
Short Communication - doi: 10.3832/ifor1104-007 ©iForest – Biogeosciences and Forestry

Introduction 
Giant stomata (GS),  as the name implies,

are  distinct  from normal-sized stomata pri-
marily due to size. In a treatise on the ana-
tomy  of  dicotyledons,  Metcalfe  &  Chalk
(1979)  described  large stomata of  approxi-
mately 40 µm in relatively few families. Shi-
raishi et al. (1975) reported structures in Sat-
suma Mandarin (Citrus unshiu Marc) similar
to large-sized stomata, surrounded by a num-
ber of normal-sized stomata on juvenile lea-
ves  immediately  after  full  leaf  expansion.
The giant  type  stomata observed  in  C. un-
shiu were consistent with GS examined and
characterized by Sitholey & Pandey (1971)
and Stace (1965) in different taxa. 

Electron  microscopy  studies  on  subfossil
Holocene  Salix  herbacea L.  (Salicaceae)
samples  in  Sweden  suggested  the  presence
of GS (Rundgren & Beerling 1999). Finally,
Pautov (2009) reported an eterostomatal or-

ganization  in  Populus  tremula,  with  three
stomatal types, i.e., paracitic, laterocitic, and
intermediate anamo-paracytic.

Poplars (Populus spp.) are the fastest gro-
wing  tree  in  temperate  latitudes  in  Europe
and  North  America  (Marron  et  al.  2006)
when  raised  under  short  rotation  intensive
culture  conditions.  Poplar  is  considered  a
model system for plant biology.  P. tricocar-
pa  is  the first  tree  genome to  be  fully se-
quenced, and is now of high quality and rela-
tively contiguous.  Therefore,  the genus  of-
fers many possibilities to study questions not
easily addressed by genera considered model
plant  systems,  e.g.,  Arabidopsis  thaliana
(Jansson  & Douglas  2007).  Stomatal  traits
have  been  widely  studied  in  Populus,  as
these traits  are  a  useful  criterion  for  clone
discrimination in the genus. In  particular, a
series of clones have been explored that con-
firm general  poplar  micromorphologic  fea-

tures,  including amphistomatic  leaves,  with
evidence  some  stomatal  traits  change  de-
pending  on  environmental  conditions  (Al
Afas et al. 2006), and in response to growing
conditions  (Woodward  et  al.  2002,  Hermle
et al. 2007,  Di Baccio et al. 2010,  Jaime et
al.  2014).  For  example,  in  P.  trichocarpa
stomata were not found on the adaxial leaf
surface when grown under field conditions,
however low stomatal density was observed
on the adaxial surface under glasshouse con-
ditions (Ceulemans et al. 1988, Radoglou &
Jarvis 1990).

Despite frequent studies on stomata in pop-
lar (Reich 1984,  Ceulemans et al. 1988,  Al
Afas et al. 2006, Pearce et al. 2006, Cocozza
et al. 2010, Woo 2010), reports of giant sto-
mata in Populus remain equivocal.

Recently,  interest  in  several  poplar  mor-
phological  and  physiological  traits  has  in-
creased,  with  the  aim  of  evaluating  new
breeding strategies for industrial applications
(Kauter et al. 2003,  Sebastiani et al. 2004).
Additional  knowledge  of  poplar  stomata
might  support industrial  objectives,  since
stomatal density has been demontrated to af-
fect biomass production  in  different  poplar
clones (Al Afas et al. 2006).

Materials and Methods

Plant material and growth conditions 
Observations were conducted using homo-

geneous  25  cm long  woody  stem cuttings
obtained from two different  P. nigra geno-
types,  58-861 and  Poli.  The  58-861 geno-
type was the maternal parent from Val Ce-
nischia (Torino, northern Italy - 597 m a.s.l.,
45° 09′ N, 07° 01′ E), and Poli was obtained
from Policoro (Matera, southern Italy - 7 m
a.s.l., 40° 09′ N, 16° 41′ E).

Full-sib  families  of  both  genotypes  were
planted  in  April  2008  in  an  open  field  at
Azienda Didattico  Sperimentale “Nello  Lu-
pori” in Viterbo (Italy, 42º 25′ N, 12º 05′ E -
309  m a.s.l.).  The  0.1230  ha  experimental
site, considered a short rotation coppice, had
alternating  inter-row distances  of  2  m and
0.75 m between plants in a single row. Soil
was  composed  of  sand  (57.5%),  lime
(34.6%), and clay (7.9%), with a pH of 7.1.
A randomized  complete  block  design  (five
blocks) was arranged; each block included a
group  of  160  F1  clones,  and  two  pairs  of
parental  clones  (two  Poli and  two  58-861
clones). A total number of 820 plants were
cultivated in the entire plantation (frequency
of 6666 plants ha-1). Due to edge effects, the
two  poplar  rows  on  the  outermost  border
were  not  included  in  the  experimental  de-
sign. The plantation was irrigated shortly af-
ter planting, and a third class herbicide with
weed control measures was applied to obtain
optimal  field  establishment.  Average  daily
temperature and rainfall in the 2008 growing
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season were respectively 22.89 °C and 14.4
mm. Only parentals (10 Poli and 10 58-861
clones) were examined for observations. 

