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Introduction
The development of forest growth models 

can help to predict yields needed to maintain 
harvest levels within the sustainable capacity 
of the forest, by providing quantitative data 
which will be made available to forest mana-
gers  and  land  use  planners.  Informed  de-
cisions can then be made in regards to silvi-
cultural alternatives. Access to better quanti-
tative  information  through  growth  models 
will  lead  to  increased  levels  of  sustainable 
timber management.

One  of  the  most  common  and  important 
tree  characteristics  used  in  forest  manage-
ment  decision-making  is  tree  diameter-at- 
breast height (dbh). This variable has nume-
rous beneficial attributes. It  is easy to mea-
sure (Zhang et al. 2004) and have strong cor-
relations with other tree characteristics. The 
distribution of trees by dbh class allows fore-
sters  and  ecologists  to  understand  stand 
structure,  stand dynamics, and future  forest 
yield.  Individual-tree  diameter  growth  mo-
dels are among the most basic and essential 
components  of  forest  growth  models  (San-

chez-Gonzalez et al. 2006). They allow one 
to project and describe the state of a tree at 
some future time. They also allow estimation 
of the growth of an average tree of a given 
size  growing  within  a  specified  stocking 
level and site productivity.

In addition to its current size, a tree’s com-
petitive  position  will  influence  its  growth. 
Most  competition  indexes  assume  that  the 
level of competitive stress around a tree can 
be quantified by taking account of the num-
ber  of  competitors  and  their  size  within  a 
defined neighborhood (Kiernan et al. 2008). 
Competition  indexes  may  be  expressed  in 
absolute or relative terms. They can also be 
spatially  related  or  not.  Distance-indepen-
dent models take advantage of the competi-
tive position of a tree by comparing the rela-
tive size and condition of a subject tree to 
various  stand  characteristics,  such  as  basal 
area and/or average diameter. Distance-inde-
pendent  growth  models  assume  that,  spa-
tially,  all  sizes  are  uniformly  distributed 
throughout  the  stand  (Davis  &  Johnson 
1987).

Two  common  competition  indexes  based 
on relative stem size include: (1) the ratio of 
subject tree size to average tree size; and (2) 
the cumulative basal area of trees larger than 
the subject tree (BAL - Zhao et al. 2004). As 
the ratio of the subject tree basal area to the 
average tree basal area increases, the vigor of 
the  tree  is  assumed  to  be  greater  and  the 
grow rate  approaches the genetic  potential. 
BAL has been useful in predicting diameter 
increment (Wycoff 1990) and should be con-
sidered complementary to  stand  basal area. 
As BAL decreases, the predicted increment 
increases.

Predictive  equations  are  often  calibrated 
with  remeasurement  data  from  permanent 
plots  having  individually  identified  trees. 
The nature of repeated measures experiments 
is often ignored and independence between 
observations  is  assumed  (Uzoh  &  Oliver 
2008). However, two measurements taken at 
adjacent units of time and/or space are more 
highly  correlated  than  two  measurements 
taken  several  time  points  or  space  apart. 
High autocorrelations can make two mutual-
ly exclusive variables  appear  to  be related. 
While  ignoring  the  least-squares  regression 
assumptions of independence still results in 
unbiased estimates of the model parameters, 
estimates of model errors are biased (Uzoh 
& Oliver 2008), bringing into question infe-
rences of model coefficients.  The argument 
among growth  and  yield  researchers  -  i.e., 
that  the  ordinary least  squares  (OLS)  esti-
mates are unbiased and that more reasonable 
variance  structure  may  not  be  necessary, 
since users are mainly interested in predic-
tion - is not supported by the statistical mo-
del used because it violates the first funda-
mental assumption needed to apply the OLS 
method;  it  violates  the assumption of inde-
pendence of observations.

Previous studies showed improvements on 
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Predictive equations calibrated with remeasurement data from 25 permanent 
plots having individually identified trees were used to project stem diameter 
of Pinus occidentalis Sw. in Dominican Republic. The general form of the mo-
dels used to fit the growth and yield functions included fixed effect covariates 
related to three subsets of explanatory variables: initial tree size, stand attri-
butes, and competition indexes. The subsets were incrementally added in a 
stepwise fashion for each of the three response variables and the intercept of 
the model was allowed to vary randomly between plots. The models evaluated 
included a yield function that predicted future diameter at year t (dt), a pe-
riodic annual increment model using five-year diameter increment (id5) and its 
natural log transformation [ln(id5+0.01)]. For trees that were not remeasured 
exactly 5 years after the first measurement,  id5 was computed by averaging 
the mean annual increment nearest the 5 year point and multiplying by five. 
Each approach was evaluated using an independent validation data set based 
on seven goodness-of-fit statistics, graphical display of residuals and the va-
riance components of each model combination. LMM, including fixed and ran-
dom parameters, provided a better fit among the models tested. For estima-
ting future diameter, accuracy of predictions is within one centimeter for a 
five-year projection interval, and bias is negligible. All the models had modera-
tely improved fit statistics when random effects were included in the evalua-
tion. The degree of improvement behaved in a similar manner for most fit sta-
tistics, with differences in the range of values for MSE, RMSE and RMSE% of 
0.53, 0.23 and 1.05, respectively. The absolute difference between the extre-
me values for Bias and relative Bias (%) in all the models was 0.20 and 0.92.  
The differences in values for MAD were only 0.15 and R2  values were practi-
cally equivalent.
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model-fitting and parameter standard errors 
using  global  accuracy  assessments  based 
only on fixed effects (Zhao et al. 2004, Gar-
rett et al. 2004,  Monleon 2004). Mixed mo-
dels, however, perform better if the random 
factors (i.e., plot or tree) are used in the pre-
diction.  Prediction  of  the  random  compo-
nents  using  best  linear  unbiased  predictors 
(BLUP) can be carried out by either using a 
sample  of  complementary  observations  of 
the dependent variable if available (Calama 
& Montero 2005) or by duplicating the trees 
in the sample and setting the second half of 
the data with missing values of the response 
variable (Zhang & Gove 2005).

