 
scale indeterminate fashion to avoid the as-
sumption  that  single-point  data  is  fully re-
presentative  of an area (Seidl  et  al.  2013), 
but the non-linear nature of many modelled 
processes means that imprecision in the in-
put  data  can  lead  to  biased  outputs,  even 
though  the  inputs  may be  an  unbiased  re-
presentation of the population.

If stand basal area is used as an indepen-
dent  variable  in any application,  its  impro-
ved estimation can only lead to better mo-
dels and clearer understanding of its impact 
on stand density dependent attributes of fo-
rested  ecosystems.  Although  inventory  pu-
rists may argue that this is a misuse of data 
collected  for  a  single  specific  purpose,  the 
scope,  comprehensiveness,  reliability  and 
high collection cost of NFI datasets demands 
that efforts should be directed at how to va-
lidly use this data in other applications.

A fixed-area inventory plot (“sampling pro-
portional to area”) comprises an exhaustive 
sample of  all  trees  of  above  some defined 
size, in a predefined area. In  the context of 
the broader inventory it  is a single sample, 
and while  it  should never be considered as 
being representative of the  surrounding re-
gion it is nevertheless a complete record of 
the target  population  that  exists  within  the 
plot boundaries. Nested fixed area plots are 
similar, with the constraint that in the larger 
plots the target population is restricted to the 
larger trees. An angle-count plot is different, 
in that trees are selected as being in or out  
of  the  sample  based  on  the  relationship 
between their diameter at breast height (dbh) 
and their distance from the plot centre (R). 
Trees whose subtended angle is greater than 
some  predefined  figure  are  counted  “in”, 
thus large trees may be included at  greater 
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distances than small trees. Mathematically, if 
K is the predefined “basal area factor”, then 
(with  dbh in  cm and  R in  m) a tree is  in-
cluded  in  the  sample  when  dbh2/4R2 >  K 
(Bitterlich 1948).

In metric units, K is normally expressed in 
m2 ha-1,  thus  the  number  of  trees  counted 
“in” the sample multiplied by  K is the esti-
mated  basal  area  of  the  stand.  The  angle-
count  method  has  been  comprehensively 
proven to provide unbiased estimates of ba-
sal  area  both  in  theory (Palley & Horwitz 
1961) and in practice (e.g.,  Whyte & Ten-
nent 1975), assuming the absence of measu-
rement error (Eastaugh & Hasenauer 2013). 
Unlike a fixed-area sample,  a single angle-
count  sample is  not  exhaustive  of all  trees 
and does not relate to a definable area. Also, 
the  basal  area  estimate  must  be  an  integer 
multiple of  K, which (for a single estimate) 
is unlikely to be a precise reflection of rea-
lity. A single fixed-area sample may validly 
be called a “measurement” of basal area that 
pertains to a given bounded location, but an 
angle-count  sample  cannot.  The  degree  of 
variation  in  angle-count  estimates  is  such 
that a single plot  value is of little practical 
use, and the normal procedure for assessing 
basal area within particular stands with an-
gle-counts is to make several estimates from 
different  points  within a stand and average 
the results.

National Forest Inventories are commonly 
designed  as  systematic  and/or  cluster  sam-
pled grids, and (in central Europe) the points 
are generally too far apart to be considered 
as being in the same stand. For their design 
purpose  of  estimating  national-scale  forest 
attributes this is fine, but for stand-scale ba-
sal area assessment the angle-count method 
(as  implemented  in  NFIs)  represents  a  se-
rious  disadvantage.  We show in  this  paper 
however that it is possible to develop a more 
useful  estimation  of  basal  area  on  single 
plots, through resampling the original data-
set.  While  an  angle-count  based  estimate 
from a  single  point  will  not  approach  the 
precision of a single fixed-area measurement 
within the area measured (which is of course 
the true value inside that area), the improve-
ments gained through the methods presented 
in this study may improve precision enough 
that they become more useful in future ap-
plications.

Stöhr (1959) suggested using variable ba-
sal area factors for improving the accuracy of 
the estimated basal area in stands using dif-
ferent  angles.  Stöhr’s  method  relied  on  re-
cording  and  ranking  the  subtended  angles 
between the trees and plot centers which ef-
fectively results in different or multiple basal 
area factors. This principle was later pursued 
by Spurr (1962). Later, Schieler (1997) pro-
posed using different angle count factors to 
test  for  the  problem  of  overlooked  trees 
within angle count sampling.

