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Introduction
It is recognized that wildfires can seriously

alter the hydrological response of watersheds
to precipitation,  with increases in peak dis-
charges and sediment yields. These changes
can be attributed to several physical proces-
ses  occurring  during  fires,  which  result  in
the reduction of interception and infiltration
rates due to the destruction of canopy cover,
the alteration of the hydraulic proprieties of
soils, the creation of ash and consequent wa-
ter  repellence  phenomena  (DeBano  et  al.

1998,  Inbar et al. 1998,  DeBano 2000,  Ro-
bichaud  2000,  Shakesby  &  Doerr  2006,
Onda et al. 2008,  Malkinson & Wittenberg
2011,  Ebel  et  al.  2012,  Stoof  et  al.  2012,
Moody et al. 2013).

Post-fire measurements show that changes
in  peak  discharges  are  usually  larger  than
changes in  runoff volumes (Hessling 1999,
McLin et al. 2001,  Moody & Martin 2001,
Canfield  et  al.  2005).  For  this  reason,  the
unit-area peak discharge is considered to be
the most sensitive parameter for the descrip-
tion of the modified watershed response after
a wildfire (e.g., Rowe et al. 1954). More spe-
cifically,  experimental  analyses  conducted
both in Europe and in the United States indi-
cate that the annual peak discharge in post-
fire conditions can increase by a factor gen-
erally ranging from 1.2 to 6.5 (Hoyt & Tro-
xell  1934,  Anderson  1976,  Hessling  1999,
Loáiciga et al.  2001,  Conedera et al.  2003,
Rulli  &  Rosso  2007,  Pierson  et  al.  2008,
Seibert et al. 2010) and can even exceed 100
in some cases (Campbell et al. 1977,  Bolin
& Ward 1987, Neary et al. 2003). However,
there have been some case studies  (Britton
1991,  Aronica  et  al.  2002,  Bart  &  Hope
2010) in which little or no increase in post-
fire discharges were observed.

In general, the first years after the event are
the most critical in terms of hydrological in-
stability  (Marques  &  Mora  1992,  Cerda
1998),  even  though  in  some  cases  an  in-
creased runoff discharge has been observed
up to a decade following a wildfire (Inbar et
al.  1998,  Mayor  et  al.  2007).  Rowe  et  al.
(1954) analyzed  how the ratio  of unit-area
peak discharge changed in pre- and post-fire
conditions over 70 years in a case study in
southern California;  they measured as little
as 2-fold increases for infrequent storms and
as much as 40-fold increases as a consequen-
ce of frequent storms. Such ratio tended to
diminish year by year after fire occurrence,
being the time required to recover to pre-fire
conditions depending on fire severity, affec-
ted forest  type and post-fire meteorological
conditions (Keeley et al. 2005, Lentile et al.
2007, Moody et al. 2008, Diffendorfer et al.
2012). In light of these findings, it is evident
that the standard rainfall-runoff methods ap-
plied in engineering practices need to be mo-
dified in order to model more accurately the
change  in  watershed  response  following  a
fire (Ebel & Moody 2013).

In the present study, the effects of a wild-
fire on the hydrological parameters used for
calculating  runoff  are  assessed  for  a  small
urban  basin  in  central  Italy (San  Giuliano,
L’Aquila).  Specifically,  peak  discharges  in
both pre- and post-fire conditions were cal-
culated  using  the  SCS-CN  method,  which
estimates  runoff  by considering  soil  types,
land cover and the influence of previous soil
moisture conditions. Fire effects on peak dis-
charges were then modeled by adjusting CN
values according to existing approaches re-
ported in the literature (Foltz et al. 2009).

A Geographic Information System (GIS) -
a  powerful  tool  in  hydrological  modeling
due to its capacity to handle large amounts
of spatial  and attribute  data - was used for
creating,  managing and generating different
layers  and  maps  of  aggregate  hydrological
parameters from different sources.

Methods and materials

Study area
The  San  Giuliano  basin  is  part  of  the

L’Aquila  District  hydrological  system,  bor-
dered on the north by the Monti della Laga
mountain  range,  on  the  east  by  the  Gran
Sasso  Massif,  on  the  south  by  the  Monte
Sirente range and on the west by the Monte
Velino  range.  These form a natural  barrier
against  atmospheric  perturbations  origina-
ting from the Adriatic and Tyrrhenian seas,
resulting in a significant reduction in preci-
pitation.

The basin  can be  divided  in  two sub-ba-
sins, whose characteristics are shown in Tab.
1: drainage area  A,  urbanization extent  Aurb

(expressed  as  a  percentage  of  the  drainage
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area), mean height H and time of concentra-
tion Tc, calculated using Giandotti’s formula
(Giandotti 1934).

