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Introduction
Individuals  that have superior  lifetime re-

production are often more successful in the 
face of natural selection. However, when re-
productive events happen, these often lead to 
reduced foliage growth (Karlsson & Méndez 
2005) and delayed future reproduction (Obe-
so  2002).  The  resources  that  plants  obtain 
from  their  environment  are  allocated  to 
growth, maintenance and reproduction (Wil-
lson 1983, Bazzaz et al. 1987). It may be as-
sumed that, when a plant increases resource 
allocation to reproduction,  the allocation to 
the  other  functions  is  reduced.  Because  of 
these trade-offs, differences in  reproductive 
allocation  are  believed  to  result  in  relative 
differences  in  life  history  traits,  like  sea-

son-related flowering, fruiting and growth.
Dioecious plants provide an excellent op-

portunity for detecting possible trade-offs in 
resource allocation. In dioecious plants, the 
cost  of reproduction  in  male  individuals  is 
different  from  that  of  females  (Lloyd  & 
Webb 1977).  Females do allocate more re-
sources to reproduction than males, and the 
trade-offs between growth and reproduction 
would be more obvious if there was a shor-
tage of resources (Antos & Allen 1990, Bar-
rett  & Pannell  1998,  Delph  1999).  Several 
studies  report  that  females,  due  to  higher 
costs  of  reproduction,  showed  reduced  ve-
getative growth (Bañuelos  & Obeso 2004), 
put  off flowering or reduced flowering fre-
quency  (Cipollini  &  Whigham  1994)  and 

had higher mortality rates if resources were 
insufficient (Delph 1999, Obeso 2002, Ueno 
et al.  2006). However,  some authors  found 
that females have growth rates equivalent to 
(Nicotra  1999)  or  even  higher  than  males 
(Sakai & Burris 1985,  Rovere et al.  2003). 
Females  may  have  compensatory  mecha-
nisms  for  their  higher  reproductive  costs 
(Dawson & Geber 1999).

There  is  no  overwhelming  evidence  with 
regard  to  the  trade-offs  between  reproduc-
tion and growth in plants (Delph & Meagher 
1995). The degree of autonomy of the diffe-
rent plant organs might be an important rea-
son for this (Obeso et al. 1998). In trees, if 
branches are autonomous units, the costs of 
reproduction may show up at lower modular 
levels,  but  may be  compensated  at  higher 
combined modular levels, such as the crown, 
by non-reproductive branches (Hasegawa & 
Takeda 2001). Then we can detect the trade-
offs at the branch level but not at shrub/tree 
level.  The  degree  to  which  the  individual 
(modular) plant organs act in response to re-
productive costs is different  among species 
(Bañuelos & Obeso 2004).

Trade-offs are also difficult  to  observe in 
plants because of the delayed cost of repro-
duction.  Such delayed costs may appear in 
the  form  of  lower  frequency  of  flowering 
(Garcia  &  Antor  1995),  higher  mortality 
rates (Bierzychudek & Eckhart 1988, Lovett 
Doust  &  Lovett  Doust  1988)  or  lower 
growth  rates  of  females  (Popp  & Reinartz 
1988). Fox & Stevens (1991) found a trade-
off  between  current  reproduction  and  sub-
sequent  reproduction  in  Lindera  benzoin, 
Cipollini  & Whigham (1994) in  Salix  ala-
xensis,  while  Nicotra  (1999) detected  a 
delayed cost of reproduction in both males 
and females of Siparuna grandiflora.

According to  Delph  (1999),  only 29% of 
dioecious species have a 1:1 sex ratio, while 
57% are male-biased and relatively few are 
female-biased.  The  reason  for  the  male-
biased sex ratios may be that males allocate 
fewer resources to reproduction than females 
and selection often tend to favor the sex with 
lower  reproductive  investment.  However, 
some studies report that several populations 
in the genus Salix have female-biased sex ra-
tios (Elmqvist et al. 1988,  Dawson & Bliss 
1989). Differences in the costs of reproduc-
tion between neighboring males and females 
competing  for  resources  as  well  as  genetic 
effects can also form biased sex ratios (Ha-
milton 1967, Taylor 1999).