Predictor  variables  at  the  tree  and  stand 
level, such as dbh, stand density, site index 
and competition indexes, are included in the 
model as fixed effects. Under such circum-
stances, the appeal of using mixed models is 
to  obtain  improved  estimates  of model  va-
riance when observations are correlated. To 
account  for  an  appropriate  error  term,  me-
thods  based  on  mixed  models  with  special 
parametric structures on the covariance ma-
trices  are  applied.  The specification  of  co-
variance structures addresses the bias in the 
standard error of parameter estimates (Zhang 
& Gove  2005).  The  most  commonly  used 
covariance structures for modeling repeated 
measurements  data  are  compound  symme-
tric,  first-order  autoregressive  and  unstruc-
tured (Littell  et al.  1996). The most appro-
priate  goodness-of-fit  statistic  used  to  eva-
luate and compare models includes Akaike’s 
and Bayesian information criteria (Zhang et 
al. 2004).

Pinus occidentalis is an endemic pine spe-
cies of Hispaniola that can be found growing 
in pure and mixed populations with broad-
leaf  trees  below  2100  meters,  or  in  pure 
stands  above  this  elevation  (Farjon  et  al. 
1997).  In  1995,  forests  of  P.  occidentalis 
Sw.  covered  an  area  of  approximately 
302 500 hectares in the Dominican Republic 
(Dobler  et  al.  1995).  In  this  country,  it  re-
presents more than the 95% of the species’ 
world-wide  distribution  (Bueno-López  & 
Bevilacqua 2012) .Within the study area (La 
Sierra),  the  species  covers  approximately 
34 937 hectares, occupying 10% of this area 
in  pure  stands  (Swedforest  Consulting 
1992).  The  terrain  here  is  more  than  90% 
mountainous  with  slopes  often  above  25% 
and very fragile soils, requiring the presence 
of forest cover to maintain soil stability.

In both Dominican Republic and Haiti, the 
pine forests found growing on higher eleva-
tion slopes are associated with shallow soils. 
Pinus  occidentalis is  the  only  commercial 
species having the ability to grow on these 
shallow,  acidic,  infertile  soils  due  to  their 
capability to establish ectomycorrhizal sym-
bioses  with  various  types  of  fungi.  Other 
small  patches  can  be  found  in  Sierra  de 
Bahoruco  and  towards  the  south  in  both 

countries.
The objectives  of  this  paper  were  to:  (1) 

determine  whether  OLS  or  linear  mixed 
models is the best statistical technique to fit 
linear  regression  model  for  predicting  dbh 
over time in  P. occidentalis trees using tree 
size, elapsed time, stand attributes and com-
petitive  indexes  as  predictor  variables;  (2) 
determine  whether  future  diameter  or  five-
year diameter increment is the more appro-
priate response variable to model when pre-
dicting future dbh; and (3) in the case of li-
near mixed models, determine the effective-
ness  of including only fixed  vs. fixed plus 
random effects  in  the  predictions  of  future 
dbh.

Materials and methods
The study area is a region of approximately 

1800  km2 in  the  north  central  portion  of 
Cordillera  Central,  Dominican  Republic 
(Bueno-López  &  Bevilacqua  2011).  The 
data available for model development  were 
from 25 natural, even-aged stands of  Pinus  
occidentalis in  three different  life  zones in 
La Sierra region. Nine stands are in the hu-
mid zone, 6 in the intermediate zone, and 10 
stands in the dry region. The humid-life zone 
is  denominated  formally  as  “Subtropical 
Very Humid Forest”;  the intermediate zone 
located  between  the  two  previously  men-
tioned zones,  is called “Subtropical  Humid 
Forest”; the dry life zone corresponds to the 
formal  denomination  “Subtropical  Dry Fo-
rest” (Holdridge 1987).

In  each  stand  one  permanent  rectangular 
plot  was located.  Permanent  plot data were 
used because they provide a direct measure 
of individual tree dbh growth over time and 
are considered the best kind of dbh growth 
data. Every effort was made to cover a wide 
range of stand conditions. Plots selected for 
sampling were unburned and appear free of 
damages from insects and or fungi. The plots 
were  established  at  random  from  1984 
through 1991 (Tab.  1)  The youngest  stand 
measured was 21 years in its first measure-
ment year (1988),  and the oldest stand was 
46 years, also in its first measurement year.

Individual trees in each plot were marked 
for  identification.  The  diameter  at  breast 
height (dbh, cm) outside bark was measured 
to the nearest 0.1 cm for all trees larger than 
5  cm.  The  individual  tree  diameters  were 
measured with a diameter tape every measu-
rement  year.  Since  there  is  not  a  definite 
growing season in the tropics, measurements 
were taken at  approximately the same time 
of the year (from May, which is the end of 
the  main  raining  season,  to  August).  Total 
tree height (m) was measured with a hypso-
meter on each tree each year.

The initial age of the trees at the first mea-
surement spanned a range of 25 years, from 
21  to  46  years.  Site  index  (40  year  index 
age)  was  estimated  using  equations  de-

veloped by Bueno-López (2009) and ranged 
from 13  m to  30  m.  The stands  ranged  in 
density from 192 to 950 stems ha-1 and from 
9.3 to 33.4 m2 ha-1 in basal area. Stand den-
sity index (SDI)  values were developed  by 
Bueno-López  (2009) following  the  proce-
dure proposed by  Reineke (1933).  SDI was 
computed by the following formula (eqn. 1):

where  SDI is  the stand density index,  N is 
the number of trees per hectare and D' q is the 
quadratic  mean  diameter.  Values  ranged 
from 17.0 to 48.6.

