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Introduction
Crown  characteristics  are  an  important 

component of growth and yield models. Tree 
crown  research  contributes  to  several  key 
forest ecosystem attributes: biodiversity, pro-
ductivity, forest management, forest environ-
ment, and wildlife (Avery & Burkhart 2002). 
The crown of a tree has a strong influence on 
stem shape, as foliage provides carbohydra-
tes for tree growth and development of the 
whole tree and their vertical distribution in-
fluences  stem  shape  (Leites  &  Robinson 
2004,  Li  & Weiskittel  2010).  Crown  ratio 
(CR) is considered as an expression of the 
tree’s photosynthetic potential, and therefore 
commonly  included  as  a  key  variable  in 
growth and yield models.

Tree stem shape has been commonly mode-
led  using  taper  models  (Muhairwe  1994). 
Taper models are used to estimate diameter 

along the bole  at  any given height,  so tree 
volume  can  then  be  determined  based  on 
these  diameters  and  corresponding  heights. 
The auxiliary variables used to increase the 
accuracy of existing taper equations include: 
(1)  crown  dimensions;  (2)  stand  and  site 
variables; and (3) upper stem diameter mea-
surements (Trincado & Burkhart 2006). Lar-
son  (1963) reported  that  within  the crown, 
stem diameters at particular heights are gene-
rally smaller  when  compared  with  trees  of 
the same dimensions but shorter crowns. As 
a result, tree boles cannot be completely de-
scribed as a function of bole length and dia-
meter. In attempts to describe tree taper, nu-
merous models of varying complexity have 
been  advanced.  In  most  mathematical  mo-
dels, taper is modeled in terms of dbh (dia-
meter  at  breast  height)  and  total  height.  A 
few researchers have considered using crown 

variables (e.g., crown length - CL, CR, and 
crown height - CH) as covariates (Newnham 
1992,  Leites & Robinson 2004,  Jiang et al. 
2007) for describing tree profiles because of 
the  relationship  between  crown  and  stem 
form development, but previous studies have 
shown mixed results on the benefit of adding 
crown variables in  taper models.  The main 
crown variable utilized in taper and volume 
models was CR (Petersson 1999, Jiang et al. 
2007,  Li  &  Weiskittel  2010,  Jiang  & Liu 
2011). However, CL is an interesting varia-
ble,  which  may influence the prediction  of 
diameter  and  volume  in  combination  with 
CR  (Mäkela  2002).  For  this  reason,  some 
forms of CR and CL functions were incor-
porated into the tree-stem taper and volume 
prediction models in this study.

For  stem  taper  and  volume  predictions 
using  regression  analysis,  an  appropriate 
nonlinear  function  must  first  be  identified, 
which is a very difficult task. The main rea-
son that artificial neural network (ANN) ap-
plications have received attention is that the 
methodology is comparable to statistical mo-
deling and ANNs can be seen as a comple-
mentary  effort  (without  the  restrictive  as-
sumption of a particular statistical model) or 
as  an  alternative  approach  to  fitting  non-
linear  models to  data.  Due to  the fact that 
Neural Networks (NNs) attempt to find the 
best  nonlinear  function  based  on  the  net-
work’s complexity, without the constraint of 
pre-specified  nonlinearity,  we  investigated 
their applicability in over-bark diameter and 
stem  volume  predictions  using  the  same 
crown variables previously described. 

ANNs  have  been  successfully  applied  in 
the field of forest modeling. Among others, 
ANNs have been used for: (a) prediction of 
diameter distribution (Leduc et al. 2001); (b) 
forest  attributes  prediction  (Corne  et  al. 
2004); (c) bark volume prediction for stand-
ing  trees  (Diamantopoulou  2005);  and  (d) 
prediction of inside-bark diameter and heart-
wood  diameter  (Leite  et  al.  2011).  While 
ANNs have been applied to the prediction of 
tree volume (Özçelik et al. 2010), inclusion 
of crown variables into ANN models has not 
been reported.