This study examines the differences in re-
productive  costs  between  the  sexes of  two 
dioecious  species, Rhamnus  davurica  and 
Rhamnus  schneideri  var.  manshurica.  We 
aim to show possible trade-offs between re-
production  and  vegetative  growth.  Accor-
dingly, specific objectives are: (1) to evalua-
te the intra-annual trade-offs between repro-
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When a plant increases resource allocation to reproduction from its limited re-
serves,  the  allocation  to  the  other  functions  is  reduced.  Because  of  these 
trade-offs, differences in reproductive allocation are believed to result in re-
lative differences in life history traits. Dioecious plants provide an excellent 
opportunity for detecting such possible trade-offs in resource allocation. This 
study aims to present a finding about the gender-based cost of reproductive al-
location. The trade-off between reproduction and foliage biomass allocation 
was examined in Rhamnus davurica and Rhamnus schneideri at different modu-
lar levels (shoot/sub-branch, branch, and shrub/tree level). There were no in-
tra-annual trade-offs between reproduction and foliage biomass in either sex 
of either species at shoot/sub-branch level, branch level and shrub level. Inter-
annual  trade-offs  were  detected  in  females  for  both  species.  Inter-annual 
trade-offs  existed at  all  three different  modular  levels  in  R.  schneideri fe-
males,  while  the  evidence  of  inter-annual  trade-offs  was  only  detected  at 
branch level in R. davurica females. At the population level, the sex ratio was 
female-biased in 2010, and it did not significantly deviate from 1:1 in 2011 in 
R. davurica. However, the sex ratios were significantly female-biased in both 
2010 and 2011 in R. schneideri. This study show that the degree of autonomy 
of the different plant organs influences the trade-offs between reproduction 
and growth, which suggests a species- and sex-dependent modular autonomy.
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duction  and  vegetative  growth  at  different 
plant organ (modular) levels; and (2) to com-
pare inter-annual trade-offs between females 
and males.

Materials and methods

Study sites
This research was conducted at the Jiaohe 

experimental  forest  in  Jilin  province,  in 
northeastern China (43° 58’ N, 127° 43’ E; 
elevation  450  m  a.s.l.).  A  permanent  plot 
was established in 2009, covering a rectan-
gular area of 23.76 ha (660 × 360 m). The 
forest  type  is  a  mixed  broadleaf-conifer 
forest, in which the average annual temperat-
ure is 3.8 °C. The hottest month is July with 
a  mean day temperature  of 21.7  °C,  while 
the coldest month is January with an average 
day temperature of -18.6 °C. The mean an-
nual  precipitation  is  695.9  mm.  The  main 
coniferous  species  in  the  forest  are  Abies  
holophylla and  Pinus  koraiensis,  while  the 
dominant  deciduous  species  are  Fraxinus  
mandshurica,  Tilia  amurensis and  Acer 
mono (Zhang et al. 2011).

The two species studied are  Rhamnus da-
vurica and  Rhamnus  schneideri  var.  man-
shurica.  R.  davurica occurs  as  a  shrub  or 
small  tree,  while  R.  schneideri  var.  man-
shurica only occurs as a shrub. Both species 
are common at the study site. R. davurica is 
usually taller  than  R.  schneideri  var.  man-
shurica.  Most  individuals  of  both  species 

have a  single  trunk,  a  few have  double  or 
multiple trunks. Both sexes are similar in ve-
getative phytomorph, but not in flowers. The 
flower  is  yellowish  green  with  four  petals. 
There are four stamens in a male flower, but 
only  one  stigma  in  a  female  flower.  The 
phytomorphs  in  the  Rhamnus species  are 
shown in  Fig. 1. In order to understand the 
classification  standard,  we  just  show male 
flowers  in  Fig.  1.  Female flowers  grow on 
the shoot in the same way as male flowers.