WUE measurements 
Complete leaf development was examined

by  observing  leaves  throughout  the  entire
growing season (June - September 2008) in
30-day intervals from different leaf genera-
tions.  Selected leaves marked by small rib-
bons around the petiole were observed daily,
beginning with a young (~4.8 cm in Poli and
~5.6 in  58-861) to mature totally expanded
leaf condition, following the Plastochron In-
dex  method  (Erickson  & Michelini  1957).
The  same  leaves  were  analyzed  to  obtain
physiological  measurements  (assimilation
and stomatal conductance) in the hours be-
fore  dawn.  Excised  leaves  were  placed  in
water  filled  test  tubes  to  avoid  cavitation,
protected  in  a  portable  freezer,  and  trans-
ported to the laboratory.  A LI-6400  photo-
synthesis  system (LICOR,  Nebraska,  USA)

was programmed to register gas exchange at
380 ppm relative to a CO2 reference value.
Intrinsic water use efficiency (Wi) was deter-
mined as the ratio between assimilation (A),
expressed in µmol CO2 m-2 s-1 and stomatal
conductance (gs), expressed in mol H2O m-2

s-1.

Statistical analyses 
Data  management  and  statistical  analyses

were performed with SYSTAT® 12 (Systat
software, Chicago, IL) using 20 replicates of
poplar  genotypes  (10  Poli and  10  58-861
clones). A preliminary GS frequency analy-
sis revealed a Poisson-shaped, zero-bounded
distribution of counting data (x), which were
therefore transformed as √x. 

General Linear Model (GLM) was applied
to  compare  different  generations  of  leaves
because  of  their  small  sample  size  and
non-normal distribution. Differences among
mean values were tested by  post-hoc analy-
ses  using  the  Bonferroni’s  test  (α = 0.05),

which was considered the most appropriate
due to  the limited number of samples ana-
lyzed. Bonferroni methods for multiple com-
parisons  are  extended  to  sequential  setting
and have shown to attain an approximately
50% reduction in  the expected sample size
compared  with  earlier  approaches  (De  &
Baron 2012).

Linear  regression  was applied  to  evaluate
relationships  between  intrinsic  Wi and  GS
pore  length  traits.  Statistical  analyses  were
not applied to young leaf attributes, because
the sample number was considered  insuffi-
cient  to  establish a  clear  relationship  be-
tween intrinsic Wi and GS pore length traits.

Light and scanning electron microscopy
(SEM) 

For  light  microscopy,  mature  leaves were
used to produce impressions, prepared with
clear nail polish parallel to the midrib, from
the  basal  to  apical  position,  and  on  both
adaxial and abaxial surfaces. All impressions

iForest 8: 547-551 548  © SISEF http://www.sisef.it/iforest/ 

Fig. 1 - Populus nigra L. (A-D): genotype
Poli; (E-F); genotype 58-861. (A): Light
image from nail polish impression of the

adaxial surface of early leaf showing deve-
loping stomata, bar = 20 µm. (B): SEM

image of the adaxial surface of a young leaf
showing trichomes and water stomata, bar =
100 µm. (C): SEM image of the adaxial sur-

face of a mature leaf, bar = 100 µm. (D):
SEM image of the abaxial surface of a ma-

ture leaf showing anomocytic giant stomata
(GS), GS covered by wax (asterisk), para-
cytic normal stomata (NS), bar = 100 µm.

(E): SEM image of the adaxial surface of a
mature leaf, bar = 100 µm. (F): SEM image
of the abaxial surface of a mature leaf sho-
wing GS frequently covered by wax plugs,

bar = 100 µm.
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were  fixed  on  glass  slides,  and  examined
under  a  Leica  DM4000B  light  microscope
connected  to  a  Leica  DFC420  camera  at
200x magnification. Leica Application Suite
(LAS) software was used to analyze images.
Three sampling areas (apical,  medium, and
basal;  126 588  μm2 each)  were  randomly
chosen  from every slide sample for  micro-
scopic  observations.  Pore  length  and  giant
and  normal  stomata  were  studied  on  the
abaxial  surface  of  mature  leaves.  The  ab-
sence of a cuticular ridge on the adaxial sur-
face impressions resulted in unreliable data
for GS statistical analyses on this surface.