The objective  of this  study is  to  improve 
the precision of angle count estimates on in-
dividual  points  through resampling the ori-
ginal  database  using  multiple  basal  area 
factors.  We first  demonstrate  the  principle 
through two simulation studies:
1. to establish that the new estimates of basal 

area have an improved  root  mean square 
error  on  plots  where  true  basal  area  is 
known, and

2. to show how our  new estimates of basal 
area are more useful for model evaluation 
than the original estimates on plots where 
the true basal area is not known.
We then apply our method to data of the 

Austrian National Forest Inventory, showing 
substantial improvements in estimates at the 
individual plot level.

Methods

Simulation 1
In  this  example  we  simulate  four  regular 

stands of trees, on square spacing, with den-
sities of 324,  400,  784 and 1936 stems per 
hectare (as might be found in a timber plan-
tation). All trees are identical and have a be-
ginning  dbh of  11cm.  dbh increases  by  1 
centimeter per year until the simulation ends 
at dbh = 30cm. Assigning Cartesian coordi-
nate (0, 0) meters to the center of one square 
of trees, sample points are established at co-
ordinates: (0, 0); (0, 0.5); (0, 1); (0, 1.5); (0, 
2);  (0.5,  0.5);  (1,  1);  (1.5,  1.5);  and (2,  2) 
(nine  unique  sample  points).  From  each 
point,  a  series  of  angle-count  estimates  of 
basal  area is made using basal area factors 
(BAFs) of 4.0, 4.1, 4.2 … 8.0 for each year 
of the simulation. The lists of trees counted 
“in” the plots  with  BAFs > 4.0 are clearly 
subsets of the lists made with BAF = 4.0, so 
this process equates to resampling a dataset 
created with BAF = 4.0. The purpose of this 
exercise is to compare the precision of point 
estimates  made with  a BAF of 4.0  against 
estimates made using the mean of the esti-
mates (from single points) from the multiple 
BAFs. We do this using the root mean squa-
re error (RMSE) of the estimates compared 
to the basal area implied by the known tree 
spacing  of  each  stand  in  each  year.  The 
RMSE for each time series of twenty years is 
calculated for each stand from each sample 
point and displayed as a boxplot of the nine 
values for each of the four stands.

Simulation 2
In the second simulation we establish 1000 

stands  of  randomly located  trees,  of  unde-
fined extent.  All  trees are identical  and in-
crease from 11 to 30cm dbh over 20 years, 
as in the prior example. From a centrally lo-
cated  sample  point  we  make  annual  esti-
mates of basal area density in each stand (G) 
using a BAF of 4.0 and  the multiple  BAF 
mean, as above.

As the extent  of each stand is undefined, 
the “true’ value of the basal area surrounding 
each sample point cannot be determined. As-
suming that we know however that there is 
no regeneration or mortality and the rate of 
dbh growth  remain  constant,  we  can  fit  a 
simple model to the estimates obtained, and 
assess the consistency of that model with its 
own assumptions. As the dbh of the trees is 
known  (and  thus  the  individual  tree  basal 
areas), we can use the estimated stand basal 
area  to  find  the  apparent  stem density  per 
hectare n&  (eqn. 1). With the condition that all 
diameters are equal:

From each 20 year time series we extract 
17  groups  of  four  consecutive  years.  The 
first two years of each of these are used to 
estimate  n (through  fitting  a  least  squares 
model) with both BAF = 4.0 and the mean of 
the multiple BAF estimates. Each model is 
then tested against a similar model fit to the 
estimations from the third and fourth years, 
and the results  expressed as the root  mean 
square difference between the means of the 
17 model pairs. The intention of this simula-
tion is to mimic a common practice in model 
evaluation; a model is calibrated using data 
from  one  time  period  and  its  predictions 
“validated’ against data from a later period. 
In this case, the “model” is the least squares 
estimation  of  n based  on  the  known  stem 
diameters  and  the  estimated  stand  basal 
areas.