To  fit  and  evaluate  the  models,  the  data 
was randomly partitioned into a model esti-
mation  and  validation  component  (80:20 
split). The estimation data set had a total of 
830  trees  and  the  validation  data  set  200 
trees.  Comparisons  between  the  observed 
and predicted dbh at last measurement were 
made, as well as the periodic annual diame-
ter  growth  over  the  total  measurement  pe-
riod, using the best equations from the resul-
ting models.

General form of the regression models
The general form of the models used to fit 

the  growth  and  yield  functions  included 
fixed effect covariates related to  three sub-
sets of explanatory variables: initial tree size, 
stand  attributes,  and  competition  indexes. 
The subsets  were incrementally added in a 
stepwise  fashion  for  each  of  the  three  re-
sponse variables. In addition, the intercept of 
the  model  was  allowed  to  vary  randomly 
between plots. Three models were evaluated 
in their ability to predict diameter five years 
after the first measurement; a yield function 
that predicted future diameter at year t (dt), a 
periodic annual increment model using five-
year diameter increment (id5) and its natural 
log transformation [ln(id5+0.01)];  as for the 
latter parameter, the constant 0.01 was added 
in order to compute the logarithm for those 
trees  that  had  no  diameter  increment.  For 
trees  that  were  not  remeasured  exactly  5 
years  after  the  first  measurement,  id5 was 
computed by averaging the mean annual in-
crement  nearest  the  5  year  point  and  mul-
tiplying by five.

The general approach for model develop-
ment included the following forms (eqn.  2, 
eqn. 3, eqn. 4):

where Y is the future diameter at year t (dt); 
five-year diameter increment (id5); or natural 
logarithm  of  five-year  diameter  increment 
[ln(id5+0.01)]. Tree size is the initial diame-
ter (d0) and/or initial basal area (BA0). Stand 
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SDI =N (25
D̄q)

−1.8326

Y= f (tree size)+e j+eij

Y= f (tree size, stand)+e j+eij

Y= f (tree size, stand, competition)+e j+eij
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is  the  trees  per  hectare  (TPH),  basal  area 
(BA), stand density index (SDI), and Site in-
dex (SI). Competition is the initial diameter-
quadratic diameter ratio (d0/dq) and/or cumu-
lative basal area of the trees larger than sub-
ject tree (BAL0);  ej is  the random error  for 
plot j, eij is the random error for tree i within 
plot j.

To fit the yield function - future diameter at 
time  t (dt)  -,  initial  tree  size  variables  em-
ployed were diameter-at-breast height at first 
measurement (d0) and its transformations, d0

2 

and ln(d0). Stand attributes considered inclu-
ded  trees  per  hectare  at  first  measurement 
(TPH0),  basal area per hectare at first  mea-
surement (BA0), site index base age 40 (SI), 
and stand density index at first measurement 
(SDI0). Distance independent competition in-
dexes used were ratio of subject tree diame-
ter to mean squared diameter (CI0) and cu-
mulative basal area of the trees larger than 
subject  tree  (BAL0).  We  also  incorporated 
elapsed  time  since  first  measurement  (t, 
years) and t2 as fixed factors for this particu-
lar yield function. Since many of the sites are 
relatively poor with the trees showing mode-
rate deceleration in growth, the inclusion of 
the quadratic time term allowed us to capture 
this reduced growth rate, even for the short 
time period represented by the data.

To fit a model to diameter increment (id5) 
and  its  log  transformation  [ln(id5)],  all  the 
predictor  variables  described  above,  except 
time,  were employed.  When retransforming 
the variables back from natural log scale, the 

logarithmic bias correction factor suggested 
by Baskerville (1972) was used.

Modeling methods
Available data were based on a sample of 

repeated  growth  measurements  taken  from 
trees located in different plots. Plots were in-
stalled  and  re-measured  in  different  years 
(Tab. 1), leading to the potential that obser-
vations  on  the  same  plot  are  likely  corre-
lated. In order to address this, a multi-level 
linear mixed model (LMM), including both 
fixed  and  random  plot  components,  was 
tested  and  compared  with  ordinary  least 
square (OLS) models  in  their  capability to 
precisely  estimate  future  diameter  (yield 
function) at the end of a five year period.

To determine which LMM model was most 
appropriate in minimizing the mean squared 
error of predictions, we carried out the selec-
tion taking into consideration candidate co-
variance structures;  fitting  different  models 
by means of restricted maximum likelihood, 
and using the smallest Akaike’s Information 
Criterion  to  choose  the  most  appropriate 
from  the  following  candidate  covariance 
structures (Gutzwiller & Riffell 2007): first-
order  autoregressive  [AR(1)],  compound 
symmetric (CS) and unstructured (UN).

The linear mixed model (LMM) is a special 
case of generalized linear models, and can be 
expressed  as  Y  =  Xβ + Zγ + ε where  Y,  X 
and β are as defined in the OLS equation,  Z 
is a known design matrix, γ is a vector of un-
known random effects parameters, and ε is a 

vector of unobserved random errors. It is as-
sumed: (1) E(γ) = 0 and var(γ) = G; (2) E(ε) 
= 0 and var(ε) = R; (3) cov(γ, ε) = 0; and (4) 
both  y and  ε are  normally distributed.  The 
variance of Y is V = ZGZT+ R, and can be es-
timated  by  setting  up  the  random-effects 
design  matrix  Z and  by  specifying  cova-
riance structures for  G and  R (Littell  et  al. 
1996). LMM can be used to: (1) characterize 
or model the spatial covariance structure in 
the data; and (2) remove the effects of spatial 
autocorrelation to obtain more accurate esti-
mates for the response variable or treatment 
means.  In  our  case,  the  residual  variation 
was divided into between-plot and between-
tree components for the LMM evaluated.