Field measurements
The spatial distributions of the two studied 

species within the 360×660 m experimental 
plot are shown in Fig. S1 of the Supplemen-
tary Material. In order to examine the repro-
ductive and vegetative allocation, female and 
male trees were observed in May 2010 and 
2011. The numbers differ between years be-
cause not all plants were flowering and frui-
ting in both years. For this reason, a subset 
of trees was selected for analysis including 
only  those  individuals  that  were  flowering 
and fruiting in both years. This involved 21 
female and 18 male  R. davurica and 57 fe-
male and 19 male R. schneideri. Five to ten 
reproductive branches were randomly selec-
ted in eight crown compartments (four hori-
zontal  sections and two vertical layers, fol-
lowing Henriksson 2001). The number of re-
productive  branches  was  different  because 
some individuals were very small and had no 
more than 5 reproductive branches.

The  trade-off  between  reproduction  and 
growth  was  studied  at  four  modular  levels 
(shoot/sub-branch,  branch,  tree/shrub  and 
population  level).  We counted  the flowers, 
leaves and fruits on all selected branches in 
May (flowering season) and August (fruiting 
season). At shoot/sub-branch level, the num-
ber  of  flowers,  leaves  and  fruits  was  as-
sessed. At the shrub/tree level, the number of 
branches was counted in every sample tree. 
That  number  was  multiplied  by  the  mean 
number of flowers, leaves and fruits of ran-
domly selected branches on each individual 
tree. This approach produced an estimate of 
the number of flowers, leaves and fruits on a 
single tree. At the time of flowering, one re-
productive  branch  (including  flowers  and 
leaves) was harvested in  each sample trees 
for both sexes. At the time of fruiting, 10-20 
fruits were harvested on each female sample 
tree from the eight crown sections described 
above.

The  harvested  branches  and  fruits  were 
weighed  after  oven-drying  at  80  °C  for  2 
days  to  obtain  an  estimate  of  the  average 
weight for each sample tree. The flower, leaf 
and fruit  biomass estimates were calculated 
using eqn. 1-3 in Tab. 1. The relative repro-
ductive ratio (RR) was calculated using eqn. 
4-5 in Tab. 1. All calculations were done for 
different modular levels.

Growth  diameter  was  estimated  by  year-
ring analysis. Altogether, 64 trees (R. davu-
rica: 20 females and 16 males; R. schneideri: 
11 females and 17 males) were harvested in 
2010. Across-sectional stem discs were cut 5 
cm  above  ground  level.  Tree-ring  widths 
were  measured  to  the  nearest  0.001  mm 
using  the  annual  ring  analyzer  (Lintab  5). 
The tree ring samples were cross-dated using 
COFFCHA software.

Statistical analysis
Sometimes, it is difficult to decide if an ef-

fect  is  fixed  or  random  (Crawley  2007). 
Therefore,  differences  in  flower  biomass, 
leaf  mass  and  reproductive  ratio  at  three 
levels  were compared  by factorial  analyses 
of  variance  with  two  fixed-effects  factors 
(sex  and  year).  Pearson  correlations  were 
used to test  the correlation between foliage 
biomass  and  reproductive  biomass.  Trees 
were grouped into diameter at breast height 
(DBH) classes. The sex ratio in each DBH 
class  was  determined  during  the  study pe-
riod. G-tests were used to analyze deviations 
from a 1:1 sex ratio  for the two species in 
different years.

Results

Shoot/sub-branch level analysis
Both dioecious species, R. davurica and R.  

schneideri,  show  significant  differences 
between females and males at the shoot level 
(Tab.  2).  The differences between sexes in 
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Fig. 1 - Sketch of phytomorph in dioecious Rhamnus species. (a): trunk and living branches; 
(b): a short current-year shoot.

Tab. 1 - Equations for calculating biomass and reproductive ratio (RR).  DWfruits,  DWflower, 
Nflowers and Nfruits are the dry weight of one fruit, one flower, flower number and fruit number, 
respectively.  Brep is the sum of flower and fruit biomass for females or flower biomass for  
males; Bveg is the leaf biomass for both sexes.

