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Introduction
Forests cover about one third of water-free 

land areas (FAO 2010) and are important for 
timber  production,  recreational  purposes, 
biodiversity  conservation  and  erosion  pre-
vention.  In  addition,  forests can act as car-
bon sink mitigating the consequences of cli-
mate changes (Coops et al. 1998). Given the 
increased  importance  of  the  above  forest 
functions,  the  need  for  monitoring  forest 
stocks  not  only  on  a  local  scale,  as  com-
monly  done  for  commercial  purposes,  but 
also on  a  regional/global  scale  is  currently 
felt  by ecologists  (e.g.,  Tupek et al.  2010). 

More specifically, the spatio-temporal varia-
tions of forest carbon stocks and fluxes must 
be  known  in  order  to  properly  assess  the 
land carbon balance on different spatial and 
temporal scales (Allen et al. 2010, Powell et 
al. 2010). Efficient monitoring and reporting 
systems capable  of quantifying variation  of 
forest  yields  are  therefore  needed  (Corona 
2010). Traditionally this objective has been 
fulfilled by the application of forest  inven-
tories, so as to obtain both basic forest attri-
butes  (e.g.,  basal  area,  stem volume,  etc.) 
and current annual increment (CAI), defined 
as the mean woody biomass accumulated an-

nually over a certain number of years (usu-
ally  from  five  to  ten).  Forest  inventories, 
however,  require  very expensive  and  time-
consuming field surveys and cannot be car-
ried out frequently (Tupek et al. 2010).

An interesting alternative is the application 
of  advanced  methodologies  quantifying  fo-
rest production variations based on the com-
bined use of remotely sensed data and bio-
geochemical  models.  Maselli  et  al.  (2009a) 
proposed an approach based on the biogeo-
chemical  model  BIOME-BGC  to  simulate 
the CAI of forests in quasi-equilibrium with 
the climatic and edaphic conditions of each 
site. More specifically, calibrated versions of 
BIOME-BGC were applied to simulate pho-
tosynthesis,  respiration  and  allocation  pro-
cesses for each forest type. In this way, most 
factors  determining  the spatio-temporal  va-
riation  of  CAI  can  be  taken  into  account. 
Among  these  factors,  the  first  to  be  con-
sidered is the composition in species, whose 
genetic  and  physiological  characteristics 
strongly  affect  CAI  variability  (Assmann 
1970).  Moreover,  knowledge of site condi-
tions (i.e., the site index) is required, in that 
potential growth in each site and maximum 
tree development stems from the interaction 
between  climate  and  soil.  Other  important 
factors are those related to biomass removal 
in each site, including the management prac-
tices  applied  (thinning  and  cutting  opera-
tions), forest fires, diseases occurred, etc. Fi-
nally,  the stand development stage must be 
taken into consideration, since forest produc-
tion  is strictly dependent  on  tree age (e.g., 
Gower  et  al.  1996,  Smith  &  Long  2001, 
Wang et al. 2011). In fact, it is well known 
that old forests reduce their growth rate be-
cause of varying allocation properties (e.g., 
constant  gross  primary production  - GPP - 
coupled  with  increasing  respiration  due  to 
higher  biomass),  nutrient  limitations,  chan-
ges in hydraulic architecture, and decreased 
stand  leaf area (Smith & Long 2001).  The 
inclusion of all the mentioned factors within 
the proposed CAI modeling strategy can be 
carried out at different levels of complexity, 
depending on available input data and spatial 
and  temporal  scales  of  model  application. 
This is expected to  impact  the accuracy of 
the model output in a way that has not yet 
been fully assessed.

The current paper aims at investigating the 
applicability of the model  BIOME-BGC to 
assess current  annual  increments  (CAIs)  of 
nine beech forest sites spread over the Italian 
peninsula.  Conventional  forest  measure-
ments and tree growth data were fully avai-
lable for all the sites considered. Moreover, 
various types of ancillary and remote sensing 
data  were  considered  in  the  analysis.  Data 
modeling  was  applied  to  obtain  CAI  esti-
mates  using  progressively increasing  infor-
mation  on  each  forest  ecosystem (i.e.,  site 
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condition, existing biomass and forest deve-
lopment phase). Finally, the accuracy of the 
CAI predictions obtained was tested by com-
parison  to  CAI  measurements  from  tree 
growth data.