Models selection and evaluation
Three growth and yield response variables 

were each fitted by OLS (stepwise selection) 
and LMM using PROC REG (SAS Institute 
Inc. 1996) and PROC MIXED (Littell et al. 
1996),  respectively.  Predictor  variables  in 
the final OLS models were chosen based on 
their biological foundation and the level of 
significance for the parameters.  In  the case 
of the LMM, besides their biological ratio-
nale  and  level  of  significance,  explanatory 
variables were also considered based on the 
estimates  of  the  parameters  in  G and  R 
matrices. The covariance structure was selec-
ted among three candidates:  autoregressive, 
compound symmetry and unstructured to es-
timate the fixed and random effects and se-
lecting  the  structure  with  the  smallest 
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Tab. 1 - Summary statistics on sample plots used for growth measurements. (*): Square meters per hectare (m2 ha-1).

Zone Plot
 ID

Size
(ha) SDI TPH SI BA*

Measurement year Interval
 (years)

Number of
 measurementsInitial Final

Dry 101 0.1000 29.12 250 22 14.5 1984 1989 5 6
102 0.1000 24.99 240 13 12.3 1984 1991 7 8
103 0.1000 29.8 440 20 13.8 1987 1990 3 4
108 0.1000 34.91 660 21 16.2 1989 1994 5 4
109 0.1000 29.6 580 18 13.7 1989 1994 5 4
110 0.1000 48.59 950 23 22.4 1989 1994 5 4
111 0.1000 20.7 580 15 9.3 1989 1994 5 4
112 0.1000 28.63 740 15 12.9 1989 1994 5 4
115 0.1000 32.45 350 21 15.8 1991 1995 4 2
116 0.1000 37.12 420 25 18 1991 1995 4 2

Intermediate 1 0.1000 42.13 470 29 20.5 1988 1994 6 5
3 0.1250 40.14 336 28 15.7 1988 1994 6 5
5 0.1250 43.39 352 22 17 1988 1994 6 5
6 0.0625 17.01 192 23 13.8 1988 1991 3 4

11 0.0625 23.4 656 20 17.5 1988 1990 2 3
12 0.0625 25.06 672 20 18.7 1988 1990 2 3

Humid 8 0.0625 39.48 832 27 30.2 1988 1994 6 5
9 0.0625 30.31 720 25 22.9 1988 1994 6 5

10 0.0625 31.73 528 30 31.3 1988 1991 3 4
13 0.0625 27.14 576 24 20.8 1988 1994 6 5
14 0.0625 30.07 656 23 22.9 1988 1994 6 5
15 0.0625 24.64 304 28 19.8 1988 1994 6 5
16 0.0625 35.56 400 31 28.8 1988 1994 6 5
17 0.0625 24.83 544 27 18.9 1988 1993 5 3
18 0.0625 30.3 592 25 23.8 1988 1991 3 4
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Akaike’s  Information  Criterion  (AIC)  and 
Bayesian’s  Information  Criterion  (BIC  - 
Gregoire  &  Schabenberger  1995).  LMM 
models were fitted and compared using re-
stricted maximum likelihood methods.

The  variance  component  for  trees  within 
plots along with the correlation between suc-
cessive measurements on individual P. occi-
dentalis trees endowed the best relationship 
for five-year diameter increment and expla-
natory variables which  included  initial  dia-
meter  (d0)  and/or  initial  basal  area  (BA0); 
trees  per  hectare  (TPH),  basal  area  (BA), 
stand  density  index  (SDI),  and  site  index 
(SI), initial diameter-quadratic diameter ratio 
(d0/dq)  and/or  cumulative  basal  area  of  the 
trees larger than subject tree (BAL0).

According to Popper (1963), the validation 
of a model is not intended to prove that the 
model is correct, but to show that model pre-
dictions  are  close  enough  to  independent 
data (Uzoh & Oliver 2008). Models for each 
dependent  variable were quantitatively eva-
luated using an independent verification data 
by examining the distribution, bias and pre-
cision of residuals to determine the accuracy 
of  model  estimations  (Vanclay 1994).  The 
residuals were computed by subtracting the 
predicted  from  the  observed  future  5-year 
diameter values.  Mean square error (MSE), 
root  mean square error (RMSE),  root  mean 
square  error  as  percentage  of  average  ob-
served  values  on  the  response  (RMSE%), 
pseudo coefficient of determination (R2), ab-
solute and relative bias (B, B%), and mean 
absolute deviation (MAD) were calculated as 
follows (eqns. 5 - 11):

where n is the number of observations in the 
validation  dataset;  m is  the  number  of  βi 

parameters, excluding β0;  d5i is the observed 
dbh five years hence for tree i; dB 5i is the pre-
dicted dbh five years hence for tree  i;  dC 5 is 

the mean dbh five years after initial measure-
ment.

Predictions using the LMM
The fixed effects portion of a mixed model 

can be used to predict the value for the re-
sponse variable if all covariates required are 
measured or estimated (Calama & Montero 
2005).  To  obtain  individual  predictions  of 
the best linear unbiased predictors (BLUP’s) 
of the random parameters for each plot, we 
followed the procedures outlined by  Zhang 
& Gove  (2005).  Mixed  models  allow pre-
dicting the value for the random parameters 
specific to a given plot. The coefficients vary 
from tree to tree, providing a model suitable 
to  each tree  in  the sample (Westfall  2006) 
and increasing the accuracy of predictions of 
dt and id5 based on current stand conditions. 

Random  components  obtained  in  this  way 
can be used to calibrate the diameter incre-
ment and diameter yield models.