The objective of this study was to investi-
gate  the  level  of  improvement  in  diameter 
over bark (dob) and stem volume predictions 
through  the  incorporation  of  crown  varia-
bles. An additional purpose of this study was 
to  test  the  performance  of  different  ANNs 
that  can  be  employed  for  diameter  and 
volume  predictions  through  the  incorpora-
tion of crown variables. For this purpose, a 
modified segmented polynomial taper equa-
tion  (Clark  et  al.  1991)  and  ANN models 
were utilized with Brutian pine (Pinus bru-
tia Ten.) data collected from southern Tur-
key.
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Linear and nonlinear crown variable functions for 173 Brutian pine (Pinus bru-
tia Ten.) trees were incorporated into a well-known compatible volume and 
taper equation to evaluate their effect in model prediction accuracy. In addi-
tion, the same crown variables were also incorporated into three neural net-
work (NN) types (Back-Propagation, Levenberg-Marquardt and Generalized Re-
gression Neural Networks) to investigate their applicability in over-bark dia-
meter and stem volume predictions. The inclusion of crown ratio and crown ra-
tio with crown length variables resulted in a significant reduction of model sum 
of squared error, for all models. The incorporation of the crown variables to 
these models significantly improved model performance. According to results, 
non-linear regression models were less accurate than the three types of neural 
network models tested for both over-bark diameter and stem volume predic-
tions in terms of standard error of the estimate and fit index. Specifically, the 
generated  Levenberg-Marquardt  Neural  Network  models  outperformed  the 
other models in terms of prediction accuracy. Therefore, this type of neural 
network model is worth consideration in over-bark diameter and volume pre-
diction modeling, which are some of the most challenging tasks in forest re-
sources management.
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Material and methods 

Data
One hundred seventy three sample trees of 

Brutian  pine  were  selected  from  natural 
even-aged managed stands in  Bucak Forest 
Enterprise, southern Turkey, on lands owned 
by  the  Forest  Service.  Trees  were  felled 
through the clear-cutting of areas of the Bu-
cak  Forest  Enterprise  and  were  systemati-
cally sampled to cover the range of diame-
ters within a stand, with emphasis on domi-
nant and codominant individuals. Trees pos-
sessing multiple stems, broken tops, obvious 
cankers or crooked boles were not included 
in the sample. Total height was measured to 
the nearest 0.05 m. Diameter over-bark (D) 
at  breast  height  (1.3 m) was measured and 
recorded to the nearest 0.1 cm using digital 
calipers.  Diameter  over-bark was measured 
at 0.3, 1.3, 2.3 m and then at intervals of 1 m 
along the remainder of the stem. In each sec-
tion,  two perpendicular diameters over-bark 
were measured and then arithmetically ave-
raged. The height to base of the live crown 
was  determined  by  identifying  that  point 
along the bole where the lowest live branch 
or  branch  whorl  was  attached  to  the  main 

bole as indicated by Jiang et al. (2007). Fi-
nally, CL and CR were derived from crown 
measurements.  Crown ratio  was defined  as 
the  ratio  between  length  of  the  crown  and 
total  tree  height.  Actual  volumes  and  sec-
tional  volumes in cubic  meters were calcu-
lated using the overlapping bolts method as 
described by Bailey (1995).

A scatter plot  of relative diameter against 
relative height was examined visually to de-
tect possible anomalies in data. Extreme data 
points were observed; therefore the system-
atic approach proposed by Bi (2000) for de-
tecting abnormal data points was applied to 
increase  the  efficiency of  the  process.  For 
this reason, a nonparametric taper curve was 
fitted by local regression, using the LOESS 
procedure. This involved local quadratic fit-
ting with a smoothing parameter of 0.25 for 
the dataset, which was selected after iterative 
fitting and visual examination of the smoo-
thed taper curves overlaid on the data. The 
number of extreme values accounted for less 
than  0.2% for  dataset.  The plot  of relative 
height against relative diameter used in this 
study,  together  with  the  LOESS regression 
line, is shown in Fig. 1.

All trees with total height less than 5.3 m 

were eliminated, as they could not be used to 
fit  the  modified  Clark et  al.  (1991) model. 
Sample trees were selected to adequately re-
present the distribution of these trees in the 
population  in  terms of their  respective dia-
meter  and  height  classes.  Approximately 
25% of sample trees were selected at random 
and used as the validation data set, while the 
rest  was  used  for  model  fitting.  Summary 
statistics for both data sets are shown in Tab.
1.

Taper and volume equations
The modified form of the segmented poly-

nomial  model  published  by  Clark  et  al. 
(1991) was used for this study,  taking into 
account the conclusions of the work by Jiang 
et al. (2005). As noted by Jiang et al. (2005) 
segmented polynomial  models appear to be 
more accurate than other model formulations 
for estimating diameter, height, and volume.