NFI
The modern “permanent plot” Austrian Na-

tional Forest Inventory made its first measu-
rements in 1981, following two previous na-
tional  inventories  conducted  with  a tempo-
rary  plot  design.  Inventory  measurements 
covered the periods 1981-1985, 1986-1990, 
1992-1996, 2000-2002 and 2007-2009. The 
inventory is organized into tracts each of 4 
points on a 200 m square. 5600 such tracts 
are arranged in a square grid pattern across 
the country, including over areas that are not 
currently  forested.  Inventory  field  methods 
are  fully  described  by  Schieler  &  Hauk 
(2001). The inventory uses a basal area fac-
tor of 4.0 for all trees of greater than 10.4cm 
dbh. In this study we use data for the 1915 
points on the southeast corner of each tract 
that  contain  records  for  all  periods  from 3 
onwards.

Because the Austrian NFI records tree dia-
meters and locations,  we may resample the 
available  dataset  to  determine  which  trees 
would  have  been  counted  as  “in”  if  BAFs 
greater than 4.0 had been used. In this study 
we apply BAFs from 4.0 to 8.0 in steps of 
0.1, and thus obtain 41 different (but in the-
ory,  equally  unbiased)  estimates  of  basal 
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area  surrounding  each  inventory  point  in 
each period.

The precision of the estimates is assessed 
by examining the variance at each point  of 
the  basal  area  increment  between  periods. 
Increment, by definition, is the difference in 
basal  area  between  two  time  periods,  plus 
the basal area of any trees removed from the 
plot.  Directly  calculating  increment  in  this 
manner  (the  “Difference”  method)  is  how-
ever extremely imprecise, and as early as the 
1950s  Grosenbaugh  (1958) developed  the 
“Starting  Value” method to  reduce  the  va-
riance in increment estimates. In essence this 
is an upscaling of the observed increment of 
individual sampled trees plus the basal area 
of trees that have grown over the minimum 
diameter  threshold.  A disadvantage  of  this 
method is that on individual  plots  the esti-
mated increment is not necessarily equal to 
the  difference  in  basal  area  plus  removals 
(non-additive -  Martin 1982). For a detailed 
discussion of these methods and their varian-
ce see Hradetzky (1995). The Starting Value 
method  estimates  only  increment,  it  is  not 
applicable  to  basal area estimation.  Over  a 
very  large  number  of  plots  either  method 
should  indicate  the  same  mean  increment 
(Hasenauer & Eastaugh 2012), but experien-
ce shows that there is extremely poor corre-
lation between estimates for each individual 
plot. Our purpose here is not to derive better 
estimates of increment, rather, we use the in-
crement  estimates  as  a  means  of  assessing 
the precision of the basal area estimates.

In an angle count inventory using a single 
BAF it is common for the data on a single 
point to suggest that no increment occurred; 
i.e.,  no  new tree entered the sample in  the 
subsequent sample due to the spatial arran-
gement of trees surrounding the point. Con-
versely, data on many points suggest an un-
realistically  large  increment  for  the  same 
reason.  Although  increment  is  expected  to 
change in time somewhat due to forest age 
or  environmental  factors,  when  using  the 
Difference  method  the  apparent  extreme 
changes in increment on individual plots are 
more likely to be artefacts of the angle count. 
The imprecision arises not through any fault 
in  the  Difference  method  itself  (which  is 
simply a direct application of the definition 
of increment), but through the imprecision of 
the two basal area estimates used in the cal-
culation. It follows then that if increment va-
riance can be reduced, the estimates of basal 
area used to derive the increment are likely 
to be more precise.

Fig.  1 shows a demonstration of how the 
method provides improved estimates of basal 
area on an individual plot, and how this im-
provement  is  assessed  using  increment  es-
timates. The 5 histograms show the frequen-
cy of estimated basal area using the 41 dif-
ferent BAFs, in each of the 5 inventory pe-
riods. The mean of the estimates is shown as 

a solid  green line,  while  the estimate  from 
the  original,  unresampled  NFI  data  with  a 
BAF of 4.0 is shown as a dashed red line.

The  original  data  shows  that  four  trees 
were in the sample on this plot in periods 3, 
4 and 5. In  periods 6 and 7, 10 trees were 
present. The interperiod increments sugges-
ted by this are thus 0, 0, 24 and 0 m2 ha-1, 
which gives a mean of 6.0 m2 ha-1 period-1 

and a plotwise variance of increment estima-
tion  of  144.0.  Increments  according  to  the 
multiple BAF method are 3.8,  5.3,  6.6 and 
3.5 m2 ha-1 period-1, with a mean of 4.8 m2 

ha-1 and a plotwise variance of only 2.1. Al-
though  this  is  an  extreme  example  of  the 
possible improvements, it illustrates how we 
assess that  improvement:  if the variance in 
the plotwise increment estimates is reduced, 
then the basal area estimates are more pre-
cise.