The  paper  is  organized  as  follows.  The 
main features of the selected forests are first 
described along with the ground and remote 
sensing data applied in the study.  The mo-
deling approach is then introduced, together 

with  the  steps  used  for  its  application  and 
validation  against  available  increment  data. 
Next, the results are described and commen-
ted,  with  particular  reference  to  examining 
the main sources of uncertainty in the evalu-
ation of CAI.  The paper is concluded by a 
section which highlights the potential contri-
bution of the approach for the assessment of 
forest carbon budget on a national scale.

Study areas and data

Study areas
Beech (Fagus sylvatica L.) is a deciduous 

species  widely distributed  within  European 
temperate  forests,  growing in environments 
relatively  little  affected  by  wildfires  and 
characterized by a wide range of soil types. 
In Italy, it generally grows both on the Alps 
(generally at elevation > 500 m a.s.l.) and on 
the Apennines (elevation > 900 m a.s.l.).

Nine beech forests  were selected all  over 
Italy (Fig.  1).  Climate characteristics at  the 
chosen  locations  vary  from  Mediterranean 
(south) up to temperate (north). The average 
annual temperature ranges from 7.5 °C in the 
north to 14.2 °C in the south; a trend of de-
creasing annual rainfall is observed moving 
from north to south, and from the highest to 
the lowest altitude of the sites (Tab. 1).

Meteorological and ancillary data
Meteorological  information  (i.e.,  daily 

minimum  and  maximum  temperature  and 
precipitation) for each site and for the period 
considered  (1999-2008)  was  derived  from 
the  E-OBS  dataset  (Haylock  et  al.  2008). 
Data are freely provided at the original spa-
tial resolution of 0.25° and were then down-
scaled at 1-km spatial resolution by applying 
locally calibrated regressions after Maselli et 
al. (2012). 

A field survey was carried out at each site 
to determine the actual standing volume by 
directly measuring diameter at breast height 
(DBH) and height  of trees  standing  within 
circular plots of varying radius (Tab. 2).

Tree growth data
For  each  site,  tree  growth  measurements 

were  collected  and  elaborated  as  dendro-
chronological series in order to retrieve refe-
rence CAI values (see Tab. 2). At each site, 
an area of approximately 2  ha  was chosen 
and 15-16 living dominant and co-dominant 
trees were selected, with DBH ranging from 
60 to 100 cm and height about 26 m. Care 
was taken to select trees with canopies well 
separated from each other, in order to reduce 
the  effect  of  competition  on  tree  growth. 
Two cores were taken by an increment borer 
0.5 cm in diameter from each tree, uphill at 
height of 1.3 m at an angle of 120° to each 
other.  Cores  were  mounted  on  channeled 
wood, seasoned in a fresh-air dry store and 
sanded a few months later. Tree rings were 
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Fig. 1 - Fractional cover (Fc) of beech forests in Italy derived from the CORINE Land Cover 
2006 (5°-20° Long. E, 36-48° Lat. N). White circles indicate the location of the nine beech 
forest sites considered in this study (the IDs refer to the site names reported in Tab. 1).

Tab. 1 - Main environmental characteristics of the beech forest sites studied. Meteorological  
data were derived from the downscaled E-OBS dataset (see text for more details).

Study site
ID 

point
Geo-location 

(Long. E, Lat. N)
Altitude
(m a.s.l.)

Average
annual temp.

(°C)