Two crown variables, CL and CR were in-
cluded into  the best fitted model  identified 
for Brutian pine.  Leites & Robinson (2004) 
incorporated  both  linear  and  nonlinear  CR 
and CL functions. The forms of CR and CL 
functions used in this study include (eqn. 1 
to 5):

where λi are the parameters to be estimated 
from data. Eqn.  1  through 5 were incorpo-
rated into the existing taper and volume mo-
dels (Jiang et al. 2005, 2007) for parameters 
b1, b2, b3, and b4 to ascertain the effects of in-
corporating crown variables into the existing 
model forms for Brutian pine. The parame-
ters (b1,  b2,  b3 and  b4) in the taper and vo-
lume equations were replaced with all com-
binations of CR, CL and CR with CL func-
tions and were evaluated for model improve-
ment.

In addition to the evaluation of the entire 
stem,  model  performance  was  examined 
using sectional  relative height  classes  from 
10% to  90% of  total  height.  For  the taper 
and volume model forms used in this study, 
the upper stem diameter at  5.30 m is a re-
quired  input  variable.  Diameters  at  5.30  m 
were obtained through actual field measure-
ments.

Neural network models
Known  advantages  of  ANNs  over  tradi-

tional approaches (Basheer & Hajmeer 2000, 
Swingler 2001,  Jena et al. 2009,  Diamanto-
poulou 2010) accelerated their use in this re-
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Fig. 1 - Plot of rela-
tive height (h/H) vs. 

relative diameter 
(dob/D) over-bark for 
the Brutian pine trees 

studied.

Tab. 1 - Summary of Brutian pine tree attributes for model fitting and for the validation data. 
(SD): Standard deviation.

Data set Parameter Unit Mean SD Min Max
Fitting data 
(measurements from 
131 trees, n = 2173)

Over-bark dbh (D) cm 39.85 12.16 9 64
Total height (H) m 18.77 3.9 8.8 26.8
Disk diameter (dob) cm 26.34 13.27 2 73
Disk height (h) m 8.63 5.57 0.3 24.3
Stem volume (V) m3 1.06 0.77 0.02 3.31

Validation data 
(measurements from 
42 trees, n = 729 )

Over-bark dbh (D) cm 42.39 13.8 11 72
Total height (H) m 19.35 4.13 9.5 26.6
Disk diameter (dob) cm 27.72 14.13 2 80
Disk height (h) m 8.95 5.72 0.3 24.3
Stem volume (V) m3 1.23 0.98 0.03 4.14

λ1+λ2 (CR)

λ1+λ2 (CL)

λ1+λ2 (CL)+λ3 (CR)

λ1+λ2 (CR)λ3

λ1+λ2 (CL)λ3
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search as an alternative approach to regres-
sion analysis for fitting nonlinear data. Due 
to their advantages and limitations (Basheer 
&  Hajmeer  2000,  Diamantopoulou  2010), 
two different NN architectures (Fig. 2) were 
used:  (a)  the  multilayer-perceptron  (MLP); 
and  (b)  the  generalized  regression  neural 
network (GRNN).

Furthermore,  in  the  multilayer-perceptron 
learning step two different  optimization  al-
gorithms were  used:  (1)  the  back-propaga-
tion (BP), which produces the back-propaga-
tion artificial neural network (BPANN) mo-
dels  (Rumelhart  et  al.  1986,  Fausett  1994, 
Haykin  1994,  Patterson  1996); and  (2)  the 
Levenberg-Marquardt (LM) algorithm which 
produces the Levenberg-Marquardt artificial 
neural  network  (LMANN)  models  (Leven-
berg 1944,  Marquardt  1963).  The latter al-
gorithm  was  presented  as  an  intermediate 
optimization technique between Gauss-New-
ton and gradient descent methods in order to 
address the limitations of each of these al-
gorithm.

The generalized regression neural network 
(GRNN) is one type of NN which was de-
vised by Speckt (1991). This regression net-
work architecture uses Bayesian techniques 
to estimate the expected mean value of the 
output variable.

Appropriate  input  variables  to  the  NN 
models can be selected in advance based on 
a priori knowledge of the physical problem, 
an approach that is commonly utilized in the 
field of geotechnical  engineering (Maier  & 
Dandy 2000). In order for the generated NN 
models  to  be  comparable  to  the  modified 
form-class  segmented  taper  equations  of 
Clark et al. (1991), the developed neural net-

work models (BPANN, LMANN and GRNN 
models) used diameter at breast height over-
bark  (D),  total  height  of  the  tree  (H),  the 
stem height  above  the ground  to  the  mea-
surement point (h), the diameter over-bark at 
5.3 m above the ground (F) as input varia-
bles,  and  tree  diameter  (dob)  over-bark  at 
any given height (h) as the output variable. 
Moreover, in order to investigate the level of 
improvement  in  dob and stem volume pre-
dictions, the additional crown variables, CL 
and CR, were incorporated as input variables 
to the NN models.