Results

Simulation 1
On  each  of  the  four  simulated  regular 

stands of trees the multiple BAF estimate has 
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Fig. 1 - Demonstration of improved basal area estimation using multiple BAFs. Histograms 
show the distribution of all estimates on a single NFI plot, using BAFs ranging from 4.0 to 
8.0.
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Fig. 2 - Root mean square errors of stand basal area estimation in 
regular stands. Boxes show the median and distribution of RMSEs 
using nine different sample points in forests of four different stem 
densities arranged in regular square grids. Open boxes are for esti-
mates made with a basal area factor of 4.0, while solid green boxes 
are the RMSEs of the mean of 41 estimates made using basal area 
factors of 4.0 to 8.0 in increments of 0.1.

Fig. 3 - Comparison of the apparent error in models relying on esti-
mates of basal area to estimate stem density. Boxes show the root 
mean square difference between models constructed using two con-
secutive years of data with those using the next two consecutive 
years.

Fig. 4 - Mean Austrian basal area, determined with basal area factors 
from 4.0 to 8.0.
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a lower RMSE than the estimates using only 
a BAF of 4.0 (Fig. 2). The improvement is 
more pronounced at higher stem densities, at 
1936 stems per hectare the BAF = 4.0 esti-
mate  has  a  mean  RMSE  of  5.03  m2 ha-1 

(7.30% of the mean basal area of 68.96 m2 

ha-1 throughout the simulated period) and the 
multiple BAF estimate has a mean RMSE of 
2.39 m2 ha-1 (3.47%). Wilcoxon signed rank 
tests suggest all differences are significant at 
p < 0.004 except for the simulation with 324 
stems per hectare, which is not significant (p 
= 0.570).  The outliers  and highest  whisker 
extents seen in Fig. 2 are all from the simula-
tion with  the point  coordinate  (0,  0),  as in 
this  case  multiple  sets  of  four  trees  are 
equidistant from the sample point.

Simulation 2
Our  second  simulation  assumes  that  the 

“true” basal area of each randomly distribu-
ted stand  is unknown,  as  the extent  of the 
stands is undefined. The test thus examines 
the ability of models constructed using basal 
area estimates across two measurement years 
to predict the estimates (made from the same 
point) in the following two years. For a stand 
with 784 stems per hectare, across 1000 tri-
als models constructed with the BAF = 4.0 
estimates had a mean root mean square dif-
ference of 134 stems per hectare, while the 
Multiple  BAF method yielded a mean root 
mean square difference of 99 stems per hec-
tare (Fig. 3). A Wilcoxon signed rank  t test 
showed the difference to be highly signific-
ant, with p < 2.2e-16.

If  the angle-count  estimates  of basal  area 
were  assumed  to  be  “true  measurements”, 
this would seem to imply that models con-
structed based on eqn. 1 have serious flaws. 
The error of course is not in the equation or 
in the model fitting, but in the inconsistency 
of the estimates of stand basal area in each 
time period. This problem is shown in Fig. 3 
to be less acute when the mean of multiple 
basal area estimates is used.

NFI
The estimates using BAFs from 4.0 to 8.0 

of  mean  national  basal  area  across  all  pe-
riods are shown in Fig. 4. Contrary to theory 
the aggregated estimates from all BAFs are 
not the same; below a BAF of around 5.0 the 
estimate  is  lower  with  progressively  lower 
BAFs. Calculating mean basal area from the 
original  (not  resampled)  database  gives  a 
higher  estimate  than  with  a  resampling  at 
BAF = 4.0, as some trees appear to be at a 
distance too  great  to  allow their  inclusion. 
This is because trees near the borderline are 
checked and their inclusion in the sample de-
termined  according  to  their  dbh measured 
with calipers held at right angles to the rela-
scope.  The  recorded  dbh in  the  database 
however is made according to standard fore-
stry practice - on slopes of greater than 5° 
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Fig. 5 - Per-period increment estimates using three methods (Starting Value, Difference and  
MultiBAF mean). For graphical purposes the Difference method results have a minor ran-
dom component added, true values are all in integer multiples of 4.0. Each data point repre-
sents one of four increment periods on one of 1915 NFI plots.