Average 
annual rainfall

(mm/y)
Dolomiti Bellunesi 1 11.91, 46.12 1100 8.75 768.6
Pian del Cansiglio 2 12.38, 46.04 1300 7.5 974.47
Sasso Fratino 3 11.79, 43.84 1550 9.61 1708.97
Val Cervara 4 13.73, 41.83 1780 7.97 694.03
Monte di Mezzo 5 14.21, 41.75 1100 11.19 613.48
Corleto 6 15.42, 40.47 1130 11.67 655.73
Sila 7 16.65, 39.13 1680 9.89 806.26
Aspromonte 8 15.94, 38.17 1560 12.29 660.63
Gargano 9 16.01, 41.82 775 14.2 509.03
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dated  by counting them from bark to  pith. 
Ring  widths  were  measured  to  the  nearest 
0.01  mm using  the  LINTAB-measurement 
equipment,  coupled  to  a  stereomicroscope 
(60x magnification - Leica,  Germany).  The 
Time  Series  Analysis  Programme  (TSAP) 
software  package  (Frank  Rinn,  Heidelberg, 
Germany)  was  used  for  statistical  analysis. 
Raw ring widths of the single series of each 
dated  tree  were  cross-dated  statistically  by 
the  percent  agreement  in  the  signs  of  the 
first-differences of the two time series  (the 
Gleichlaufigkeit, GLK -  Kaennel & Schwe-
ingruber 1995). The GLK is a measure of the 
year-to-year agreement between the interval 
trends  of two chronologies  based  upon the 
sign of agreement,  or the sum of the equal 
slope intervals in per cent. With an overlap 
of  50  years  (commonly  used  in  tree-ring 
studies), GLK becomes significant (p < 0.05) 
at 62% and highly significant (p < 0.01) at 
67%. With an overlap of 10 years, GLK be-
comes  significant  (p  <  0.05)  at  76%  and 
highly significant (p < 0.01) at 87% (Kaen-
nel  & Schweingruber  1995).  In  this  study, 
most time series analyzed were longer than 
50  years  and  cross  dating  was  considered 
successful if GLK was higher than 60%.

The  statistical  significance  of  the  GLK 
(GSL)  was  also  computed.  The  TVBP,  a 
Student’s  t-value  modified  by  Baillie  & 
Pilcher (1973) was used for investigating the 
significance of the best match identified. The 
TVBP is commonly used as a statistical tool 
for comparing and cross-dating ring widths 
series. It determines the degree of correlation 
between  curves  and  eliminates  low-fre-
quency variations in the time series, as each 
value is divided by the corresponding 5-year 
moving average.

Locally missing or discontinuous rings we-
re  identified  by  cross-dating  the  two  tree-
ring cores obtained from the same tree. Stan-
dard  methods  (Fritts  1976)  were  used  to 
build  a  tree  averaged  series  and  the  mean 
chronologies of the investigated sites, using 
ring-width  series  obtained  from  all  living 
trees growing at each study site.

Modeling approach
The  methodology  developed  by  our  re-

search  group  allows  the  calibration  of  the 
BIOME-BGC  model  for  each  main  forest 
type (Chiesi et al. 2007). This is obtained by 
iteratively adapting the GPP estimates of the 
model to those of a Monteith’s type, NDVI-
driven  parametric  model,  Modified  C-Fix, 
whose  accuracy  has  been  widely  tested 
against eddy covariance flux tower measure-
ments  (Maselli  et  al.  2009b,  Chiesi  et  al. 
2011a).  Next,  BIOME-BGC is  applied  for 
each  forest  site  to  simulate  all  main  forest 
processes (Maselli et al. 2009a). In the cur-
rent  paper  only the main  steps  of  the  me-
thodology are summarized.  Theoretical and 
operational details can be found in the refe-

rences mentioned below.
BIOME-BGC, after a proper calibration for 

beech (see Chiesi et al. 2011b), is capable of 
estimating  respiration  and  allocation  pro-
cesses  of  ecosystems  close  to  equilibrium 
condition (Churkina et al.  2003,  Waring & 
Running 2007). For each study site the mo-
del can perform a self-initialization through 
the so-called spin-up phase, which identifies 
the  initial  state  variables.  In  this  way,  the 
model  can  predict  the  net  forest  carbon 
fluxes depicting  a quasi-equilibrium situa-
tion. More specifically, net primary produc-
tion (NPP) is obtained as follows (eqn. 1):

where GPP, Rg and Rm correspond to the an-
nual  gross  primary production,  growth  and 
maintenance  respiration  simulated  by BIO-
ME-BGC (g C m-2 year-1), respectively.

From NPP, CAI (m3 ha-1 year-1) can be pre-
dicted through the general formula (eqn. 2):

where  SCA corresponds to the stem carbon 
allocation,  BEF is  the  biomass  expansion 
factor and BWD is the basic woody density. 
The SCA for beech is derived from the BIO-
ME-BGC settings (White et al. 2000, Chiesi 
et al. 2011b), while  BEF and BWD are 1.36 
and 0.61, respectively (Federici et al. 2008). 
The  two  scalars  2  and  100  are  applied  to 
convert CAI from carbon to dry matter and 
from g m-2 to Mg ha-1, respectively.

