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Introduction
An  important  component  equation  of

whole  stand  models  is  one  that  predicts,
explicitly or implicitly, stand mortality (trees
ha-1) over a period of time (Woollons 1998).
However,  in  contrast  to  other  stand  varia-
bles,  it  is  often  difficult  to  accurately  de-
scribe patterns of mortality across stand and
site conditions (Keane et al. 2001). This may
be because tree mortality is a complex pro-
cess affected by environmental, pathological,
and physiological factors (Yang et al. 2003).
Due to the uncertainty of the tree mortality
process,  mortality remains one  of the least
understood  components  of  natural  stand
growth  processes  (Álvarez-González  et  al.
2004).  Over  the  years,  researches  have  fo-
cused on individual tree mortality for analy-
zing stand mortality: tree mortality was pre-
dicted  with  a  logistic  model  (Zhang  et  al.
2010),  and  aggregated for  estimating  stand

mortality.  Unfortunately,  collecting detailed
tree information to develop a tree mortality
model is costly (Monserud & Sterba 1999).
What is more, stand mortality predicted from
a tree mortality model often suffers from an
accumulation  of  errors  and  subsequently
poor  accuracy  and  precision  (Qin  &  Cao
2006,  Zhang et al. 2010).  Woollons (1998)
used a two-step method to estimate the stand
mortality.  However,  this  method  does  not
admit a well-defined stochastic structure that
can serve as a  basis  for  inference (Affleck
2006, Zhang et al. 2012).

Mortality is a complicated stochastic pro-
cess influenced by several stand characteri-
stics  and  environment  factors,  which  often
exist with complex interactions. It is hardly
possible to capture all of the observed varia-
bility in empirical mortality data. The evolu-
tion  of  the  mixed-effects  modeling  metho-
dology provided a statistical method capable

of explicit modeling stochastic structure is a
possible  approach  for  solving  this  problem
(Calama & Montero 2005).

In addition,  it has to be considered that a
relatively high number of permanent sample
plots  has  no  occurrence  of  mortality,  even
over  periods  of  several  years.  Therefore,
mortality data are truncated and characteris-
tically exhibit varying degrees of dispersion
and skewness in relation to the mean. More-
over, the data often contain an excess num-
ber of zero counts. The least squares method
implicitly presumes that the data are Gaus-
sian distributed with constant variances, or at
least satisfy the Gauss-Markov conditions. If
the least  squares method is applied to  data
with  a large proportion  of zero counts,  the
estimated results will be biased. Alternative-
ly, if only nonzero mortality observations are
used for model development, then mortality
will  be overestimated (Woollons 1998,  Eid
&  Øyen  2003).  In  recent  years,  there  has
been  considerable  interest  in  models  for
count  data,  such  as  manufacturing  defects
(Lambert 1992), patent applications (Crepon
& Duguet  1997),  species  abundance  (Hall
2000), medical consultations (Gurmu 1997),
use of recreational  facilities (Shonkwiler &
Shaw 1996).  There  are  also  a  few studies
that  have  addressed  this  issue  in  forestry
(e.g.,  Affleck 2006, Fortin & DeBlois 2007,
Zhang et al. 2012).

Although  many  forest  models  accounted
for  mixed  effects  such  as  tree  diameter
growth models (Kiernan et al. 2008,  Subedi
&  Sharma  2011),  height  growth  models
(Fang & Bailey 2001), and others (Garber &
Maguire 2003,  Uzoh & Oliver 2006), com-
pared with the substantial literature on cross-
sectional zero-inflated count data, relatively
few studies have considered mixed effects in
the count-data models in forestry (Hall 2000,
Rodrigues-Motta  et  al.  2010),  due  to  the
complexity and difficulty in  obtaining con-
vergence, especially for applications in fore-
stry (Li  et  al.  2011).  The objective  of this
study was to develop and compare the Pois-
son  mixture  models  with  and  without  ran-
dom-effects  for  predicting  stand  mortality
over a period of time.