Tab. 1 - Summary details of basal area, increment and plotwise increment variance. (n/a):  
not applicable.

Parameter NFI 
original

MultiBAF 
mean

Starting 
Value method

Mean basal area, periods 3 to 7 31.4 31.89 n/a
Mean increment per period 4.37 4.54 4.34
Mean plotwise variance in increment 22.68 11.03 5.47
Increment, periods 3 to 4 3.8 4.27 4.18
Increment, periods 4 to 5 4.02 4.35 4.29
Increment, periods 5 to 6 5.23 5.06 4.75
Increment, periods 6 to 7 4.39 4.48 4.11
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the measurement is made in the cross-slope 
direction (operator stands directly up-hill of 
the tree). Presumably there are also trees that 
are excluded from the dataset because their 
“right angle” dbh is too small, but (if it was 
measured) their “cross slope”  dbh would be 
sufficient to count them “in” the sample.

Basal  areas  calculated  with  the  recorded 
dbh data will omit those trees whose recor-
ded dbh appears too small for inclusion, but 
were included due to their (unrecorded) right 
angle  dbh,  explaining  why  the  resampled 
BAF = 4.0  estimate  is  lower  than  that  de-
rived  from the  original  database.  At  larger 
BAFs,  the  resampling  includes  trees  that 
have  ellipticity  such  that  their  right  angle 
dbh would exclude them from the sample if 
it had been made according to standard pro-
cedure, but only in cases of extreme ellipti-
city would trees be potentially excluded. As-
suming that no trees were inadvertently mis-
sed in  the original  sample,  the overestima-
tion at the larger BAFs is in the order of 2% 
of basal area.

Tab. 1 shows the mean estimated basal area 
across all plots and all periods. As suggested 
by  Fig.  4,  the  multi-BAF mean  is  slightly 
above that calculated with a BAF of 4 using 
the original,  not  resampled database.  Basal 
area estimates using multiple BAFs are over-
all correlated with those from the unresam-
pled data (r = 0.95), but on individual plots 
substantial differences are apparent. The dif-
ferences may range from half to double the 
original estimate.

Increments calculated based on the resam-
pled data are around 4% higher than that de-
rived from the non-resampled data calculated 
either with the Difference or Starting Value 
measurements,  which  give  almost  identical 
results (Tab.  1).  This appears to  be largely 
the result of random variation, as the break-
down  of  increment  estimates  per  period 

(Tab. 1, lines 4 to 7) does not show a con-
sistent relationship between methods.

When broken down further to the level of 
individual  plots  and  periods,  the  different 
methods give remarkably different estimates 
of increment (Fig.  5).  Estimates made with 
the non-resampled data using the Difference 
method are completely uncorrelated with es-
timates  using  the  Starting  Value  method. 
The mean from multiple BAFs shows corre-
lation to the Starting Value estimates with an 
r of 0.91.

The variance of the increment estimates on 
each  plot  were  calculated  across  the  five 
periods.  The “mean plotwise  variance”  va-
lues in  Tab. 1 are the mean of these varian-
ces, across the 1915 plots. The multiple BAF 
method  reduces  the  increment  variance  by 
over  50%,  indicating  that  these increments 
are  derived  from  substantially  better  esti-
mates  of  basal  area.  Although  the  Starting 
Value  method  provides  the  best  increment 
estimates, these are not useful in estimating 
basal area.

Discussion
The improvements in per-point  basal area 

estimation we claim in this study cannot be 
directly proven, but better estimates of incre-
ment calculated with the Difference method 
must  come  from  better  estimates  of  basal 
area, as only those estimates of basal area are 
used to estimate the increment. It is not pos-
sible  to  assess  how close  the  various  esti-
mates are to a “true” value, because no true 
value exists; basal area is a measure of densi-
ty that on single angle count plots pertains to 
no  definable  area.  If  multiple  samples  are 
made within a defined area then the mean of 
those  estimates  may be  assessed  against  a 
known true density, but this is not useful if 
the desired information is an estimate of ba-
sal area surrounding individual points.