The effects of forest disturbances on  NPP 
can  be  taken  into  account  by applying  the 
methodology  proposed  by  Maselli  et  al. 
(2009a): the ratio between actual and poten-
tial tree volume is considered as an indicator 
of ecosystem proximity to potential biomass 
density,  which  can  be  used  to  correct  the 
GPP and respiration  estimates  obtained  by 
the  previous  model  simulations.  According 
to this formulation, actual forest NPP (NPPA, 
g C m-2 year-1) can be approximated as fol-
lows (eqn. 3):

where the two dimensionless terms FCA  (ac-
tual forest cover) and NVA (actual normalized 
standing volume) are derived from the ratio 
between  actual  and  potential  tree  volume 
(Maselli et al. 2009a).

The above modification works as depicted 
in  Fig. 2a. Simulated CAI starts from 0 (no 
woody biomass) and increases as function of 
the stand volume up  to  a maximum value, 
which  is slightly higher  than BIOME-BGC 
(equilibrium)  CAI  due  to  the  reduced  in-
fluence  of  autotrophic  respiration.  Next, 
when  actual  biomass  approaches  potential 
biomass, respiration increases and simulated 
CAI  tends  to  reach  the  CAI  simulated  by 
BIOME-BGC.

The  strategy  has  been  further  refined  to 
take  into  consideration  the  age-related 
growth  decline typical  of even-aged  stands 
(Chiesi  et al.  2012). This is obtained using 
an age-dependent relationship between stem 
carbon and leaf carbon, which must be cali-
brated  for  each  study  site  and  transforms 
FCA into  FCEA (even-aged actual  forest  co-
ver).  Accordingly,  even-aged  NPP (NPPEA) 
is obtained as follows (eqn. 4):

As fully explained by Chiesi et al. (2012), 
applying the above equation leads to modify 
the relationship between photosynthesis and 
autotrophic  respiration in an age-dependent 
way. Consequently, for a certain woody bio-
mass, tree aging has an inhibiting effect on 
the  predicted  CAI.  This  is  schematized  in 
Fig. 2b, where the ratio between aging CAI 
and  BIOME-BGC  (equilibrium)  CAI  is 
much  higher  than  1  for  young  stands  and 
tends  to  decrease  and  level  off  for  older 
stands.

Data processing

Elaboration of dendrochronological 
data series

Dendrochronological  measurements  (i.e., 
annual  tree  ring  widths)  collected  in  each 
forest site were elaborated to retrieve forest 
volume variations during the stand develop-
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Tab. 2 - Characteristics of the dendrochronological measurements.

Study site
Length of the 

data series
Average tree ring

width (mm/y)
Volume
(m3/ha)

CAI
(m3/ha)

Dolomiti Bellunesi 1915-2006 2.24 380 5.26
Pian del Cansiglio 1814-2008 2.18 791 8.22
Sasso Fratino 1827-2008 2.1 985 8.94
Val Cervara 1715-2008 0.92 364 1.48
Monte di Mezzo 1844-2004 2.62 703 7.8
Corleto 1821-2006 1.98 832 12.68
Sila 1854-2008 2.14 775 10.81
Aspromonte 1824-2008 1.87 687 2.07
Gargano 1827-2008 1.82 632 6.23

NPP=GPP−Rg−Rm

CAI=NPP⋅SCA/BEF /BWD⋅2⋅100

NPP A=GPP⋅FC A−Rg⋅FC A−Rm⋅NV A

NPPEA=GPP⋅FCEA−Rg⋅FC EA−Rm⋅NV A
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ment since the planting date. To this aim, the 
DBH was first reconstructed by summing up 
the tree  ring widths.  A cubic  function  was 
then applied to retrieve the stem volume cor-
responding  to  each  diameter  measurement 
(Tabacchi et al. 2011). This volume was then 
normalized against the actual forest volume 
measured in the field (see  Tab. 1). The an-
nual CAIs were finally calculated as the dif-
ference  between  the  stem volumes  of  two 
successive years. To validate the simulation 
methods,  reference  CAI  values  were  ob-
tained for each of the nine sites considered 
by averaging the  annual  CAI over  the  last 
five years available.