A regionalization procedure was applied to
overcome the problem related to the limited
availability  of  hydrological  measurements
through  space  and  time.  For  this  reason,
seven  rain  gauge  stations  located  in  the
L’Aquila area were considered to determine
the regional rainfall depth-duration equation
h =  at  n (coefficients  a and  n are given in

Tab.  2)  for  three return-period  storms (50,
100 and 200 years).

A topographic  map  (scale  1:5000),  land-
cover  map  (based  on  Corine  Land  Cover
classification) and soil map were used to de-
lineate watershed borders,  identify types of
land-use and extract soil information, respec-
tively.

Modeling pre-fire conditions
The SCS-CN (USDA 1986) model is one

of the commonly used methods for estima-
ting the surface runoff from watersheds. The
infiltration losses are combined with surface
storage by the equation (eqn. 1):

where  Q [mm] is the accumulated runoff or
rainfall excess,  P [mm] is the rainfall depth
and  Ia [mm] is the initial abstraction, which
includes surface storage, interception and in-
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Fig. 1 - Use of GIS for the
calculation of area-weighted

CN in the San Giuliano
basin. (a) Land cover map;
(b) hydrological soil group

map; (c) CN map.

Tab. 1 - Characteristics of the San Giuliano Basin. (Aurb):  urbaniza-
tion extent (in percentage of the drainage area, A).

Sub-basin
A 

[km2]
Aurb 
[%]

H 
[m a.s.l.]

Tc 
[h]

Sub-basin 1 8.45 5.3 968 1.37
Sub-basin 2 5.47 9 896 1.34

Tab. 2 - Coefficients of the regional rainfall  depth-duration equa-
tion.

Coeffi-
cient

Sub-basin 1 Sub-basin 2
50y 100y 200y 50y 100y 200y

a 40.188 44.607 49.023 40.068 44.514 48.944
n 0.283 0.275 0.269 0.271 0.263 0.256

Q=
(P− Ia)

2

(P− Ia 2 B S)
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filtration prior to runoff in the watershed, as
expressed by the empirical equation (eqn. 2):

The term S is the potential maximum reten-
tion, given by (eqn. 3):

where CN [dimensionless - ranging from 0 to
100]  is  derived  from  data  reflecting  land
cover, hydrologic soil group (A, B, C and D)
and  antecedent  soil  moisture  condition
(AMC,  an  index  of  soil  wetness  -  USDA
1986).

Area-weighted  CNs for the two sub-basins
were  computed  using  GIS software,  accor-
ding to the scheme shown in Fig. 1, by com-
bining information from the land cover map
(Fig. 1a) and the hydrologic soil group map
(Fig. 1b), which was produced by assigning
a particular hydrologic soil  group (A, B, C
or D) depending on the soil’s minimum infil-
tration  rate.  Subsequently,  to  create  a  CN
map (Fig. 1c), the hydrologic soil group field
from the soil  theme and the land  use field
from the land cover theme were selected for
intersection. After this operation, a new po-
lygon  shapefile  indicating  the  merged  soil
hydrologic  group  and  land  cover  themes
was  generated.  In  accordance  with  USDA
(1986), the appropriate  CN value was assi-
gned to each polygon of this new map under
the hypothesis  of AMC II,  which  is essen-
tially  an  average  moisture  condition.  Data
extracted from the new polygon attribute ta-
ble were used to compute area-weighted CNs
of the study area, equal to 69.4 for sub-basin
1 and 70.0 for sub-basin 2.

Modeling post-fire conditions
A serious wildland-urban interface fire re-

cently destroyed 30% and 10% of the forest
area in sub-basins 1 and 2, respectively. As
shown in  Fig. 2, about three years after the
event, the largest difference between burned
and  unburned  areas  is  represented  by  the
lack of grass cover and underbrush.

Peak discharge was expected to increase as
a  consequence  of  the  fire.  Post-fire  condi-
tions were then modeled by adjusting pre-fi-
re CNs to post-fire CNs as a function of bur-
ned area and fire severity (low, moderate or
high).