The examples we have presented in this pa-
per show clear advantages of using a mul-
tiple BAF mean when examining individual 
plots. At first glance this seems counter-in-
tuitive: the resampled values at higher BAFs 
are  simply  nested  subsets  of  the  original 
data,  and  thus  seemingly should  confer  no 
increase in  precision.  In  the context  of the 
broader inventory this is of course true; the 
original  (smallest)  BAF  gives  the  largest 
sample sizes and thus the greatest precision 
across  the entirety of the sampled area.  At 
the individual plot level however, the preci-
sion  of  the  estimate  is  both  indeterminate 
(because there is no defined area) and limi-
ted by the fact that the density estimate must 
be in integer multiples of the basal area fac-
tor. The new information gained from the re-
sampling emerges from the knowledge that 
certain trees would be in the sample with a 
basal area factor of 4.0, but not in the sample 
with a BAF of some greater value. There is 
no  issue  of  “pseudo-replicating”  (Hurlbert 
1984)  because  we  at  no  time  treat  our  41 
replicates  as  independent  values.  Our  me-
thod relies on knowing the distance from the 
plot  centre  to  each  tree  originally  sampled 
(and then simulating larger BAFs), but mul-
tiple  estimates  could  also  be  made  in  the 
field using different BAFs and without mea-
suring distances.

Regardless of the estimate variance in  an 
individual angle count sample, a certain de-
gree of error will almost certainly be present 
because we are estimating a continuous va-
riable (the basal area) with a discrete func-
tion (the tree count). This is clearly shown in 
Fig. 6, where the estimates made with indi-
vidual BAFs (the thin grey lines) can each be 
seen to be unbiased estimators of the basal 
area, but with poor precision at most single 
points in time. The combination of multiple 
BAF estimates “smooths” the steps in basal 
area,  and thus the combined  estimate  (at  a 
single time point) is closer to the true value.

Regardless of the basal area factor applied, 
the estimates  are  unbiased  (statistically ex-
pected results are equal, even if the estimates 
themselves  are  not)  so  for  all  estimates 
E(G1) = E(G2) = ... E(Gn) even when  G1 ≠ 
G2.  This  does  not  require  statistical  inde-
pendence between the various estimates. Be-
cause the expectations are equal, as the num-
ber of estimates is increased the mean of the 
estimates approaches the true mean. This is 
illustrated  in  Fig.  6,  drawn  from our  first 
simulation with a stem density of 784 stems 
per hectare and a plot  centre coordinate  of 
(1, 1).

Holgate (1967) gives the estimate variance 
of  a  single  angle  count  VarEST(G) as  GK, 
which requires knowledge of the true basal 
area.  Given the imprecision in  G,  using its 
value as an estimate of the true G is unlikely 
to give useful variance estimates. Whatever 
the individual  values may be however,  the 
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Fig. 6 - Example of 
basal area estimates 

made with various 
basal area factors in 
a regular plot of 784 

stems per hectare. 
Data is drawn from 

Simulation 1, with a 
plot centre at 

coordinate (1, 1).
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combined estimate variance will be the sum 
of  the  individual  estimate  variances,  plus 
twice the covariance, divided by the square 
of the number of estimates.  For  the simple 
case of two estimates (eqn. 2):

If  the  two  basal  area  estimates  are  made 
with basal area factors K1 and K2, then (eqn. 
3 and 4):

Although a general expression relating the 
covariance to  the basal  area factors  cannot 
be determined, the results of this study show 
that this condition can be met.

It must be stressed that we do not claim to 
improve  overall  inventory estimates.  In  the 
case of Fig. 6, if such a sample was part of a 
large-scale inventory then it would be aggre-
gated with many other (similar) samples. Al-
though all individual samples would display 
the same “stepwise” increments in basal area 
estimation, if the sample locations were ran-
domly  located  these  steps  would  occur  in 
different measurement years, and over a lar-
ge number of samples the mean would ap-
proach a smooth curve. Our interest in this 
paper is how the stepwise artifact may be re-
duced on individual points.