For  the development  of the BPANN mo-
dels,  the  effectiveness  and  convergence  of 
training depends significantly on the values 
of learning rate (LR) and momentum factor 
(M). The numbers of neurons in the hidden 
layer of the ANNs were finalized after a trial 
and error procedure using different combina-
tions  of  learning  rates  and  momentum 
factors. Each combination of LR and M was 
tested for different numbers of hidden neu-
rons. For the LMANN models development, 
the effectiveness and convergence of training 
depends  significantly  on  the  adjustment  of 
the damping factor (μ). This was achieved by 
starting with the value of 0.1 and then using 
an adjustment factor (v), which when multi-
plied by μ provides an increment or when μ 
is divided by  v provides a decrement,  until 
the  lowest  sum of square errors  value was 
obtained.  For  the  GRNN  models,  the  net-
work was trained for smoothing coefficient 
values (σ) equal to 0.001, 0.002, …, 1.0, …, 
2.0. The best combinations of all parameters 
that  provide  for  the  best  learning  of  the 
BPANN, LMANN, and GRNN models  are 
given in Tab. 2.

Criteria of model evaluation
The statistics used to compare the models 

included the average bias (B),  the standard 
error of the estimate (SEE), the mean abso-
lute error (MAE), and a fit index (FI). These 
evaluation  statistics  are  defined  as  follows 
(Schlaegel 1981 - eqn. 6 to 9):

where  Yi is  the observed  value for  the  i-th 
observation,  Ŷi is the predicted value for the 
i-th observation,  Ȳ is the mean of the  Yi,  df 
are the degrees of freedom of the model, n is 
the  number  of  observations  in  the  dataset, 
and SEE is the standard error of the estimate.

To concurrently minimize taper and volu-
me errors, both equations were fitted simul-
taneously using SAS PROC MODEL (SAS 
Institute  Inc  2002).  All  parameters  were 
shared by both the taper and volume equa-
tions.  Correlated error structure in the data 
was  not  taken  into  account  in  the  SAS 
MODEL procedure.  Prediction  accuracy is 
little  affected by the correlated  error  struc-
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2

∑
i=1

n

(Y i−Ȳ i)
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Fig. 2 - (a) The multilayer-perceptron (MLP) and (b) the generalized regression neural network (GRNN) architectures.
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ture, even when the correlated errors struc-
ture is accounted for in the equation fitting 
process (Kozak 1997).  The effects of auto-
correlation were ignored.

Results 

Approximation through taper and  
volume equations system

Crown ratio  (CR) and crown length (CL) 
were incorporated into the existing taper and 
volume equations. The parameters (b1, b2, b3 

and  b4)  for  the  existing  taper  and  volume 
equations  (Clark  et  al.  1991,  Jiang  et  al. 
2005) were replaced utilizing both the linear 
and  non-linear  functions  that  incorporate 
CR, CL, and both crown variables together 
(eqns. 1 - 5). The full model failed to con-

verge  when  employing  either  the  linear 
(eqns. 1 - 3) or nonlinear form of the crown 
variables (eqns. 4 - 5). All combinations of 
CR, CL and CR with CL functions with each 
parameter were tested, but only the replace-
ment of b4 with the linear eqn. 1 and eqn. 3 
resulted  in  significant  parameter  estimates 
(P<0.0001).  Parameters  estimates  for  over-
bark  (dob)  taper  and  volume  equations 
(Clark et  al.  1991,  Jiang et  al.  2005)  with 
and  without  the  linear  CR  and  linear  CR 
with CL are listed in Tab. 3.

Model  OM represents  the  original  model 
forms without the addition of the crown va-
riable  functions,  while  models  MCR  and 
MCRCL represent the modified model after 
incorporating eqn.  1  and eqn.  3  for  the  b4 

parameter, respectively. Based on the fit sta-

tistics for the OM, MCR, and MCRCL mo-
del  forms  (Tab.  4),  inclusion  of  the  linear 
CR (eqn. 1) and linear CR with CL (eqn. 3) 
functions  improved  the  fit  for  over-bark 
taper equations for Brutian pine.