Despite the general consensus on the issue
that peak discharge tends to increase as a re-
sult of fire, at present there is no consistent
methodology to estimate post-fire CNs, since
the  analysis  of  the  hydrologic  response  of
watersheds to wildfire is still a topic under
investigation  (Springer  &  Hawkins  2005)
and limited to few studies have been carried
out in the United States. Currently, existing
approaches  are  not  supported  by  post-fire

data analysis and are mainly based on practi-
cal  rules  and/or  experience  (Foltz  et  al.
2009).  For  example,  some of  these  appro-
aches are reported in the Burned Area Emer-
gency Response (BAER) manual (Foltz et al.
2009) and include the following:
(1) Wildfire Hydrologic Impact (WHI -  Li-
vingston et al. 2005): post-fire  CNs are cal-
culated as a function of the WHI classifica-
tion (severe/moderate/low, related to the per-
centage  of  the  sub-basin  characterized  by
high soil burn severity) and pre-fire CNs.
(2)  BAER Hydrology Special  Report  (Hig-
ginson & Jarnecke 2007):
• High burn severity: CNpost = CNpre + 15

• Moderate  burn  severity:  CNpost =  CNpre +
10

• Low burn severity: CNpost = CNpre + 5
where  CNpost is the post-fire  CN and  CNpre

is the pre-fire CN.
(3) BAER Design Storms (Foltz et al. 2009):
• High  burn  severity  with  water  repellent

soils: CNpost = 95
• High burn severity without water repellent

soils: CNpost = 90 to 91
• Moderate  burn  severity with  water  repel-

lent soils: CNpost = 90
• Moderate burn severity without  water re-

pellent soils: CNpost = 85
• Low burn severity: CNpost= CNpre + 5
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Fig. 2 - Effect of fire in San Giuliano basin. (a) Unburned areas; (b) burned areas.

Fig. 3 - Use of GIS for the calculation of CN in post-fire condition. (a) Overlay of burned
area map on land cover map; (b) Maps with post-fire CN values estimated according to the
different approaches.

Ia=0.2⋅S

S =25.4⋅( 1000
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It is worth noting that these rules are site-
specific, strictly applicable to the regions in
which they were developed, or for areas cha-
racterized  by  similar  precipitation  regimes
and pre-fire CN values.

For  the  case  study  under  investigation,
since  neither  a  detailed  burn  severity  map
nor site-specific studies for the evaluation of
post-fire  CNs  were  available,  all  three  ap-
proaches listed above from the BAER Ma-
nual  were  used,  considering  each  level  of
burn severity, to calculate the modified CNs
(under  the  simplifying  hypothesis  that  the
whole burnt  area would have been affected
to  the  same  degree  of  severity);  this  was
done in order to perform a sensitivity analy-
sis for post-fire conditions while examining
the effects of the variability in model input
parameters  (estimates  of  post-fire  CNs  ac-
cording to existing rules from the literature)
upon model output (peak discharges related
to different return period storms in post-fire
conditions).

Subsequently the GIS procedure shown in
Fig. 1 was updated by overlaying the burned
area map on to the land cover map and ad-
justing  CNs for those polygons affected by
the  fire:  this  resulted  in  the  generation  of
new post-fire CN maps based on the applica-
tion of the various approaches for estimating
post-fire CNs (Fig. 3).

Results and discussion
Tab. 3 shows the results of peak discharge

calculations  using  the  SCS-CN  method  in
sub-basins 1 and 2 for the three return period
storms in pre-fire conditions. The same pro-
cedure  was  applied  for  calculating  the  ex-
pected change in  post-fire  discharges,  with
CN values estimated using the different ap-
proaches  reported  in  the  previous  section.
Tab.  4 and  Tab.  5 present  the  calculated
area-weighted  post-fire  CNs  and  peak  dis-
charges, as well as the fire effect ratio (calcu-
lated by dividing post-fire peak discharge by
pre-fire peak discharge), which can be consi-

dered  as  a  global  parameter  for  describing
the altered watershed response to fire.

Results showed that area-weighted  CNs in
post-fire  conditions  vary depending  on  the
approach used: Wildfire Hydrologic Impact
(WHI),  Baer  Hydrology  Special  Report
(BAER  HSR)  or  BAER  Design  Storm
(BAER DS), for each different fire severity.
For  sub-basin  1,  the  CNs  ranged  (conside-
ring low to high burn severity) from ~71 to
~78,  while  they ranged  from ~70.5  to  ~72
for sub-basin 2. This variability was also re-
flected  in  fire  effect  ratios,  which  ranged
from ~1.2 to ~2.8 (for sub-basin 1) and from
~1.1 to ~1.5 (for sub-basin 2) for the 50-year
return period storm, diminishing to ~1.2-2.3
(for sub-basin 1) and ~1.1-1.4 (for sub-basin
2) for the 200-year return period storm.

It should be noted that these estimates refer
to the first years after the fire, since post-fire
CNs are expected to attenuate during the re-
covery  period,  gradually  approaching  the
pre-fire values, correlated with a proportio-
nal  reduction  in  the  fire  effect  ratio.  Ob-
viously, the recovery period is tightly related
to the rate of vegetation recovery and further
depends on the types of plant species exist-
ing in pre-fire conditions, on the hydrologi-
cal  characteristics  of  the  area  and  on  fire
severity.