To identify qualitative  differences  in  sto-
mata morphology during  leaf development,
further observations were performed on three
categories of leaves: (i) early (~2.3 cm long
in  Poli and  ~2.5  cm long  in  58-861);  (ii)
young (~4.8  cm long in  Poli and ~5.6  cm
long in  58-861); and (iii) mature (~6.00 cm
long in Poli and ~10.00 cm long in 58-861).
Each  leaf  developmental  stage  from  each
genotype was used to make impressions pre-
pared with  clear  nail  polish  parallel  to  the
midrib for light microscopy. 

For SEM, samples from early, young, and
mature  Poli and  58-861 leaves  were  pre-
served in 1:1 H2O:ethyl alcohol at 4 °C. Spe-
cimens were dehydrated in an ethanol series,
critical-point dried in liquid CO2, and coated
with 30 nm of gold. Specimens were subse-
quently observed under  a FEI-Quantas 200
ESEM, at the CISME center of the  Univer-
sità degli Studi di Napoli “Federico II”. Sto-
matal types were classified according to Car-
penter (2005) and Metcalfe & Chalk (1979).

Results and discussion

Observations from light and SEM 
microscopy 

Large  stomata,  approximately  40  µm  in
length, with anomocytic type structure were
surrounded by normal stomata with paracytic
structure and meristemoid cells on the deve-
loping lamina in early Poli (Fig. 1A) and 58-
861 leaves (data not shown).  Trichomes and
presumed water stomata (~50 µm long) were
observed on adaxial surface venation in both
genotypes;  however  only  genotype  Poli is
reported here (Fig. 1B). In mature  P. nigra
leaves,  GS with  anomocytic  structure  were

surrounded by normal stomata 20 to 30 µm
long  with  paracytic  structure  (Fig.  1C,  F).
Initiation of normal stomata might continue
on adaxial and abaxial surfaces, until the leaf
has reached approximately 60% of its final
size.

A progressive  decrease  in  stomata  length
(from ~40 µm in GS to ~20 µm in normal
stomata)  was  observed  in  subsequent  divi-
sions,  with  a  concomitant  transition  from
anomocytic  to  paracytic  structure.  The  se-
quence  of  events  in  stomatal  development

and pattern formation during the early stages
of  leaf  development  observed  in  P.  nigra
genotypes were similar to developmental sta-
ges demonstrated in  A. thaliana (Von Groll
& Altmann 2001,  Bergmann & Sack 2007,
Delgado et al. 2011), and in early divergent
angiosperms (Rudall & Knowles 2013). The
distinct  leaf  stomatal  pattern  likely  arose
from GS that developed early in leaf ontoge-
nesis, forming anomocytic stomata in prima-
ry lineages,  and corresponding smaller sto-
mata with paracytic structures in satellite li-
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Tab. 1 - Number and frequency (= nGS / total number of stomata) of GS in different leaf sections and in both genotypes on the abaxial sur -
faces of mature leaves. The number of leaves/replicates used for each poplar clone was 20. Frequencies were transformed as √x. (n.s.): not si -
gnificant.

Genotype Parameter
GS counts GS frequency

Apical Medium Basal Apical Medium Basal
Poli Mean 1.29 1.00 1.05 0.08 0.06 0.07

Std. Err. 0.18 0.14 0.19 0.01 0.01 0.01
58-861 Mean 1.45 1.20 1.10 0.08 0.06 0.06

Std. Err. 0.15 0.19 0.16 0.01 0.01 0.01
- p-value n.s. n.s. n.s. n.s. n.s. n.s.

Fig. 2 - Pore length of stomata on the abaxial surface in a mature leaf. (A): Giant stomata;
(B): ordinary stomata. The number of leaves/replicates used for each poplar clone was 20.
(***): P ≤ 0.001.
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neages (Von Groll & Altmann 2001, Casson
& Gray 2008). 

In  mature  genotype  Poli leaves,  the  wax
cover was visible, and GS were occasionally
covered  by wax (Fig.  1C,  D).  In  contrast,
wax plugs frequently occluded GS in mature
58-861 leaves (Fig. 1E, F). 

Mature leaves during growing season 
(light microscopy) 

Results  showed  Poli compared  with  the
genotype  58-861 generally exhibited longer
GS (Fig.  2A);  these  length  differences  be-
tween genotypes were also maintained in or-
dinary stomata, and observed throughout the
growing season (Fig. 2B). 