Results 
The resulting dt equation, modeling the re-

sponse  variable  future  diameter  at  breast 
height  and fitted using LMM, provided the 
best fit (eqn. 12):

All  parameters  remaining  in  model  from 
eqn. 12 are biologically logical and signifi-
cant at α = 0.001 level (Tab. 2). The resul-
ting  model  predicts  a  linear  trend  in  dbh 
through time, with higher rates of growth in 
larger  trees  and  lower  rates  of  growth  for 
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Tab. 2 - Parameter estimates and fit statistic of the best model (LMM, random plus fixed ef-
fects) to estimate future diameter at breast height (dbh). (SD): Standard deviation.

Response
variable Effect Estimate SD Pr >t

or Z AIC BIC

Covariance Parameter 
Estimates

G Matrix
(p-value)

R Matrix
(p-value)

dt Intercept 0.7027 0.1406 <0.0001 4909.4 4911.8 0.049
(0.0008)

0.3551
(<.0001)t 0.2942 0.0069 <0.0001

d0 0.9903 0.0042 <0.0001
BAL0 -0.0428 0.0040 <0.0001

Tab. 3 - Comparison of predictor variables, estimated variance components and fit statistics 
of individual tree growth and yield response variables for different subsets of explanatory 
variables and method of parameter estimation. (dt): future dbh at time t; (id5): 5-year diame-
ter increment; [ln(id5+0.01)]: natural logarithm of 5-year diameter increment; (ns): non signi-
ficant.

Response 
variable

Explanatory 
variable subset

Parameter estimation and inference method
OLS LMM

dt Intercept μ μ μ μ μ μ
Time t t t t t t
Initial tree size d0 d0 d0 d0 d0 d0

Stand - TPH0 TPH0 - ns ns
Competition - - BAL0 - - BAL0

G-matrix - - - 0.094 0.094 0.049
R-matrix 0.456 0.439 0.389 0.368 0.368 0.355
AIC 5503 5425 5106 5006 5006 4909

id5 Intercept μ μ μ μ μ μ
Initial tree size ns ns ns d0 d0 d0

Stand - TPH0, 
SDI0

TPH0, 
SDI0

- ns ns

Competition - - BAL0 - - BAL0

G-matrix - - - 0.188 0.188 0.123
R-matrix - 0.888 0.745 0.716 0.716 0.665
AIC - 2267 2131 2130 2130 2068

ln(id5+0.01) Intercept μ μ μ μ μ μ
Initial tree size BA0 BA0 BA0 BA0 BA0 BA0

Stand - TPH0, 
SI0, SDI0

TPH0, 
SI0, SDI0

- TPH0 TPH0

Competition - - BAL0 - - BAL0

G-matrix - - - 0.155 0.153 0.070
R-matrix 0.697 0.593 0.510 0.516 0.516 0.464
AIC 1948 1851 1740 1768 1781 1692

MSE=
∑ (d 5i−d̂5i)

2

n−m

RMSE=√∑ (d5i−d̂5i)
2

n

RMSE %=√∑ (d5i−d̂5i)
2

n
d̄5

⋅100

R2=1−
∑ (d5i−d̂5i)

2

∑ (d5i−d̄5i)
2

B=∑
(d 5i−d̂5i)

n

B %=
100⋅∣∑ (d5i−d̂ 5i)

n ∣
d̄5

MAD=∑ ∣d5i−d̂ 5i∣
n

d t=0.7027+0.2942⋅t+0.0903⋅D0

−0.0428⋅BAL0+e j+eij



Diameter growth predictions for Pinus occidentalis 

trees when the cumulative BA of larger trees 
increases.

The random effects  represented  trees  and 
plots.  Future  diameter  at  breast  height  in 
time t (dt) is explained by elapsed time since 
first  measurement  (t, years);  diameter-at- 
breast height at first measurement (d0); and 
cumulative basal area of the trees larger than 
subject tree (BAL0).

Tab. 3 shows summary fit statistics for the 
best performing subsets of explanatory varia-
bles when added incrementally in a stepwise 
fashion for each response variable. For each 
response  variable,  dt,  id5 and  ln(id5+0.01), 
we can clearly see the progressive improve-
ment  in  Akaike’s  Information  Criterion, 
when stand and competition variables were 
added as predictor  variables.  We also noti-
ced that between tree variance (R-matrix) di-
minished as a result  of adding these varia-
bles. Parameters were retained in a model if 
estimates made logical biological sense and 

were significant at α = 0.05 level.
For  OLS  models,  stand  and  competition 

variables were statistically significant in pre-
dicting  all  response  variables.  Models  that 
included only initial tree size as a predictor 
resulted non-significant for the response id5. 
BAL0 was the only individual-tree competi-
tion  variable  to  significantly  contribute  to 
models  dt and  id5 (Tab.  3).  For  the  LMM 
formulation,  none  of  the  stand  variables 
were significant to the response variable  dt. 
Between-plot random effects as indicated by 
the  G-matrix,  were  statistically  significant, 
indicating  that  the  variation  in  individual 
tree  growth  which  could  be  explained  by 
stand variables was instead captured by the 
random plot term.

Overall, the LMM models had lower AIC 
and  smaller  between-tree variance than  the 
models fitted by OLS. The  dt model, using 
the  unstructured  (UN)  covariance  structure 
and considering plots as random effects, pro-

duced  better  fit  statistics  as  compared  to 
using  CS  and  AR(1)  variance-covariance 
matrices. In  addition,  the null  model likeli-
hood  ratio  test  was  statistically  significant 
(p < 0.0001), indicating that the unstructured 
covariance structure was adequate.