Simulation of forest CAIs
First, the input layers required to apply the 

BIOME-BGC model were prepared. The 1-

km spatial  resolution  minimum and  maxi-
mum temperature and precipitation data for 
the  years  1999-2008 (see above)  were fur-
ther  elaborated to  obtain solar radiation  by 
using the MT-CLIM algorithm (Thornton et 
al. 2000).

The modeling strategy was first applied to 
simulate  ecosystems  in  equilibrium  condi-
tions.  In  particular,  BIOME-BGC was  ap-
plied using the ecophysiological parameters 
reported by  Chiesi et al.  (2011b), and NPP 
and CAI were predicted using eqn. 1 and 2.

Next, the effects of biomass removal were 
obtained  by applying  eqn.  3.  In  particular, 
both NVA and FCA were calculated using the 
measured stem volume for  each stand  (see 
Tab.  2).  NVA was the ratio  between  actual 
and  potential  stem volume,  while  FCA was 
computed  using  the  maximum  stand  LAI 

(see Maselli et al. 2009a for more details).
Finally,  the  effects  of  stand  aging  were 

simulated using both a unique modeling of 
the leaf carbon/stem carbon temporal varia-
bility and site specific modeling of the same 
variability  using  eqn.  4  (see  Chiesi  et  al. 
2012 for details). In the first case, a general 
growth curve was calibrated by statistically 
reproducing the average of all available refe-
rence CAIs derived from dendrochronologi-
cal measurements with the exclusion of the 
last 5 years; this allowed an approximate in-
dependence of the calibration and validation 
phases. As for the second case, the same ca-
libration  process  was  repeated  by fitting  a 
specific growth curve for each study site.

In  all  cases,  the  obtained  CAI  estimates 
were  averaged  over  the  5  study  years  and 
compared  to  the  reference  CAI  measure-
ments  using  the  correlation  coefficient  (r), 
the root mean square error (RMSE) and the 
mean bias error (MBE) as accuracy statistics.

Results
The  study  sites  are  located  in  mountain 

areas at elevations ranging between 775 and 
1780 m a.s.l. As a consequence of different 
latitudes and elevations,  the annual average 
air temperature and the total annual precipi-
tation derived from the downscaled E-OBS 
dataset  are  highly variable:  air  temperature 
ranges between 7.5 °C and 14.2  °C, while 
precipitation ranges between 510 mm y-1 and 
1710 mm y-1 - Tab. 1).

The beech forests analyzed show different 
structural  characteristics,  which  are  related 
to the different age of trees.  Tab. 2 reports 
the  average  tree  ring  widths,  which  vary 
between  0.92  and  2.62  mm y-1,  where  the 
oldest stand shows the lowest tree ring width 
(Val Cervara). The same general trend is ob-
served for CAI measurements, which range 
between 1.5 and 12.7 m3 ha-1, depending on 
different  environmental  conditions,  struc-
tures  and  development  phases  of  the  nine 
study sites considered.

Results shown in Fig. 3 are obtained using 
the BIOME-BGC GPP, respirations and al-
locations  for  forests  in  quasi-equilibrium 
with  site-specific  climatic  and  soil  condi-
tions. The correlation between measured and 
predicted CAIs is moderate (r = 0.516), and 
the  range  of  variation  was  strongly under-
estimated. CAI is particularly overestimated 
for  Val  Cervara  (7.79  vs. 1.41  m3 ha-1), 
which is the less dense and oldest stand (see 
Tab. 2). This leads to a relatively high over-
all RMSE (2.57 m3 ha-1), indicating that the 
exclusion  of  actual  forest  conditions  (in 
terms of existing biomass and development 
phase)  implies  a flawed simulation  of CAI 
variations.

A slight improvement is obtained including 
the information on the existing stem volume 
into  the  model.  The  comparison  between 
measured  and  estimated  CAI  is  shown  in 
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Fig. 2 - Effects of biomass (a) and age (b) variations on simulated CAIs. Both curves are re-
lative to BIOME-BGC CAI modeling at equilibrium conditions and are derived from Maselli 
et al. (2009a) and Chiesi et al. (2012), respectively; in the latter case a stem volume lower 
than the potential maximum is considered (see text for details).
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Fig.  4. CAI overestimation for Val Cervara 
reported in Fig. 3 is marginally reduced, and 
the global estimation accuracy is slightly in-
creased (r = 0.666, RMSE = 2.53 m3 ha-1).