However,  significant  differences were not
detected  in  GS  number  and  frequency  (=
number  of  GS/total  number  of  stomata)  in
the three leaf sections examined (apical, me-
dium, basal) from both  P. nigra genotypes
(Tab. 1).

Different  sized  stomata (~40  to  ~20  µm)
were present on the adaxial and abaxial leaf
sides. However, due to the absence of cuti-
cular ridges, stomata were typically associa-
ted with  GS on impressions obtained  from
adaxial surfaces. Therefore, statistical analy-
ses would be unreliable if applied to GS on
the  adaxial  surfaces. However,  regression
analysis performed on abaxial surfaces sho-
wed  a  significant  relationship  between  GS
size and Wi (assimilation / stomatal conduc-
tance), with high prediction accuracy in 58-
861 (R2 = 0.96) but not in Poli (R2 = 0.26 -
Fig. 3). 

Cocozza  et  al.  (2010) characterized  the
northern Italy genotype  58-861 as more wa-
ter  efficient  and  drought  sensitive,  with
larger  leaves  compared  with  Poli,  and  the
current study confirmed these data (Fig. 3).
Previous studies on the same genotypes  fo-
cused on stomatal densities and length,  but

did not examine the distinction between or-
dinary and large sized stomata (Regier et al.
2009, Cocozza et al. 2010).

Regier et al.  (2009) reported a significant
reduction  in  stomata  size  in  genotype  58-
861,  but  only  on  the  abaxial  leaf  surface
when water  uptake  changed,  with  a  subse-
quent  reduction  in  well-watered  status.  In
addition, the current data suggested GS size
in  Poli was larger than in genotype  58-861,
and might explain the increased Wi verified
in the northern  Italy poplar  clone.  Further-
more, GS size could be associated with the
stomatal  opening  and  closing  mechanism
(together with density),  which cumulatively
provides total leaf stomatal conductance, and
more efficient water use in genotype 58-861
despite smaller stomata. 

Observed  stomatal  characteristics  did  not
follow seasonal changes,  suggesting the at-
tributes were favored by selection, and repre-
sent adaptive-genetic traits. This hypothesis
emphasizes the role of GS as an adaptive and
functional trait distinguishing different geno-
types, and might serve to clarify certain phy-
siological  attributes,  including  WUE in  P.
nigra. 

Warren  &  Adams  (2006) indicated  leaf
anatomy was the primary factor  to  explain
WUE by measuring stable carbon isotopes.
Consequently, the role of GS in leaf physio-
logy should  take a primary role  in  develo-
ping  a  greater  understanding  of  processes,
including  WUE and  plasticity,  or  seasonal
acclimation (Nicotra & Davidson  2010).  In
particular, drought  tolerance, as reported in
the larger-sized and more water use-efficient
genotype  58-861, can characterize its physi-
ology through several adaptive traits of sto-
mata (density, pore length, structure). 

A  more  developed  wax  covering  on  the
abaxial leaf surface of genotype  58-861 re-
presents another distinctive trait of the nor-

thern  genotype  compared  to  the  southern
Poli genotype. Pearce et al. (2006) described
an additional function for wax accumulation
on leaf adaxial surfaces in  Populus, particu-
larly poplars adapted to warmer regions (i.e.,
P. angustifolia). The abaxial epidermal wax
covering in mature leaves of genotype  Poli
was reported by Pearce et al. (2006). Surface
roughness,  caused  by ridges,  trichomes,  or
both is the chief factor limiting wetting pro-
perties of some species, such as poplar. Su-
perficial wax plays a dominant role in affec-
ting wetting of other taxa (Pinon et al. 2006).
The wax covering in the southern genotype
Poli, and wax plugs in  58-861 might be re-
sponsible  for  additional  differences  in
drought  tolerance between these two geno-
types,  which  originated  from distinct  envi-
ronments. 

Finally, stomatal analysis in the Salicaceae
and closely related groups could be useful in
clarifying  specific  features  of stomatal  pat-
terns, presence of large sized stomata (GS),
and the possible phylogenetic origins of nor-
mal stomata relative to GS,  i.e., are GS the
precursors to normal stomata. The prevailing
view is that stomata arose once in evolutio-
nary  history,  and  subsequently  radiated
throughout  land  plants.  Oversized  stomata
could  be  a  significant  factor  in  land  plant
evolution, with implications in physiological
pathways.  

An increased understanding of giant stoma-
ta can be useful to industry considering the
importance  of  stomata  in  a  perspective  of
biomass  production.  In  fact,  poplar  clones
with  high  abaxial  stomatal  density  (where
giant  stomata  were  found)  showed  an  in-
creased biomass production  (Al Afas et  al.
2006).
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