Additionally, the best OLS and LMM mo-
dels  for  each  response  variable,  based  on 
AIC, were also evaluated in their capability 
to predict  dbh of  P. occidentalis five years 
after  initial  measurement  using  the  inde-
pendent  validation  data  set.  To accomplish 
this evaluation we first examined the corres-
pondence  expected  between  observed  and 
predicted future diameter on the 9 different 
dbh growth models tested (Fig. 1). The rows 
on the chart depict three models for each of 
the  response  variables  (the  future  diameter 
dt,  diameter  increment  id5 and  natural  log 
of diameter increment  ln(id5),  respectively). 
The columns  correspond  to the  three stati-
stical  techniques  explored  (ordinary  least 
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Fig. 1 - Comparison of observed vs. 
predicted five-year future diameter 
for 9 different dbh growth models. 

The first row were models using fu-
ture dbh (dt) as the dependent va-

riable, second row using 5-year dia-
meter increment (id5) as the depen-

dent variable, and bottom row using 
natural logarithm of 5-year diameter 
increment [ln(id5)] as the dependent 
variable. Model parameter estimates 

of predictor variables for each de-
pendent variable were fitted using 

ordinary least squares (OLS column 
1), linear mixed models including 

only the fixed effects (LMM column 
2) and linear mixed models including 
both fixed and random effects (LMM 

column 3).

Tab. 4 - Goodness-of-fit statistics for best six models predicting diameter at breast height (dbh) five years after initial measurement using an 
independent validation data set of 200 trees. Models had different response variables and parameter estimation techniques (OLS and LMM,  
described in text). (dt): future dbh at time t; (id5): 5-year diameter increment; ln(id5+0.01): natural logarithm of 5-year diameter increment. 
(*): see text for descriptions.

Goodness- 
of-fit

statistics*

Response Variable
dt id5 ln(id5+0.01)

OLS
LMM

OLS
LMM

OLS
LMM

Fixed Fixed & 
Random Fixed Fixed & 

Random Fixed Fixed & 
Random

MSE 2.265 2.273 2.175 2.222 2.22 2.115 2.397 2.311 2.226
RMSE 1.505 1.508 1.475 1.491 1.49 1.454 1.548 1.52 1.492
RMSE% 6.868 6.881 6.732 6.803 6.8 6.637 7.066 6.939 6.81
BIAS 0.083 0.076 0.104 0.13 0.072 0.132 -0.069 -0.036 -0.053
BIAS% 0.378 0.346 0.477 0.594 0.329 0.601 -0.317 -0.165 -0.24
MAD 0.863 0.853 0.81 0.819 0.814 0.749 0.869 0.836 0.801
R2 0.951 0.951 0.953 0.952 0.952 0.954 0.948 0.95 0.952
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squares, linear mixed effect models conside-
ring  only  the  fixed  effects  part  and  linear 
mixed  effect  models  considering  both  the 
fixed and random effects of the model). Al-
though the scale in the chart is small, it can 
be clearly seen that there is more noise in the 
bottom row corresponding to the natural log 
of diameter increment [ln(id5)] models, than 
in the first row (future diameter dt models).

Continuing with the evaluation on the best 
OLS and LMM, we performed the proposed 
analysis  on goodness-of-fit  statistics on the 
best six model formulations. The results are 
presented on Tab. 4. The dt model (eqn. 12) 
had better goodness-of-fit  statistics when it 
was  evaluated  using  the  independent  data 
set. It performed better in five out of seven 
statistics, although the margin of difference 
was narrow. Average error was under 5% (1 
cm) over 5 years, and percent bias was less 
than 3%. The d5 model fitted by LMM cor-
responded reasonably well  with  the valida-
tion data, with a  RMSE = 1.037 cm. Model 
from eqn.  12  produced  on  average smaller 
residuals,  ranging from 0.00 to  0.45 cm in 
the validation data set, and MSE ranged from 
0.22 to 1.70 cm2.

To  check  for  dependencies  or  systematic 
trends  throughout  the  range  of  diameter 
classes,  we proceeded  to  plot  the residuals 
vs. predicted  five-year  diameter  increment 
estimated with models with fixed and fixed 
plus random prediction in that order for the 
top row; fixed and fixed plus random predic-
tion in the middle row; and fixed and fixed 
plus  random prediction  in  the bottom row. 
The residuals  did  not  exhibit  dependencies 
or  systematic trends;  although the box and 
whiskers  plot  (Fig.  2)  shows  more  narrow 

boxes for the top row which corresponds to 
model from eqn. 12, throughout the diameter 
classes. In general, model from eqn. 12 fitted 
by LMM slightly underestimates the diame-
ter five years after initial measurement in all 
diameter classes.

Discussion
Diameter  growth  and  yield  prediction  is 

one  of  the  primary  components  of  indivi-
dual-tree  growth  models.  These  models  al-
low detailed analyses on stand structure, but 
need additional  equations to  describe other 
components (e.g., tree mortality and recruit-
ment) of tree or stand growth to make a com-
plete  stand  or  tree  projection  system.  Dia-
meter increment of  P. occidentalis  was stu-
died  as  a  stochastic  process  where  a  fixed 
part of a model explains the population-ave-
rage  increment,  and  a  random  component 
captures  tree-to-tree  variability.  The  study 
compares two statistical techniques, stepwise 
OLS regression and mixed models; two ap-
proaches,  future  diameter  and  diameter  in-
crement; and several classes of independent 
variables for predicting future diameter of P.  
occidentalis in La Sierra, Dominican Repub-
lic.

The best model was evaluated based on the 
seven goodness-of-fit statistics. Between the 
alternatives,  the  linear  mixed  model  which 
included, for prediction purposes, both fixed 
and random effects was superior to just em-
ploying  the  fixed  part  of  the  LMM  and 
ordinary least squares models. Modeling dia-
meter through time as response variable was 
superior to the other two response variables, 
namely five-year diameter increment and its 
log transformation. The former resulted in a 

better  fit,  especially  in  regards  to  MSE, 
RMSE, RMSE% and R2.