Further  improvements  in  predictions  are 
obtained when the stand development stage 
is included in the model, based on the avai-
lable  dendrochronological  measurements 

and  the  method  reported  by  Chiesi  et  al. 
(2012). More specifically, the use of a gene-
ric growth curve for all beech forests yields 
the results shown in  Fig. 5. The correlation 
coefficient is notably increased (r = 0.792), 
and  the  error  markedly reduced  (RMSE  = 
1.98 m3 ha-1). Indeed, the inclusion of gene-
ric information on beech stand development 

reduces  the  former  overestimation  for  Val 
Cervara,  though a slight  underestimation at 
high CAI values is observed.

An additional improvement in simulations 
is  obtained  when  locally  derived  growth 
curves  are  calibrated  to  better  characterize 
the specific stand development phase of each 
site (Fig. 6). In this case, reference CAIs are 
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Fig. 5 - Comparison between CAI measured and estimated by ap-
plying a generic age-dependent growth curve (see text for details). 
(*): significant correlation, P < 0.05.

Fig. 6 - Comparison between CAI measured and estimated by ap-
plying an age-dependent  growth  curve calibrated  for  each single 
stand (see text for details). (**): highly significant correlation, P < 
0.01.

Fig. 4 - Comparison between CAI measured and estimated by in-
cluding volume information about  each site (see text for details). 
(*): significant correlation, P < 0.05.

Fig.  3 - Comparison between CAI measured and estimated using 
BIOME-BGC simulation of equilibrium (quasi-climax) forest con-
ditions (see text for details).
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fairly well simulated for all study sites con-
sidered,  with  a  high  correlation  coefficient 
(r = 0.916),  and a RMSE strongly reduced 
(1.34 m3 ha-1).

Discussion and conclusions
Several  recent  papers  have  demonstrated 

that a modeling strategy based on the use of 
a  calibrated  bio-geochemical  model  is  ca-
pable of predicting gross and net forest car-
bon  fluxes  within  Mediterranean  forests 
(e.g.,  Mu  et  al.  2007,  Turner  et  al.  2006, 
Maselli  et  al.  2009a,  2010,  Chiesi  et  al. 
2011a,  2012).  Modeling  can  be  applied  at 
different levels of complexity, depending on 
the existing knowledge of the forest ecosys-
tems considered.  This  is  expected to  affect 
the  accuracy of  the  proposed  strategy in  a 
way that is important to be assessed in sight 
of operational monitoring applications.

The current study investigates on this issue 
using  ground  and  remote  sensing  informa-
tion collected over nine beech sites in Italy. 
The availability of  dendrochronological  se-
quences  of  tree  ring-widths  has  allowed  a 
thorough  characterization  of  the  past  and 
present  growth  status  of  the  considered 
forest stands, providing essential information 
for both calibrating and validating the mode-
ling simulations.

In  general,  the  accuracy of  the  modeling 
strategy is affected by the uncertainty of the 
input data used. While a full assessment of 
this topic has been performed in previous pa-
pers (e.g.,  Chiesi et al. 2011a,  Maselli et al. 
2012),  the  critical  nature  of  the  extended 
meteorological model drivers must be high-
lighted. This is particularly the case for the 
daily  rainfall  estimates,  whose  accuracy  is 
relatively low due to a number of problems 
(Maselli et al. 2012).

The proposed use of BIOME-BGC allows 
to  reproduce  the  carbon  accumulated  by 
forests which are in quasi-equilibrium with 
local  climatic  and  soil  conditions.  This 
means that the annual net fluxes are close to 
zero  because  of  the  nearly  equivalence  of 
forest  production  and  respiration;  additio-
nally,  such  models  simulate  forests  com-
posed  by trees  in  different  growing phases 
(Running  &  Hunt  1993,  Maselli  et  al. 
2009a). The model can be applied in a rela-
tively simple  way,  requiring  only informa-
tion on forest types and eco-climatic condi-
tions,  which  is  now  available  for  the 
European  continent  from  several  sources 
(e.g.,  Pekkarinen et al. 2009,  Haylock et al. 
2008). On the other hand,  the exclusion of 
biomass removal  and stand  aging from the 
model  usually  leads  to  underestimate  the 
range  of  CAI  variations  (Maselli  et  al. 
2009a,  Chiesi  et  al.  2012).  As reported  in 
Fig. 2, the two factors above can increase or 
decrease  the  simulated  CAI  depending  on 
the ecosystem closeness to potential,  quasi-
equilibrium condition.