Symbols Equations

eqn. 1 Flower biomass = Nflowers × DWflower

eqn. 2 Bveg = number of leaves × average dry mass of one leaf

eqn. 3 Fruit biomass = Nfruits × DWfruits

eqn. 4 Brep females = DWfruits × Nfruits + (Nflowers -Nfruits) × DWflower

eqn. 5 Brep males = DWflowers × Nflowers

eqn. 6 RR = Brep / (Brep+Bveg) × 100
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Tab. 2 - Results of analyses of variance examining the effects of sex and year on the flower, foliage, and the percentage of reproductive ratio  
(RR) at different modular level in Rhamnus species . (***): p<0.001; (**): p<0.01; (*): p<0.05.

Modular
level

Species
Source of 
variation

Flower Foliage biomass RR

Mean Sq F value Mean Sq F value Mean Sq F  Value
Shoot R. davurica sex 0 5.94* 3.6 18.63*** 0.04 25.80***

year 0 25.01*** 12.86 66.61*** 0.03 21.67***

sex×year 0 0.04 0.23 1.2 0.03 23.22***

Residuals 0 - 0.19 - 0 -
R. schneideri sex 0 46.60*** 0.01 2.8 0.45 124.10***

year 0 188.04*** 0.12 27.38*** 0.65 179.04***

sex×year 0 142.49*** 0.01 3.01 0.44 121.45***

Residuals 0 - 0 - 0
Branch R. davurica sex 0 0.11 34.49 8.86** 0.12 56.80***

year 0 0.26 210.06 53.96*** 0.15 69.97***

sex×year 0.01 8.80** 0.16 0.04 0.14 63.24***

Residuals 0 - 3.89 - 0 -
R. schneideri sex 0 0 87.66 63.00*** 0.46 58.10***

year 0.32 65.95*** 233.89 168.09*** 0.83 103.73***

sex×year 0.22 46.59*** 78.51 56.43*** 0.55 68.61***

Residuals 0 - 1.39 - 0.01 -
Shrub R. davurica sex 30.6 4.22 122452.19 2.35 0.04 16.83**

year 12.11 1.67 150.66 0 0.02 9.34**

sex×year 9.54 1.31 33945.72 0.65 0.02 9.01**

Residuals 7.26 - 52066.45 - 0
R. schneideri sex 9.18 0.32 53268.3 1.81 0.17 10.59**

year 373.96 12.97*** 137588.25 4.67* 0.24 15.60***

sex×year 39.02 1.35 110844.39 3.76 0.13 8.29**

Residuals 28.83 - 29456.93 - 0.02 -

Fig. 2 - Comparison of re-
productive ratio and foliage 
biomass between males and 
females in 2010 and 2011 at 
shoot/sub-branch levels for 

the two Rhamnus species 
studied. Letters denote signi-

ficant differences (p<0.05), 
calculated using multiple 

comparisons. Error bars re-
present standard errors.
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flower biomass and reproductive ratio were 
significant  for  both  species,  though  diffe-
rences  between  sexes  in  foliage  biomass 
were significant only for  R. davurica  (Tab.
2). R. schneideri females invested more flo-
wer biomass than males in  2010,  while  R. 
schneideri males invested more flower bio-
mass than females in 2011 (Fig.  S2 in Sup 

plementary Material). Females had higher re-
productive ratios than males in 2010 in both 
species (Fig. 2a, b).  R. davurica  females in-
vested more foliage biomass than  males  in 
both  years,  while  in  R.  schneideri  only fe-
males  produced  more foliage biomass than 
males in 2011 (Fig. 2c, d).