To detect prediction anomalies, one-to-one 
correspondence between observed  vs. future 
predicted  dbh  were  plotted  in  Fig.  2.  No 
conspicuous anomalies were noted. The pro-
posed formulation can be considered a pro-
jection model, containing a fixed part which 
explains  the mean value for the future dia-
meter and the unexplained residual variabi-
lity is described by including random para-
meters. Model from eqn. 12 produces logical 
predictions of future dbh,  and by means of 
differentiation,  dbh  increment  is  easily ob-
tained. The fixed components of model from 
eqn.  12  included  initial  tree  size,  elapsed 
time and  BAL as explanatory variables. Fu-
ture diameter of a tree increased by appro-
ximately 4% on average for every centimeter 
added  to  initial  dbh.  Time  contributed  on 
average to 1% increment to the dbh reached 
five years hence.

Tree  size  is  a  good  indicator  of  future 
growth,  reflecting  past  competitive  status 
and different genetic responses to the envi-
ronment  (Perry  1985,  Bevilacqua  1999). 
With  model  from eqn.  12,  diameter  incre-
ment increased by a factor of 0.0903 for each 
unit increase in initial diameter. The positive 
sign associated with the parameter estimate 
of  this  variable  may be a reflection  of  the 
low  densities  characterizing  the  studied 
plots. Previous results from density manage-
ment trials in the study region have reported 
that for  P. occidentalis stands older than 18 
years  of  age,  similar  to  those  used  in  this 
study,  the optimum residual  density should 
be 700 trees per hectare (TPH). In our study, 
the number of stems per hectare varied from 
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Fig. 2 - Residuals vs. pre-
dicted five-year diameter in-
crement estimated with mo-
dels with fixed and fixed plus 
random prediction in that or-
der for the top row; fixed and 
fixed plus random prediction 
in the middle row; and fixed 
and fixed plus random pre-
diction in the bottom row.
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192 to 950,  with 11 stands having at most 
470  TPH, which is roughly 67% of the de-
sired  residual  density.  Seven  stands  were 
between 78 and 96%, and four were slightly 
above 100% of the target residual density.

Variables commonly used to quantify com-
petition  and  site  productivity  in  individual 
tree  diameter  growth  models,  such  as  the 
number of trees per ha (West 1981),  stand 
density index, basal area per hectare (Wycoff 
1990)  and  site  index  (Palahí  et  al.  2003) 
were also tested in all the models evaluated. 
However,  they were  not  significant  in  our 
best  fitting model.  Most  surprisingly is the 
lack of predictive ability of site index, parti-
cularly since diameter increment appeared to 
be lowest in those stands geographically lo-
cated along the dryer portion of the study re-
gion (1000 mm of average annual rainfall). 
These stands were also characterized by ha-
ving  very  shallow  sandy  soils  with  depth 
between 30 and 50 cm. Locations where dia-
meter increment  was larger,  soil  depth was 
between 80 and 100 cm and the average an-
nual precipitation ranged from 1200 to 1600 
mm. It appears that height development for 
this species is not a good proxy for site pro-
ductivity.

As  basal  area  of  larger  trees  (BAL)  in-
creases, competition increases and that leads 
to a reduction in the diameter growth. That 
was manifested in the present study with the 
negative coefficient for this predictor varia-
ble.  An  increase  of  one  unit  in  BAL de-
creased future diameter by 0.2%, on average. 
P. occidentalis is an intolerant  species that 
needs direct sunlight to grow at full  poten-
tial. Basal area of larger trees is considered a 
variable that captures one-sided competition 
for light (Bevilacqua 1999). The stands stu-
died  were  not  crowded  so  the  competition 
for light was not that severe and is reflected 
in  the biologically logical  but  moderate in-
fluence of BAL on diameter growth.

The R matrix in the model from eqn. 12 in-
dicates significant random variability among 
trees. This suggests that other tree variables 
may need to be considered in the model. In 
terms of variability, model from eqn. 12 de-
tected larger quantities between trees (0.355) 
than between plots (0.049).  Pukkala (1989) 
attributes this phenomenon to human error in 
diameter  increment  measurement.  In  our 
case, the reason behind this pattern of varia-
bility may be found on the disparate arrange-
ment of densities  among the stand studied. 
These results are consistent with the findings 
of  Palahí  et  al.  (2003) when  modeling 
growth  for  Pinus  silvestrys L.  in  northeast 
Spain and contrary to the findings of Calama 
& Montero (2005) for  Pinus pinea,  also in 
Spain.

Application of the fixed and random part of 
the model results in slightly biased estimates 
(less than 0.45 cm) of the future diameter for 
trees larger than 40 cm. For trees up to 28 

cm, biased is less than 0.10 cm. In the vali-
dation dataset, 97% of the total variability in 
projected future diameter was explained by 
model from eqn. 12.

In  Tab.  3,  we explored  the effects  of the 
covariates included in model from eqn. 12. It 
remains  unclear  whether  inclusion  of  ran-
dom effects is an improvement over adding 
additional  appropriate  predictor  variables. 
The presence of BAL in the model decreased 
the values from the G and R matrices by 92 
and 4 percent, respectively (Tab. 2). AIC and 
BIC  values  are  decreased  by  about  2%. 
Comparing  model  predictions  using  inde-
pendent validation data demonstrated that all 
the models had moderately improved fit sta-
tistics when random effects were included in 
the evaluation.  The degree of improvement 
behaved in a similar manner for most fit sta-
tistics, with differences in the range of val-
ues for  MSE,  RMSE and  RMSE% of 0.53, 
0.23  and  1.05,  respectively.  The  absolute 
difference  between  the  extreme  values  for 
bias and relative bias (%) in all the models 
was 0.20 and 0.92. The differences in values 
for MAD were only 0.15 and R2 values were 
practically equivalent. This might be due to 
the fact that most of the sites are relatively 
poor,  and  the  models  may be  capturing  a 
gradual deceleration in growth, even for the 
short  time  period  represented  by  the  data. 
Slow growth was noticed during the first few 
remeasurements, with little or no growth in 
the last.  Some considerations can be hypo-
thesized  as  responsible  for  the  absence  of 
growth.