The additional inclusion of a proxy of the 
ecosystem  distance  from  equilibrium  (i.e., 
the stand volume information)  accounts for 
the effect of biomass removal and generally 
improves  the  simulation  results  (Maselli  et 
al. 2009a). However, the forests examined in 
this  study are  nearly fully stocked  and  old 
growth, which reduces the effect of biomass 
removal and enhances that of age-related de-
cline  in  forest  production  (Gower  et  al. 
1996, Chiesi et al. 2012). The latter factor is 
not  accounted  for  by  this  modeling  step, 
which  therefore  improves  the  predictions 
only marginally. A different situation would 
occur in uneven-aged stands having biomass 
much lower  than  potential;  in  such a case, 
the  inclusion  of  biomass  removal  into  the 
model would be decisive for CAI simulation 
(Maselli  et  al.  2010).  From an  operational 
point of view, including the information on 
the  existing  biomass makes the application 
of  the  simulation  method  more  complex, 
since spatially distributed estimates of stem 
volume are usually difficult  to retrieve. Ef-
forts  in  this  direction,  however,  have  been 
recently performed. For example, Gallaun et 
al. (2008) produced and disseminated a 1-km 
stem  volume  map  covering  all  European 
forest areas.  Maselli et al. (2014) performed 
a  similar  effort  for  the  Italian  territory by 
combining  ground  stem  volume  measure-
ments with optical and LiDAR satellite data.

According to  the previous considerations, 
an  additional  methodological  improvement 
is provided by modeling the effects of stand 
aging. In fact, tree aging leads to decreased 
accumulation  rates  due  to  the  well-known 
phenomenon of age-related decline in forest 
production (e.g.,  Gower et al. 1996,  Berger 
et al. 2004). The causes of this phenomenon 
are numerous and mainly related to environ-
mental and external factors (e.g., silvicultu-
ral  practices,  forest  fires,  etc. -  Zhou et al. 
2002).  The  availability  of  dendrochronolo-
gical  measurements  enables  to  characterize 
the  whole  stand  development  of  the  beech 
forests  and  to  reconstruct  the temporal  va-
riations of CAI with stand age. This was ob-
tained  by  defining  an  age-dependent  rela-
tionship between leaf carbon and stem car-
bon  accounting  for  the  temporally  varying 
ratios between forest production and respira-
tion  related  to  changes  in  canopy  density, 
tree competition and allocation patterns.

In the current study this operation has been 
carried  out  in  two  steps:  first,  applying  a 
general relationship between leaf carbon and 
stem carbon;  and,  second,  using a site-spe-
cific relationship. This has improved the ac-
curacy of the estimates especially in the lat-
ter case (r = 0.916 - see Fig. 6). In addition 
to a few dendrochronological tree ring-width 
sequences,  the  application  of  the  first  me-
thodological step would require spatially dis-
tributed  estimates  of  stand  age.  Efforts  in 
this direction have been recently performed: 

Vilén  et  al.  (2012),  for  example,  produced 
and disseminated a 1-km map of forest age 
covering all Europe.

For  relatively  small  areas  an  alternative 
could  be provided  by tree  height  estimates 
obtained  from LiDAR data,  which  can  be 
used as  a proxy of tree  age (Maselli  et  al. 
2013),  though  old  small  individuals  and, 
vice-versa, trees with huge biomass accumu-
lated in few decades, can be found in forest 
ecosystems (Marziliano et al. 2012). Finally, 
as regards the last step, its application on re-
gional  to  national  scales  is  virtually unfea-
sible,  since  the  dendrochronological  mea-
surements  needed  to  characterize  specific 
site  history can be obtained  only for  small 
areas.

In  summary,  the current  study has shown 
that the inclusion of progressively increasing 
information levels on forest conditions with-
in the model allows to obtain reliable predic-
tions  of stand  CAI over  large areas.  How-
ever, the complete simulation of the effects 
of  human  induced  factors  requires  a  full 
characterization  of  specific  site  history, 
which  is  practically  unfeasible  over  large 
areas. Consequently, a certain approximation 
must  be  accepted  for  operational  applica-
tions,  depending  on  the  spatio-temporal 
scales considered and on the nature and ac-
curacy of the available datasets.
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