Material and methods

Dataset
A systematic sampling of permanent, squa-

re-shaped plots (0.067 ha) was carried out by
the  Inventory  Institute  of  Beijing  Forestry
with a 5-year re-measurement interval. Over-
all, sixty plots were sampled in several Chi-
nese pine (Pinus tabulaeformis Carr.) planta-
tions situated on upland sites of Beijing (Fig.
1): 44 plots were measured in 1986, 58 plots
in 1991, and 60 plots in 1996, 2001. The fi-
nal dataset consisted of measurements from
162 stands obtained between 1986 and 2001.
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Stand mortality models play an important role in simulating stand dynamic pro-
cesses.  Periodic stand mortality data  from permanent plots  tend to be dis-
persed, and frequently contain an excess of zero counts. Such data have com-
monly been analyzed using the Poisson distribution and Poisson mixture mo-
dels,  such as the zero-inflated Poisson model  (ZIP),  and the Hurdle Poisson
model (HP). Based on mortality data obtained from sixty Chinese pine (Pinus
tabulaeformis) permanent plots near Beijing, we added the random-effects to
the Poisson mixture models. Results showed that the random-effects in the ZIP
model was not convergent, and HP mixed-effects model performed better in
modeling  stand  mortality  than the Poisson fixed-effects  model,  the  Poisson
mixed-effects  model,  the  ZIP  fixed-effects  model  and  the  HP  fixed-effects
model. Moreover, the HP model accounts for two sources of dispersion, the
first accounting for extra zeros and the second accounting to some extent for
the dispersion due by individual  heterogeneity in the positive set.  We also
found that stand mortality was negatively related to stand arithmetic mean
diameter and positively related to dominant height.
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Summary  statistics  of  stand  variables  are
presented in  Tab. 1. The climate in the stu-
died  area  is  warm temperate  and  semi-hu-
mid. Mean annual temperature ranges from 9
to 11 °C, and rainfall varies between 500 and
700 mm.

Variable selection
Independent  variables  characterized  by  a

meaningful biological interpretation were se-
lected among those describing altitude (Alt),
site  conditions  (dominant  height,  H)  and
stand  characteristics  (stand  age,  A;  stand
density,  N; stand arithmetic mean diameter,
Dm; relative spacing etc.). Multicollinearity
among independent variables was verified by
applying the variance inflation factor (VIF)
test. According to a common rule-of-thumb,
multicollinearity  among variables  was  con-
sidered to occur when VIF > 5. In addition,

variables showing p > 0.05 after a pairwise
Student’s t-test were discarded from the mo-
del. 

Poisson model
Count data models are a subset of discrete-

response  regression  models  aimed  to  de-
scribe the number of occurrences or counts
of an event.  Poisson regression is the sim-
plest  regression  model  for  count  data,  and
the probability mass function (PMF) is ex-
pressed as follows (eqn. 1):

where  y refers  to  the  random  variable  of
stand mortality (dead counts), y = 0, 1, 2, …,
n, and λ > 0. A Poisson regression model is
obtained by relating the mean λ to a vector of
independent  variables  X,  by  λ =  exp(Xβ),

where  β is  the  vector  of  regression  coeffi-
cients to be estimated. A characteristic of the
Poisson probability function (eqn. 1) is that
the mean and the variance are equal, that is
Var[Y | X] = E[Y | X] = λ. When data do not
fit to the Poisson distribution, it is typically
because of overdispersion,  i.e.,  the model’s
variance exceeds the mean value.

ZIP model
ZIP (zero-inflated Poisson) model is a mi-

xed model combining a Poisson distribution
with  a  point  mass at  zero.  In  zero-inflated
Poisson model, there are two sources of ze-
ros, deriving both from the point  mass and
from the count component (Lambert 1992).
Actually, two regression equations are crea-
ted in zero-inflated Poisson models, one pre-
dicting  whether  the  count  occurs  and  the
other predicting differences on the occurren-
ce of the count  (Poisson -  Karazsia & van
Dulmen 2008). ZIP is a very flexible model
for  handling data  dispersion,  and  the PMF
for ZIP is given by (eqn. 2):

where p is the probability of a zero count in
excess,  and  (1-p)  is  the  probability  of  be-
longing to the Poisson component. Logistic
regression is commonly used to fit the point
mass component: logit(p) = Log(p/1-p) = Xδ.
As for the Poisson component, it is obtained
from a vector of independent variables, λ =
exp(Xβ), where X is a vector of independent
variables, δ and β are vectors of the parame-
ters to be estimated.