No  significant  correlations  were  found 

between  reproductive  biomass  and  foliage 
biomass at the shoot/sub-branch level in  R.  
davurica (Tab. 3). In  R. schneideri,  only a 
few  branches  (female:  3  of  344  branches; 
male: 5 of 177 branches) showed significant 
negative  correlations,  while  most  branches 
exhibited  significant  positive  correlations 
between  reproductive  biomass  and  foliage 
biomass (Tab.  3).  This  means that  when  a 
shoot  shows higher  growth rate,  it  also in-
vests more in  reproduction.  The significant 
negative correlation can be considered as a 
trade-off between  reproduction  and  vegeta-
tion.  Therefore,  there  is  no  evidence  of  a 
trade-off at shoot level. The observation may 
be attributed to more resources being avail-
able at a higher level.

The  differences  between  years  in  flower 
biomass,  foliage  biomass  and  reproductive 
ratio were significant for both species (Tab.
2). The reproductive ratio decreased for the 
females  in  both  species.  For  the  males  in 
both species the differences in the reproduc-
tive ratio between years was not significant 
(Fig.  2a,  b).  A long-term cost of reproduc-
tion  was  detected  at  the  shoot/sub-branch 
level just for females. The reproductive ratio 
decreased for females in both species (Fig.
2a,  b).  The  foliage  biomass  decreased  for 
both sexes in R. davurica, while foliage bio-
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Tab. 3 - Results of a correlation analysis between reproductive biomass and foliage biomass 
at the shoot/sub-branch and branch level based on the study data in 2011. Only the branches  
with eight or more shoots could be used in the analysis. Finally, 8 of 196 branches of female  
R. davurica,  26 of 178 branches of male  R. davurica, 344 of 461 branches of female  R.  
schneideri and 177 of 183 branches of male R. schneideri were used. Only the shrubs with 8 
or more branches could be used in the correlation analysis. Finally, 12 of 21 R. davurica fe-
males, 18 of 18 R. davurica males, 57 of 57 R. schneideri females and 19 of 19 R. schneideri 
males were used.

Unit Species Sex
Significant 

negative
Significant 

positive
Non-

significant
Total

Branch R. davurica Female 0 0 8 8
Male 0 0 26 26

R. schneideri Female 3 28 313 344
Male 5 51 121 177

Shrub R. davurica Female 0 4 8 12
Male 0 8 10 18

R. schneideri Female 1 9 47 57
Male 0 13 6 19

Fig. 3 - Comparison of re-
productive ratio and foliage 
biomass between males and 
females in 2010 and 2011 at 
the branch level for the two 
Rhamnus species studied. 
Letters denote significant 
differences (p<0.05), and are 
calculated using multiple 
comparisons. Error bars re-
present standard errors.
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mass increased for both sexes in  R. schnei-
deri (Fig.  2c,  d).  Flower  biomass and fruit 
biomass decreased for females of both spe-
cies. Flower biomass decreased for R. davu-
rica males, but there was not significant dif-
ference between years in the flower biomass 
for  R. schneideri males (Fig. S3 in Supple-
mentary Material).

Branch level analysis
At the branch level, no significant differen-

ces  were  detected  between sexes in  flower 
biomass for both R. davurica and R. schnei-
deri.  However, differences between sexes in 
both foliage biomass and reproductive ratio 
were significant for both species (Tab. 2). R.  
davurica  (in  2010)  and  R.  schneideri  (in 
2011)  showed  significant  differences  bet-
ween  sexes  in  foliage  biomass.  The  diffe-
rence  in  reproductive  ratio  between  males 
and females was significant in both R. davu-
rica and R. schneideri in 2010 (Fig. 3a, b).

At the branch level, almost all 106 shrubs/ 
small trees (R. davurica: 12 females and 18 
males;  R.  schneideri:  57  females  and  19 
males)  showed  significant  positive  or  non-
significant correlation between reproductive 
biomass and foliage biomass apart from one 
female R. schneideri (Tab. 3). This means no 
trade-off  exists  between  reproduction  and 
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Fig. 4 - Comparison of re-
productive ratio and foliage 
biomass between males and 
females in 2010 and 2011 at 

the shrub/tree level for the 
two Rhamnus species stu-

died. Letters denote signifi-
cant differences (p<0.05), 
calculated using multiple 

comparisons. Error bars re-
present standard errors.