For dob prediction, the inclusion of crown 
variables (both CR and CR with CL) had a 
positive effect for all fit statistics except ave-
rage bias (Tab. 4) when using the actual up-
per diameter measurement at 5.30 m. A lo-
wer bias does not guarantee good model per-
formance,  since large positive and negative 
values  may  algebraically  counterbalance. 
Since  it  indicates  the  spread  of  the  biases 
(residuals), the overall standard error of es-
timate  is a better  single  indicator  of good-
ness of fit (Kozak & Smith 1993). The addi-
tions of linear functions of CR and CR with 
CL improved  model  performance  by redu-
cing SEE by 1.18-3.28 % and 1.39-2.78 % 
for diameter and volume estimation, respect-
ively.

For stem volume prediction, significant im-
provements  were  observed  in  the  modified 
Clark et al. (1991) equation using actual up-
per stem diameter measurements due to the 
inclusion of only CR and CR with CL, for 
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Tab. 2 - The best combinations of all parameters that conduct to the best learning of the BPANN, LMANN and GRNN models for the pre -
diction of the diameter over-bark (dob) to a measurement point, and the prediction of the stem volume (V) over-bark. (OM): the model  
without incorporation of the crown variables; (MCR): the model with the CR variable inclusion; (MCRCL): the model with CR and CL vari -
ables inclusion; (D): diameter at breast height over-bark (cm); (dob): diameter over-bark (cm) to measurement point at height h; (H): total  
tree height (m): (h): height above the ground to the measurement point (m); (F): diameter over-bark (cm) at 5.3 m above ground; (V): stem  
volume over-bark from stump (m3); (CL): crown length; (CR): crown ratio.

BPANN models that resulted to the best learning

Model
Number of nodes Number of 

Epochs Learning rate Momentum 
factorInput layer Hidden layer Output layer

OM 4 : (D, H, h, F) 8 1 : (dob) 1000 0.10 0.30
MCR 5 : (D, H, h, F, CR) 10 1 : (dob) 1000 0.10 0.30
MCRCL 6 : (D, H, h, F, CR, CL) 13 1 : (dob) 1000 0.10 0.30
OM 5 : (D, H, dob, h, F) 6 1 : (V) 1000 0.09 0.20
MCR 6 : (D, H, dob, h, F, CR) 10 1 : (V) 1000 0.07 0.30
MCRCL 7 : (D, H, dob, h, F, CR, CL) 11 1 : (V) 1000 0.05 0.30

LMANN models that resulted to the best learning

Model
Number of nodes Number of

Epochs
Initial (μ)

value
Adjustment 

factor (v)Input layer Hidden layer Output layer
OM 4 : (D, H, h, F) 8 1 : (dob) 3000 0.1 10
MCR 5 : (D, H, h, F, CR) 10 1 : (dob) 1000 0.1 10
MCRCL 6 : (D, H, h, F, CR, CL) 13 1 : (dob) 1000 0.1 10
OM 5 : (D, H, dob, h, F) 6 1 : (V) 2000 0.1 10
MCR 6 : (D, H, dob, h, F, CR) 10 1 : (V) 2000 0.1 10
MCRCL 7 : (D, H, dob, h, F, CR, CL) 11 1 : (V) 2000 0.1 10

GRNN models that resulted to the best learning

Model 
Number of nodes Smoothing 

coefficient (σ)Input layer 1st Hidden layer 2nd Hidden layer Output layer
OM 4 : (D, H, h, F) 1956 2 1 : (dob) 0.041
MCR 5 : (D, H, h, F, CR) 1956 2 1 : (dob) 0.049
MCRCL 6 : (D, H, h, F, CR, CL) 1956 2 1 : (dob) 0.049
OM 5 : (D, H, dob, h, F) 1956 2 1 : (V) 0.041
MCR 6 : (D, H, dob, h, F, CR) 1956 2 1 : (V) 0.041
MCRCL 7 : (D, H, dob, h, F, CR, CL) 1956 2 1 : (V) 0.039

Tab. 3 - Parameter estimates for the compatible taper and volume equations based on the 
model fitting data. (OM): the original model forms (Clark et al. 1991); (MCR): the original 
model form with CR; (MCRCL): the original model form with CR and CL.

Model b1 b2 b3 b4 λ1 λ2 λ3

OM 85.9076 6.7407 0.6977 2.3021 - - -
MCR 84.8311 6.7349 0.6973 - 2.9278 -1.4063 -
MCRCL 85.90755 6.7201 0.7034 - 2.913 0.0988 -3.3829
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the species studied. For the volume function, 
the MCRCL model performed slightly better 
than the MCR model (Tab. 4).