HP model
HP (Hurdle Poisson) model, originally pro-

posed  by  Mullahy (1986) in  the  econome-
trics field (Cameron & Trivedi 1998), is an-
other model class capable of dealing with ex-
cess  zero  counts.  However,  HP  is  slightly
different  from  ZIP  model  with  all  zero
counts  from two  different  sources,  and  as-
sumes that zero counts  might  come from a
single statistical process (Liu & Cela 2008).

Similar  to  ZIP  model,  HP  model  is  the
combination of a logit  regression modeling
point mass at zero and a truncated Poisson
regression  modeling  count  component.  Its
PMF is expressed as follows (eqn. 3):

The point mass component is obtained by
logistic regression using logit(p) = Log(p/1-
p) = Xδ, while the Poisson component is ob-
tained  from a vector  of independent  varia-
bles, λ = exp(Xβ).

In  this  study,  a  plot-level  random-effects
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Fig. 1 - Loca-
tion of the 60
plantations of
Chinese pine

(Pinus tabulae-
formis Carr.)

studied in this
investigation.

The black lines
on the map rep-

resent the
boundaries of
the Beijing’s

administrative
region.

Tab. 1 - Summary statistics of stand-level variables. (SD): standard deviation: (SM): stand
mortality counts in a plot; (A): stand age; (H): stand dominant height; (N): stand density; (B):
stand basal area; (Dm): stand arithmetic mean diameter; (Al): altitude; and (Rs): the relative
spacing. The relative spacing was computed as a function of dominant height and stand den -
sity: Rs = (10000/N)0.5/H.

Variables Min Max Mean SD
SM (trees plot-1) 0 38 2.6 6.46
A (years) 12 55 27 8.46
H(m) 2.5 17.4 6.4 2.83
N (trees ha-1) 132 2164 933 492.24
Dm (cm) 5.8 16.13 9.76 2.4
Rs (trees ha-1 m-1) 0.17 3.45 0.71 0.63
Alt (m) 140 1400 449.91 268.09
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parameter was added to the intercept for the
Poisson  model,  and  to  the  intercept  of the
Poisson  component  for  the  estimation  of
positive  mortality  counted  for  ZIP  model
and HP model. The random-effect parameter
was  defined  as:  u~N(0,  v),  where  v is  the
variance.

All  parameter  vectors  can  be  estimated
through  the  optimization  of  the  likelihood
function,  that is,  by applying the maximum
likelihood  method  (ML).  The  unstructured
covariance structure (Littell et al. 1996) was
used for describing the variance-covariance
structure of random effects. Parameter esti-
mation  was  implemented  using  the  SAS/
STAT NLMIXED procedure.

Model selection and goodness-of-fit
Performances of  the Poisson  fixed-effects

model, ZIP fixed-effects model, HP fixed-ef-
fects model and corresponding mixed-effect
models calibrated with the same data set can
be compared by using the log-likelihood va-
lues [-2L(φ,y)], the Akaike information crite-
rion (AIC), as well as the Bayesian informa-
tion criterion (BIC). Smaller values of AIC,
BIC and -2L(φ,y) indicate better performan-
ces for the model considered. Both AIC and
BIC rely on a penalized maximum log-likeli-
hood value.  As the penalty is based on the
number  of  model  parameters,  the  use  of
these statistics ensures the best trade-off be-
tween the goodness-of-fit and the number of
parameters  included  in  the model.  The pe-
nalty is more influential in the BIC, making
this criterion more conservative than the AIC
(Fortin & DeBlois 2007).

The  Vuong  test  is  a  popular  method  to
compare  two  non-nested  models  for  count
data (Vuong 1989). If we define  (eqn. 4):

where  Pj(Yi |  Xi) is the predicted probability
of the observed count for the i-th case in the
j-th  model,  then Vuong statistic to  test  the
hypothesis  E(mi=0) is expressed as follows
(eqn. 5):

where  n represents  the  number  of  count
classes. The first model should be preferred
when  V>1.96,  while  the  second  should  be
preferred in the case of V<-1.96 (Liu & Cela
2008).