Tab. 4 - Number of stems and sex ratios of two Rhamnus species in different DBH classes in 
the 360×660 m research plot. (DBH): diameter at breast height (cm); G(P): G-test results.  
(None): non-flowering trees; (***): p<0.001; (**): p<0.01; (*): p<0.05: (ns): p>0.05.

Species Parameters
DBH classes (cm)

0-2 2-4 4-6 6-8 >8
R. davurica
in 2010

Male 3 22 18 11 0

Female 9 78 136 62 19

None 11 88 87 28 10

Male/Female 0.33 0.28 0.13 0.18 0

G(P) 3.01ns 33.08*** 102.07*** 39.04*** 25.66***

R. davurica 
in 2011

Male 1 16 14 6 0

Female 3 18 21 11 0

Non-flowering 13 131 182 78 28

Male/Female 0.33 0.89 0.67 0.55 -

G(P) 0.93ns 0.12ns 1.39ns 1.45ns -

R. schneideri 
in 2010

Male 1 21 1 - -

Female 11 73 4 - -

Non-flowering 1 10 1 - -

Male/Female 0.09 0.29 0.25 - -

G(P) 9.36* 30.29*** 1.75ns - -

R. schneideri 
in 2011

Male 5 29 0 - -

Female 8 57 3 - -

Non-flowering 4 22 1 - -

Male/Female 0.63 0.51 0 - -

G(P) 0.67ns 9.23* 3.56ns - -
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vegetation at branch level for two dioecious 
Rhamnus species.

The  differences  between  years  in  foliage 
biomass and reproductive ratio were signifi-
cant  for  both  species,  while  the  difference 
between years in flower biomass were signi-
ficant in  R. schneideri (Tab. 2). The repro-
ductive ratio of females decreased in the sub-
sequent  year,  while  that  of  males  was  not 
significantly different for both species. This 
result  is  assumed to  provide  evidence of a 
delayed cost of reproduction for females at 
the  branch  level.  The  foliage  biomass  of 
males  and  females  increased  in  the  subse-
quent  year  for  both  dioecious species (Fig.
3c,  d).  The  decrease  of  reproductive  ratio 
and  the  increase  of  foliage  biomass  in  fe-
males  indicated  inter-annual  tradeoffs  at 
branch level.

Shrub/tree level analysis
At  the  shrub/tree  level,  significant  diffe-

rences  in  reproductive  ratio  were  detected 
between males and females for both R. davu-
rica and R. schneideri, though no significant 
differences  in  flower  biomass  and  foliage 
biomass were found (Tab. 2). Females inves-
ted  more  biomass  into  reproduction  than 
males for both species in 2010, but there was 
no significant difference between sexes in re-
productive  allocation  for  both  species  in 
2011 (Fig. 4a, b). The reproductive biomass 
correlated  positively  with  the  foliage  bio-
mass in the females of the two species at the 
shrub/tree level (R. davurica, Male: t = 1.12, 
correlation  coefficient  =  0.24,  p>0.05;  Fe-
male: t = 3.33, correlation coefficient = 0.74, 
p<0.01; R. schneideri, Male: t = 0.76, correl-
ation coefficient = 0.15, p>0.05; Female: t = 
2.73, correlation coefficient = 0.33; p<0.01). 
Thus, there was no trade-off between vege-
tative growth and reproduction in males and 
females of the two species.

Differences  between  years  in  flower  bio-

mass, foliage biomass and reproductive ratio 
were  significant  for  R.  schneideri, but  the 
difference  between  years  was  significant 
only in  the reproductive  ratio  for  R.  davu-
rica (Tab. 2). Both dioecious species showed 
different  reproductive  ratios  in  2010  and 
2011. The reproductive ratios of females de-
creased in the subsequent year for both spe-
cies, while no significant difference was de-
tected between the two years in males. Inte-
restingly,  the  leaf  biomass  in  female R.  
schneideri  also increased in the subsequent 
year (Fig. 4c, d). These differences in the re-
productive ratios between the two years may 
be due to a delayed costs of reproduction.