If we define an area and take several sam-
ples inside that area (with fixed plots or an-
gle counts)  we can estimate the parameters 
of  the  population,  and  test  those  estimates 
against  the  truth  of  the  population  (if  we 
know it). Using multiple BAFs does not help 
with this; better results are gained with lar-
ger  sample  sizes  (i.e.,  the  smallest  BAF). 
The multiple BAF method cannot help us to 
reduce the number of samples needed to esti-
mate  a  population  value  of  basal  area.  In-
deed, across  several  points,  the  sample va-
riance is higher using the multiple BAF esti-
mates.  Just  because  we  have  more  precise 
point estimates does not mean we can better 
estimate population values. As an example, 
consider  a  forest  made  up  of  4  different 
equal-size stands, with true densities of 10, 
20, 30 and 40 m2 ha-1. The whole forest thus 
has an average basal area density of 25 m2 

ha-1. Angle counts in each stand with a BAF 
of 4.0 might (hypothetically) suggest 12, 12, 
32 and 44 m2 ha-1, for an average of 25 and a 
sample variance of 249.  Our multiple BAF 
method might give us estimates of 9, 15, 34 
and 43 m2 ha-1, which makes an average of 
25.25 and a sample variance of 254.  If  we 
are interested in estimating the forest popula-

tion density, then the best results come from 
the BAF=4.0. However, if our interest is in 
the  individual  stands,  then  we  look  at  the 
root mean square error of the individual esti-
mates. The RMSE of the BAF=4.0 estimates 
is 4.69, and the RMSE of the multiple BAF 
estimates is 3.57. So, in applications where 
we  treat  individual  points  as  representing 
reality we should use the multiple BAF esti-
mate.  Wherever  we  treat  individual  points 
only as samples from a population we should 
use the original data.

Our second simulation shows the risks in 
assuming that individual  angle-counts com-
prise  individual  “measurements”  of  basal 
area.  The  “model”  we  use  for  estimating 
stem density (eqn. 1) is mathematically per-
fect, it is simply the estimated basal area per 
hectare divided by the individual basal area 
of the (identical)  trees  sampled.  The appa-
rent errors in the model arise from the impre-
cision of the input estimates, both in the cali-
bration  and  validation  phases.  Improving 
these estimates clearly improves the apparent 
precision of the model. If  such an exercise 
were  conducted  using  fixed  area  plots  the 
results would be trivial: with no regeneration 
or mortality the number of stems within the 
plot remains constant.  Naturally,  if a forest 
monitoring programme were to be designed 
with the purpose of determining precise in-
dividual  plot  values,  then  fixed-area  plots 
would be required, but the main purpose of 
National  Forest  Inventories  is  the  efficient 
estimation of forest-wide attributes, not indi-
vidual plot values. The angle count method 
is popular in many jurisdictions because of 
its  proven  greater  efficiency  in  estimating 
basal  area  and  timber  volume  over  large 
areas (Scott  1990),  but  this  does not  mean 
we cannot extract other useful information if 
we understand its limitations.

Conclusions
The lack of precision in per-plot basal area 

estimates from angle-count inventories redu-
ces the utility of these datasets in ecological 
applications, but improvement over the raw 
data is possible. Basal area or attributes di-
rectly derived from this  (e.g.,  stem number 
per hectare, standing volume, biomass, stand 
density index) are common inputs to ecolo-
gical and other models, and our reduction in 
random error represents a significant advan-
ce. The resampling procedure that we propo-
se  here  reduces  the  basal  area  increment 
variance on individual inventory plots in the 
Austrian NFI by over 50%.

Considering the fact that permanent forest 
inventories  based  on  angle  count  sampling 
theory  have  been  established  for  repeated 
observations  to  assess  forest  changes  over 
time (e.g.,  change in silvicultural approach, 
the role of forests for carbon mitigation is-
sues, etc.) the reduction of the variance for 
derived estimates is important for the enhan-

cement and interpretability of such invento-
ries. We demonstrate that as increments are 
calculated  as  the  difference  between  basal 
area estimates over time, the reduction in in-
crement variance is a result of improved esti-
mation of basal area viewed from individual 
points.  In  cases  where  stand  basal  area  or 
one of its derivatives is used as an indepen-
dent variable, this improvement in precision 
is certain to increase the usefulness of large-
scale  NFI  data  derived  from  angle-count 
methods in many applications.
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VarEST (Ĝ comb) < VarEST (Ĝ1)

when [cov <
3 K1−K 2

2 K1
⋅VarEST (Ĝ1 )]
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