Because of the use of maximum log-likeli-
hoods, AIC, BIC, and Vuong parameters are
relative statistics, as they do not ensure that
the fit  of the “best” model is good.  Hence,
residual plots (residual values between pre-
dicted  and  observed  probabilities  plotted

against the count class j) were used to detect
any predictive bias of the models and assess
their  goodness-of-fit  (Lambert 1992,  Fortin
& DeBlois 2007).  The residual  rj,  between
predicted probabilities and observed proba-
bilities was computed as (eqn. 6):

where # represents the frequency of observa-
tions yi in the count class j, n is the number
of count classes, and P(y=j) is the predicted
probability  that  an  observation  belongs  to
the j-th count class.

Results and discussion
In  this study,  a relatively high number of

the  plots  considered  has  no  occurrence  of
mortality.  Mortality  data  are  zero-bounded
and characteristically exhibit varying degrees
of dispersion around the mean and skewness
(Fig. 2). According to the VIF test, no multi-
collinearity was found among the  indepen-
dent variables included (VIF<5).

During the processes of estimating all the
six  models  considered,  we  found  that  the
ZIP  mixed-effects  model  was  not  conver-
gent, so the following results were obtained
from the remnant five models. 

Results showed that the statistics -2L(φ,y),
AIC and BIC obtained for the HP mixed-ef-
fects model were much smaller than those of
the other models (Poisson fixed-effects mo-
del, Poisson mixed-effects model, ZIP fixed-

effects model and HP fixed-effects model -
Tab.  2),  suggesting  that  the  HP  mixed-ef-
fects model provided the “best fit”.

Poisson  fixed-effects  and  Poisson  mixed-
effects models were found to largely under-
estimate  the  zero-class  counts,  while  ZIP
fixed-effects,  HP  fixed-effects  and  HP
mixed-effects  models  exactly estimated  the
zero dead counts (Fig. 3). The residuals rj of
the Poisson mixed-effects model were smal-
ler than those obtained for the Poisson fixed-
effects  model,  while  the  HP  mixed-effects
model showed lower residuals than those ob-
tained from the HP fixed-effects, ZIP fixed-
effects  and  Poisson  mixed-effects  model
(Fig. 3).

Additionally, the Vuong test-statistic V ob-
tained  from  the  comparison  between  the
Poisson  mixed-effects  model  and  the  Pois-
son  fixed-effects  model  was  4.5,  while  a
value  V = 4.8 was estimated by comparing
the  HP  mixed-effects  model  with  the  HP
fixed-effects model. This means that models
with random effects had better performances
than fixed-effects models. We also compared
the HP fixed-effects model with the ZIP fi-
xed-effects model, remarking that the former
model outperformed the latter (V = 5.0).

Overall,  the  best  fit  was  detected  for  the
HP  fixed-effects  and  the  HP  mixed-effects
model,  therefore  only  these  models  were
used in further analysis. Some variables with
p>0.05  after  the  t-test  were  removed  from
the  models  (Tab.  3).  In  the  positive  count
component of the models, all variables were
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Fig. 2 - Histogram 
of stand mortality 
for Chinese pine ob-
tained from the sixty
plots selected in the 
study area.

Tab.  2 -  Fit  statistics  of  Poisson  fixed-effects  model,  Poisson  mixed-effects  model,  ZIP
fixed-effects, HP fixed-effects model, and HP mixed-effects model.

Statistic Poisson-fixed Poisson-mixed ZIP-fixed HP-fixed HP-mixed

-2L(φ,y) 1305.8 658.9 783.1 783 513.8

AIC 1319.8 670.9 795.1 795 527.8

BIC 1341.4 683.8 813.6 813.6 542.8

mi=log(P1(Y i / X i)