The high variability of the results obtained
using different approaches indicates the ur-
gent  need  to  perform  validation  analyses
and/or new experimental observations in or-
der to increase the accuracy of the estimated
post-fire CN values and consequent runoff.

Conclusions
The effects of wildfires on the hydrological

response of watersheds can be modeled by
adjusting the hydrological parameters invol-
ved  in  traditional  rainfall-runoff  models  to
account for changes induced by the fire (e.g.,
CNs  or  runoff  coefficients  adjusted  as  a
function  of  burned  area  and  fire  severity).
Various  approaches  have  been  reported  in
the  literature;  however,  due  to  the  lack  of
any  consistent  and  verified  guidelines,  the
selection of the method to use and the way in
which parameters are adjusted to account for
post-fire conditions entails a substantial de-
gree of subjectivity,  affecting the reliability
of the model output.

For  the investigated  area,  since local  stu-
dies allowing post-fire  CNs to be calculated
with  a  high  degree  of  certainty  were  not
available (as in many other areas affected by
wildfires), we analyzed the variability in the
estimates  of  post-fire  discharge  obtained
using the various approaches reported in the
literature for modeling post-fire conditions.
Given the subjectivity involved in choosing
one approach or another, the potential range
of  results  obtainable  considering  the  diffe-
rent approaches was assessed. The range of
fire effect ratios calculated using the afore-
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Tab. 3 - Pre-fire calculations for the San Giuliano basin.

Sub-basin CN
Q50

[m3/s]
Q100

[m3/s]
Q200

[m3/s]
Sub-basin 1 69.4 6 8.6 11.5
Sub-basin 2 70 4.1 5.8 7.8

Tab. 4 - Post-fire calculations for sub-basin 1. (Met.): the methodology used.

Met.
Burn
severity

CN
50y 100y 200y

Q
[m3/s]

f.e.
ratio

Q
[m3/s]

f.e.
ratio

Q
[m3/s]

f.e.
ratio

WHI Severe 79.3 16.6 2.78 21.1 2.46 25.9 2.25
Moderate 75 11.2 1.87 14.8 1.73 18.7 1.63
Low 71.6 7.7 1.3 10.7 1.25 14.1 1.22

BAER
HSR

High 73.8 9.9 1.66 13.3 1.55 17 1.48
Moderate 72.3 8.5 1.42 11.6 1.35 15.1 1.31
Low 70.9 7.2 1.2 10 1.17 13.2 1.15

BAER
DS

High w.w.r.soil 79.4 16.8 2.81 21.3 2.49 26.1 2.27
High w/o.w.r.soil 78 14.8 2.48 19 2.22 23.5 2.04
Mod. w.w.r.soil 78 14.8 2.48 19 2.22 23.5 2.04
Mod.w/o.w.r.soil 76.5 13 2.17 16.9 1.97 21.1 1.83
Low 70.9 7.2 1.2 10 1.17 13.2 1.15

Tab. 5 - Post-fire calculations for sub-basin 2. (Met.): the methodology used.

Met.
Burn
severity

CN
50y 100y 200y

Q
[m3/s]

f.e.
ratio

Q
[m3/s]

f.e.
ratio

Q
[m3/s]

f.e.
ratio

WHI Severe 73.5 6.1 1.5 8.3 1.42 10.2 1.37
Moderate 71.2 4.7 1.15 6.6 1.12 8.7 1.11
Low 70.8 4.5 1.1 6.3 1.08 8.4 1.07

BAER 
HSR

High 71.6 4.9 1.21 6.9 1.18 9 1.16
Moderate 71.2 4.6 1.14 6.5 1.12 8.6 1.10
Low 70.6 4.3 1.07 6.2 1.06 8.2 1.05

BAER 
DS

High w.w.r.soil 73.6 6.1 1.51 8.3 1.43 10.7 1.37
High w/o.w.r.soil 73 5.8 1.43 7.9 1.36 10.3 1.31
Mod. w.w.r.soil 73 5.8 1.43 7.9 1.36 10.3 1.31
Mod.w/o.w.r.soil 72.5 5.5 1.34 7.5 1.29 9.8 1.26
Low 70.6 4.3 1.07 6.2 1.06 8.2 1.05
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mentioned  methodologies  was  very  large
(from 1.1 to 2.3), indicating the unreliability
of estimates when it is not possible to verify
the output in the field. Further experimental
research is necessary in order to reduce the
gap in the knowledge required to accurately
estimate and validate  post-fire hydrological
parameters.
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