Population level
The sex ratio of  R. davurica in 2010 was 

significantly female-biased, but it was 1:1 in 
2011. The sex ratios in each DBH class were 
consistent with the population sex ratio apart 
from the 1-2 cm DBH class (Tab. 4, Fig. S4 
in  Supplementary Material).  The sex ratios 
of R. schneideri  were significantly biased in 
both 2010 and 2011, apart from the 0-2 cm 
and 4-6 cm classes (Tab. 4,  Fig. S4 in Sup-
plementary Material).

The age of females and males was not si-
gnificantly  different  (R.  davurica:  36.92  ± 
1.4 years for males, 38.5 ± 1.63 years for fe-
males,  t =  0.74,  p  =  0.47;  R.  schneideri: 
53.73 ± 1.46 years for males, 49.39 ± 2.02 
years for females,  t = -1.74,  p  = 0.09). The 
radial  growth  of  R.  schneideri  showed  in-
ter-sexual differences with the growth rate of 
females being higher than that of males (R.  
davurica: 0.79 ± 0.03 mm · year−1 for males, 
0.84 ± 0.03 mm·year−1 for females, t = 0.97, 
p  = 0.34;  R. schneideri: 0.31 ± 0.02 mm · 
year−1 for males, 0.37 ± 0.02 mm · year−1 for 
females,  t = 2.67,  p = 0.008643 -  Fig. S4). 
The variation  of monthly average tempera-
ture  and  precipitation  was  similar  in  2010 
and 2011 (Fig. 5).

Discussion

Intra-annual trade-off at different 
modular levels

Annual trade-off means that the correlation 
between  foliage  biomass  and  reproductive 
ratio is negative at 1 year. Namely, for each 
high reproductive biomass, there is a low fo-
liage  biomass.  Unexpectedly,  most  males 
and females showed a non-significant corre-
lation  between  foliage  biomass  and  repro-
ductive  biomass  for  both  species  studied. 
Only a few individuals showed a trade-off at 
both the shoot/sub-branch level and branch 
level in R. schneideri. This findings indicate 
that,  although  some  shoots  and  branches 
showed  autonomy,  the  degree  of  modular 
autonomy  was  different  between  species, 
sexes and shrubs of the same sex.

The  reproductive  biomass  was  positively 
correlated with the foliage biomass at diffe-
rent levels for both sexes in R. schneideri. In 
R.  davurica,  the  reproductive  biomass was 
positively  correlated  with  the  foliage  bio-
mass  among  branches/shrubs,  but  neutral 
among shoots  for  both  sexes.  The positive 
correlation is probably due to the particular 
position of the shoots and/or branches. The 
better the position (e.g., full light exposure), 
the  more  foliage  growth  and  reproduction 
that  can  be  expected  (Bañuelos  &  Obeso 
2004). Plant compensatory mechanisms may 
probably hide the trade-offs (Munetaka et al. 
2009).  During  the  investigation,  we  found 
that the flowers and immature fruits of both 
species  were  all  green.  These  organs  may 
also represent photosynthetic structures that 
can  compensate  the  reproductive  cost  of  a 
plant  (Tozawa  et  al.  2009).  Thus,  females 
may have a greater compensatory advantage 
than males because of flower and fruit pho-
tosynthesis. Phenology patterns may provide 
another compensatory mechanism for repro-
duction. Both R. davurica and R. schneideri 
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Fig. 5 - Monthly average temperature and monthly average precipitation in 2010 and 2011. The black dots indicate temperature, the grey 
squares indicate precipitation.
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grow leaves before flowers. If a leaf is gro-
wing before flowering,  a plant will  first al-
locate more resources to foliage growth than 
to  reproduction.  Trade-off  can  be  detected 
only  for  a  short  time  when  flowers  and 
leaves are both on a tree. Thus, the trade-off 
cannot  be determined  during  the  entire  re-
productive  period,  (Miyazaki  et  al.  2002). 
Interestingly,  Verdú et al. (2007) found that 
the lower cost of reproduction for  Fraxinus  
ornus males  results  in  better  vegetative 
growth  than  in  the  hermaphrodites  of  that 
species. Such differences in sex-specific re-
productive costs do not seem to be anymore 
significant under stressful conditions.