Approximation through neural network 
models

The BPANN, LMANN and GRNN model 
fit statistics for dob and cubic meter volume 
prediction,  with and without  the crown va-
riables, are provided in Tab. 5.

Results indicate that the inclusion of both 
crown variables (CR and CL) had positive 
effects in dob and volume predictions, since 
their use reduced the standard error of estim-
ate,  the bias  and the mean absolute  errors, 
and increased the values of the fit index for 
all  types  of  NN.  According  to  the  fitness 
capability of the different types of NN mo-

dels used, the Levenberg-Marquardt models 
of  Tab.  2 gave  the  most  accurate  results 
(Tab.  5).  Specifically,  with  regards  to  the 
dob predictions, the inclusion of the CR and 
CL crown variables into the LMANN model 
resulted in the reduction of SEE values by 
4.02%  and  1.51%,  according  to  the 
BPANN_MCRCL and GRNN_MCRCL mo-
dels, respectively. Further, reductions of the 
SEE values were observed for volume pre-
dictions, as well. Namely, SEE values were 
reduced by 17.41% and 21.54% according to 
the BPANN_MCRCL and GRNN_MCRCL 
models,  respectively  (Tab.  5).  In  order  to 
validate the fitted NN models,  the same fit 
statistics (B,  SEE,  MAE and FI) were calcu-
lated  for  the  predictions  of  dob and  cubic 
meter  volume based on  the validation  data 

set (Tab. 6).
Similarly to what noted with the model fit-

ting data, the inclusion of both crown varia-
bles as input  variables resulted in the most 
accurate dob and cubic meter volume predic-
tions for all the NN models tested (Tab. 6). 
Further,  the  LMANN_MCRCL model  sho-
wed consistent performance, with better dob 
and volume predictions than the predictions 
obtained from the BPANN and GRNN mo-
dels based on the validation data set.

The  SEE  for  predicting  dob and  cubic 
meter volume for the 10 relative height clas-
ses for both the compatible taper and volume 
equation system and for the LMANN models 
are shown in Fig. 3.

As seen in Fig. 3a and Fig. 3c, the dob SEE 
values  are  significantly  lower  for  the 
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Tab. 4 - Stem fit statistics for the compatible volume and taper equation systems for Brutian pine based on the model fitting data. (OM): the 
original model forms (Clark et al. 1991); (MCR): the original model form with CR; (MCRCL): the original model form with CR and CL.

Model
Taper (cm) Volume (m3)

Bias SEE MAE FI Bias SEE MAE FI
OM 0.045 1.7535 1.1907 0.9825 0.001 0.0072 0.0043 0.9846
MCR 0.0163 1.7328 1.1815 0.983 0.0009 0.0071 0.0043 0.9848
MCRCL 0.0872 1.696 1.1602 0.9837 0.0009 0.007 0.0042 0.985

Tab. 5 - Fit statistics for the BPANN, LMANN and GRNN models for diameter over-bark (dob) to a measurement point and the prediction 
of stem volume (V) over-bark, based on model fitting data (n = 2173).  (OM): the model without incorporation of the crown variables;  
(MCR): the model with the CR variable inclusion; (MCRCL): the model with CR and CL variables inclusion.

Model
dob (cm) V (m3)

Bias SEE MAE FI Bias SEE MAE FI
BPANN_OM -0.0089 1.588 1.1418 0.9857 0.00079 0.00279 0.002 0.9977
BPANN_MCR -0.0072 1.534 1.1252 0.9865 0.00073 0.00259 0.0018 0.998
BPANN_MCRCL -0.005 1.5045 1.0867 0.9871 -0.00015 0.00247 0.0017 0.9981
LMANN_OM -0.0154 1.5196 1.0859 0.9869 -1.0·10-6 0.00227 0.0016 0.9985
LMANN_MCR -0.0184 1.496 1.08 0.9872 1.5·10-7 0.00212 0.0015 0.9987
LMANN_MCRCL 0.0025 1.444 1.0336 0.9881 -4.8·10-6 0.00204 0.0014 0.9988
GRNN_OM -0.0221 1.5254 1.0712 0.9868 5.7·10-5 0.0028 0.0018 0.9977
GRNN_MCR -0.0269 1.496 1.012 0.9873 7.5·10-5 0.00268 0.0015 0.9979
GRNN_MCRCL -0.0211 1.4661 0.9833 0.9878 8.7·10-5 0.0026 0.0014 0.9979

Tab. 6 - Fit statistics for the compatible volume and taper equation systems and for the BPANN, LMANN and GRNN models for diameter 
over-bark (dob) to a measurement point and the prediction of stem volume (V) over-bark, based on model validation data (n = 729). (OM):  
the model without incorporation of the crown variables; (MCR): the model with the CR variable inclusion; (MCRCL): the model with CR  
and CL variables inclusion.