P2(Y i / X i))
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√n( 1
n∑i=1

n

mi)
√1

n
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significant  at  the 0.05  level (Tab.  3).  Such
variables have a meaningful biological inter-
pretations in terms of tree mortality. Relative
spacing is an indirect measure of the compe-
tition within the stand, being related to tree
density  (number  of  trees  per  hectare)  and
stand  dominant  height.  According  to  pre-
vious studies (Diéguez-Aranda et al. 2005),
stand mortality decreases when the relative
spacing  is  larger.  Similarly,  the  effect  of
stand arithmetic mean diameter (size index)
was negative (i.e., the greater Dm, the smal-
ler  stand  mortality),  indicating  that  stand

mortality is more likely in forests with many
small  trees  compared to  forests  with  larger
trees (Juknys et al. 2006). Due to the random
effects on plots, altitude was not significant
in the mixed models (Poisson mixed-effects
model,  HP mixed-effects model).  This may
be because the random parameter explained
the effects of altitude. In the zero component
of  the  models,  all  the  parameters  listed  in
Tab. 3 were also significant at the 0.05 level.
In this study, site quality (as reflected by the
dominant height) was positively related with
the  probability  of  mortality.  Accordingly,

several studies reported a higher mortality in
sites showing higher productivity (Yao et al.
2001,  Diéguez-Aranda et al.  2005).  On the
other  hand,  Woollons  (1998) found  that  a
higher  mortality  was  related  to  lower  site
productivity.  Therefore,  site  quality  effects
should  be  considered  with  caution  before
their inclusion in mortality models.

In a tree mortality context,  the use of HP
models  seems  to  be  the  most  appropriate
when applied to cases with no mortality, as it
occurs  in  a  stand  before  the  competition
among trees  takes  place.  Once competitive
pressures within the stand exceeds a certain
threshold,  positive  mortality occurs  consis-
tently and in accordance with a ZIP  proba-
bility mass function (Affleck 2006).  

In  our  study,  the  application  of  both  the
above models led to the same qualitative re-
sults and gave very similar model fitting per-
formances  (Tab.  2,  Fig.  3).  These  models
have three main advantages.  Firstly,  by al-
lowing distinct functions for the two compo-
nents, the predicted stand mortality may be
compared  with  that  obtained  assuming  a
Poisson-shaped  data  distribution.  Secondly,
the zero component  and the positive  count
component  of  the  two  models  may be  di-
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Fig. 3 - Plots of residuals for the Poisson fixed-effects model (A), Poisson mixed-effects model (B), HP fixed-effects model (C), HP mixed-
effects model (D), and ZIP fixed-effects model (E). (rj): residuals between predicted and observed probability as computed by using the eqn.
6.

Tab. 3 - Estimations of parameters of the two model components in the HP fixed-effects and
the HP mixed-effects models. (SE): standard error.

Model
Component

Parameter
HP-fixed HP-mixed

Estimate SE p-value Estimate SE p-value

Positive count
component

Intercept 4.0177 0.3249 <0.001 6.2386 1.0851 <0.001

Rs -1.5462 0.3091 <0.001 -3.3797 1.1974 <0.01

Dm -0.1187 0.0244 <0.001 -0.3171 0.0701 <0.001

v - - - 1.764 0.5998 <0.01

Zero 
component

Intercept -3.321 1.1945 <0.01 -3.321 1.1945 <0.01

H 0.1846 0.0903 <0.05 0.1846 0.0903 <0.05

Rs 4.7581 1.222 <0.001 4.758 1.222 <0.001
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rectly interpreted in  terms of  the empirical
features  of  the  data.  Thirdly,  they perform
better  in  modeling  the  data  variability  ob-
served, therefore ensuring an appropriate use
of the information collected (Barry & Welsh
2002, Zhang et al. 2012).

In  this  study,  we  used  Poisson  mixture
model  with  mixed-effects  to  analyze  stand
mortality.  Random-effects of both the Pois-
son model and HP model were significant at
the 0.05 level. However, the ZIP model was
not convergent after the random-effects were
incorporated  in  the  intercept  of  positive
count  component.  Min  &  Agresti  (2005)
found that fitting a ZIP random effect model
was more complex than fitting a HP random
effect  model.  Li  et  al.  (2011) incorporated
the random effects in the count data models
for analyzing tree in-growth, finding an im-
proved model performance. Overall, both the
Poisson and the HP model were largely im-
proved  by the inclusion  of random effects,
accounting for most of the variation among
plots and data sources. 
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