Inter-annual trade-off at different 
modular levels

Delayed costs of reproduction were found 
at different modular levels for the two dioe-
cious species. The delayed cost was detected 
in R. schneideri females and R. davurica fe-
males at shoot, branch and shrub levels, but 
not in males. The fruit biomass decreased at 
most modular levels in the subsequent year 
in  R.  davurica females.  However,  the fruit 
biomass decreased at shoot level but not at 
any other higher modular levels in the sub-
sequent  year in  R. schneideri females. This 
indicates that different species may have dif-
ferent  reproductive  strategies.  Every  single 
shoot  of  R. schneideri female decreased in 
the fruit biomass, but the number of fruits at 
higher  modular  levels  may increase  in  the 
subsequent year.

At  three  different  modular  levels,  the  re-
productive ratio decreased, while the foliage 
biomass increased in  R. schneideri females. 
This result suggests the existence of an inter-
annual trade-off in R. schneideri females, be-
ing the performances consistent at three dif-
ferent modular levels. In R. davurica, the in-
ter-annual  trade-offs only existed at  branch 
level  for  females.  Some studies  found  that 
the  reproduction  pattern  of  the  lower-level 
modules  was  the  same  as  the  higher-level 
modules (e.g.,  Matsushita et al.  2011). Our 
study also confirmed the same performance 
in  R.  schneideri.  Newell  (1991) found that 
branches allocated more resources for repro-
duction and had less opportunity to flower or 
bear fruit in the subsequent year than on pre-
viously non-fruiting  branches.  Thus,  repro-
ductive activity in a given year may cause re-
duced fruit biomass in the subsequent year. 
Vaughton & Ramsey (2011) also found that 
Leucopogon  melaleucoides females,  which 
invest more energy in reproduction, will in-
hibit future growth in resource-limiting con-
ditions and have no compensatory traits. No 
significant  difference  in  monthly  average 
temperature  and  precipitation  was  found 
between 2010 and 2011.  In  this study,  cli-
matic parameters may not be the key factors 
for the inter-annual trade-off.

Sex ratio is an important trait at the popula-

tion level for dioecious species. The sex ratio 
is affected at germination by sex-linked ge-
nes  (Shelton  2010),  pollination  intensity 
(Field et al. 2012) and soil nitrogen (Yu & 
Lu 2011).  Sex ratios  are  affected  by other 
factors as well,  e.g., sexually different mor-
tality rates (Stehlik & Barrett 2005). The sex 
ratio changed at reproduction from a signi-
ficant female-bias in 2010 to a non-signifi-
cant bias in 2011, because more females did 
not flower in 2011 in R. davurica. The chan-
ge in sex ratio within two reproductive years 
may be an indication of a delayed cost at the 
population  level.  The  lower  flowering  fre-
quency in females may be the evidence of a 
long-term cost of reproduction (Cipollini  & 
Stiles 1991).

Conclusions
The intra-annual trade-off between foliage 

biomass and reproductive structure was not 
detected at  different  modular  levels neither 
in sex nor in  Rhamnus species. The perfor-
mances of  inter-annual  trade-offs  were dif-
ferent  at  two sexes and two  Rhamnus spe-
cies.  The  inter-annual  trade-offs  were  just 
detected in females for both  Rhamnus spe-
cies, although the performances were diffe-
rent  between  two  species  at  four  modular 
levels.  The  intra-annual  trade-off  is  hardly 
clear because of compensatory mechanism in 
both  sexes,  while  the inter-annual  trade-off 
is clear in females because of their higher re-
productive allocation.
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