Model
dob (cm) V (m3)

Bias SEE MAE FI Bias SEE MAE FI
OM 0.0751 1.9673 1.3238 0.9806 0.0006 0.0075 0.0048 0.9883
MCR 0.0686 1.9236 1.2885 0.9813 0.0007 0.0071 0.0046 0.989
MCRCL 0.0841 1.9635 1.3307 0.9814 0.0004 0.0076 0.005 0.989
BPANN_OM 0.0935 1.871 1.3066 0.9824 0.0043 0.0055 0.0044 0.9933
BPANN_MCR 0.0707 1.863 1.3291 0.9826 0.0043 0.0054 0.0043 0.9936
BPANN_MCRCL -0.0178 1.857 1.3188 0.9827 0.0038 0.005 0.0038 0.9945
LMANN_OM 0.0788 1.8093 1.2721 0.9836 0.0035 0.0047 0.0036 0.995
LMANN_MCR -0.0787 1.7908 1.2976 0.9839 0.0035 0.0046 0.0036 0.9952
LMANN_MCRCL 0.0552 1.7873 1.2717 0.984 0.0033 0.0044 0.0034 0.9956
GRNN_OM 0.5644 2.7244 1.9538 0.9628 0.0032 0.0058 0.0041 0.9926
GRNN_MCR 0.4131 2.7221 2.0848 0.9628 0.0026 0.0056 0.0034 0.9931
GRNN_MCRCL 0.3122 2.7211 2.113 0.9629 0.002 0.0054 0.0034 0.9934
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Fig. 3 - The standard errors of estimate (SEE) for estimating diameter over-bark for the taper compatible volume system (a) and for the  
Levenberg-Marquardt  models (c) and volume over-bark along the stem for the taper compatible volume system (b) and for the Leven-
berg-Marquardt models (d), by relative height classes, using the fitting data.

Fig. 4 - The standard errors of estimate (SEE) and fit indexes (FI) for predicting diameter over-bark and volume over-bark along the stem for  
the taper and compatible volume system (OM) and for the back-propagation (BPANN_OM, BPANN_MCR and BPANN_MCRCL), Leven-
berg-Marquardt (LMANN_OM, LMANN_MCR and LMANN_MCRCL), and the generalized regression (GRNN_OM, GRNN_MCR and 
GRNN_MCRCL) models, using the validation data set.
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LMANN_MCRCL model across all relative 
height  class  except  for  10-50% of  relative 
height, where SEE values are slightly lower 
than  the  corresponding  values  of  the  OM 
taper  model.  For  volume estimations,  SEE 
values show the same pattern as the dob er-
rors and are clearly lower for the LMANN 
models across all relative height classes than 
the corresponding values of the nonlinear re-
gression models (Fig. 3b and Fig. 3d).

Validation  results  for  all  the  models  are 
shown in  Fig. 4. The models were found to 
generalize for data that was not used in the 
fitting  process  and  showed  consistent  per-
formance for both  dob and volume predic-
tion.

The results obtained for the validation data 
set  for  all  models  were  in  agreement  with 
their performance for the model fitting data 
set (Tab. 4, Tab. 5 and Tab. 6).

Discussion
One of  the  underlying  goals  for  efficient 

timber resources management is that of op-
timizing the prediction accuracy of construc-
ted forest-data models.  The performance of 
nonlinear regression models and NN models 
(BPANN, LMANN and GRNN models) we-
re compared for  the estimation of diameter 
over-bark and cubic meter volume based on 
Brutian pine data from southeast Turkey.

The incorporation of crown variables to re-
gression and NN modeling procedures sho-
wed improvements in the accuracy for dia-
meter and stem volume predictions in Bru-
tian  pine.  Slightly  better  results  were  ob-
tained  for  estimating  stem form than  stem 
volume, when employing taper and volume 
equations.  As indicated by  Weiskittel  et al. 
(2011),  crown  variables  often  explain  very 
little  of  the  variation  in  stem volume.  The 
level of improvement is likely a function of 
the natural variation in crown variables. Eva-
luation of sectional performance showed an 
improvement in stem form predictions for re-
lative  height  classes  over  50%  of  total 
height.  The relative size  of these improve-
ments  was  similar  to  those  found  by  Bur-
khart  & Walton (1985) and  Valenti  & Cao 
(1986).  As  Jiang et  al.  (2007) pointed  out, 
this is not a surprising result given the fact 
that only the b4 parameter was changed.

For  environmental  issues,  such  as  forest 
modeling where the complexity of the natu-
ral  problem is  faced,  it  is  very difficult  to 
suggest a specific approach for a given pro-
blem.  As  pointed  out  by  Özçelik  et  al. 
(2010), convenience and economics play the 
most  important  role  when  choosing  the 
method to be used for forest inventory. The 
determination of the proper approach should 
take  into  account  both  the  advantages  and 
limitations of each method.  Because of the 
ability for NNs to automatically fit complex 
nonlinear models when the complexity of the 
problem cannot be fully examined, or when 

the prediction accuracy is the most important 
element in a survey, NN models appear to be 
the best option.  Our findings are consistent 
with  previous  studies  by  Diamantopoulou 
(2005),  Pao  (2008),  Özçelik  et  al.  (2010), 
Leite et al. (2011), where ANN models gene-
rated a better fit when compared to regres-
sion models.

In practical forestry, the application of NN 
models  by  practitioners  can  be  achieved 
through the use of trained models that have 
been constructed by experts for this purpose. 
However, their use by practitioners requires 
computational skills but not  a priori analy-
tical  knowledge  when  the  constructed  NN 
models are being provided. Under the above 
limitation, NN models are accurate and easy 
to apply. On the other hand, although regres-
sion analysis is based on rules or equations 
that must be explicitly programmed, nonline-
ar regression models give reasonable and ac-
curate  results.  Furthermore,  regression  mo-
dels  are a tested methodology that  provide 
acceptable  results  which  can  easily  be  ap-
plied, and thus worth considering as a solu-
tion  to  a given estimation  problem.  In  this 
case there is a trade-off between selecting a 
model  which  is quite  simple to  understand 
and  easy to  apply  (regression  model),  and 
one which is more accurate but more diffi-
cult to comprehend (NN model).

Conclusions
Accurate estimation of over-bark diameter 

and stem volume is crucial for the efficient 
management of forest resources. The inclu-
sion  of  linear  CR and  linear  CR with  CL 
functions  in  existing  segmented  taper  and 
cubic meter volume equations for Brutian pi-
ne in Turkey resulted in significant reduction 
of  model  sum of  squared  error.  Prediction 
improvements  for upper  stem diameter and 
volume were greater  for  model  forms with 
CR  and  CL  than  model  forms  with  CR 
alone,  though  overall  improvements  were 
small.  Similar  results  were  obtained  using 
the back-propagation,  Levenberg-Marquardt 
and  generalized  regression  neural  network 
models. The incorporation of the crown va-
riables  to  these  models  also  exhibited  im-
proved performance.

Our results  indicate that the nonlinear re-
gression model had larger SEE and smaller 
FI values than the three types of NN models 
tested,  when  evaluating  both  dob and  vo-
lume predictions (Tab.  4 and  Tab. 5).  Mo-
reover, the performance of the fitted Leven-
berg-Marquardt  artificial  neural  network 
models,  where  both  crown  variables  were 
embedded,  provided  superior  performance 
when  compared  to  nonlinear  regression, 
BPANN and GRNN models for both the fit-
ting and the validation data sets (Tab. 4, Tab.
5 and Tab. 6).

Implementation of the NN approaches does 
offer a number of advantages over the more 

traditional  regression  method of  forest-data 
modeling and should be viewed as a useful 
alternative to  this  technique  (Özçelik et  al. 
2010).  The  major  advantage  of  NNs  for 
over-bark diameter and stem volume mode-
ling is that when they are used, the underly-
ing relationships between the input and out-
put  variables  are  automatically  assimilated 
into the connection weights of the network. 
Therefore, they are able to fit complex non-
linear models not specified in advance, un-
like  other  nonlinear  modeling  techniques 
such as regression analysis. In spite of NN’s 
advantages  over  regression  modeling  tech-
niques,  the discussed  accuracy-convenience 
trade-offs have to be seriously considered in 
order to determine the best method to apply. 
When  prediction  accuracy is  the  most  im-
portant element in a survey, then NN models 
seem to be the best option. However, when 
convenience is the limiting factor, or if addi-
tional accuracy is not most important,  non-
linear models can be utilized.
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