Differences  in  the  performance  of  the 
mixed  and  fixed  models  in  individual  tree 
growth and yield modeling have been repor-
ted by others.  Adame et al. (2007), working 
with  Quercus  pyrenaica Willd,  found  that 
most of the variability in tree growth occur-
red  at  the  within-stand  level,  rather  than 
between stands.  Uzoh & Oliver  (2008) re-
ported  that  the  best  relationship  between 
five-year  periodic  annual  diameter  incre-
ments of ponderosa pine trees was provided 
by  linear  mixed  models.  Other  authors 
(Calama  &  Montero  2005,  Palahí  et  al. 
2003) have considered random variability in 
modeling diameter increment. They reported 
increase improvement in  the fitting process 
when mixed models including both fixed and 
random parameters were employed.

Within-stand variability could be the result 
of  the  density  of  the  stands  under  study. 
Basal  area  per  hectare  varied  from 9.3  to 
31.3 m2 ha-1, with 7 stands having less than 
15 m2 ha-1, 9 stands having between 15 and 
20 m2 ha-1 , 6 stands between 20 and 25 m2 

ha-1, and three stands with more than 25 m2 

ha-1.  Stands  with  lower  density  have  more 
space  and  resources  available  for  tree 
growth.  Even  though  it  was  tested,  stand 
basal  area  was  not  a  significant  predictor 
variable in model from eqn. 12. Perhaps its 

effect is being captured by the random part 
of the model.

Conclusions 
We  have  determined  that  linear  mixed 

models are the best statistical technique to fit 
linear regression models, for predicting dbh 
over  time  in  P.  occidentalis trees  in  La 
Sierra,  Dominican  Republic.  The  proposed 
future  diameter  model  from  eqn.  12  pre-
vailed over five-year diameter increment as 
the  more  appropriate  response  variable  to 
model for predicting future dbh, using varia-
bles related to  tree size such as initial  dbh 
(d0), elapsed time (t), and variables related to 
competition like the cumulative basal area of 
the trees larger than subject tree (BAL0)  as 
predictor variables. Model from eqn. 12 does 
not depend on age or distance. The final pre-
dictor variables were selected based on their 
ecological importance to tree growth and on 
fitting statistics. Simulations performed with 
model from eqn. 12 showed that coefficients 
for predictor variables were biologically ap-
propriate. Specifically, larger trees (d0) grew 
faster, trees growing in stands having higher 
densities (TPH0) grow slower, and increasing 
levels of competition at the tree level (BAL0) 
also decreased predicted future diameter.

Based  on  Akaike’s  Information  Criterion 
and  the  Bayesian’s  Information  Criterion, 
the  most  appropriate  covariance  structures 
was the unstructured (UN). The adequacy of 
the  covariance  structure  was  confirmed  by 
the likelihood  ratio  test  which  was statisti-
cally significant  (p < 0.0001).  Evidence  re-
ported in Tab. 3 shows that the linear mixed 
models  tested  produced  better  fit  statistics 
when  plots  were  considered  as  random ef-
fects. This confirms our expectations that the 
inclusion  of fixed plus  random effects was 
more effective than including only fixed ef-
fects in the predictions of future dbh.

This study is the first attempt to model in-
dividual tree growth of P. occidentalis in the 
Dominican Republic. Model evaluation is an 
uninterrupted  course  of  action,  and  the  re-
sults from this study can be further improved 
in the immediate future. For the moment, the 
model will enable estimation of diameter on 
individual  P. occidentalis trees in the north 
central portion of Cordillera Central, for up 
to five years in the future, based on informa-
tion regarding initial  dbh and basal area of 
trees  within  stands.  The  species  has  great 
economic, ecological and social importance, 
and model from eqn. 12 can provide valua-
ble  information  for  decision-makers,  forest 
managers and researchers. It  is  biologically 
consistent according to forest growth expect-
ation,  but  projections  longer  than  5  years 
should  be  avoided  until  validation  of  the 
model using longer term data becomes avai-
lable. The model should be simple to apply 
and can be used to facilitate and ensure the 
sustainable management of P. occidentalis.

© SISEF http://www.sisef.it/iforest/ 215  iForest (2013) 6: 209-216



Bueno-López S & Bevilacqua E - iForest 6: 209-216 

Acknowledgements
We want  to  express our  gratitude to  Drs. 

Ralph D. Nyland, Lianjun Zhang and Edwin 
H. White for reviewing and suggesting their 
valuable inputs. Funding for this project was 
provided by the J. William Fulbright Foreign 
Scholarship  Board  (FSB),  and  by the Gra-
duate  Assistantship  program  at  the  State 
University of  New York,  College  of  Envi-
ronmental Science and Forestry and the Col-
legiate Science and Technology. Major con-
tributions were received from the Dominican 
government  through  Ministerio  de  Educa-
cion Superior Ciencia y Tecnologia and its 
funding  program  (FONDOCYT).  We  also 
like to thank the Program on Latin America 
and  the  Caribbean  at  Syracuse  University 
(PLACA), Cooperativa San José, Plan Sierra 
Inc., and PROCARYN.

References
Adame  P,  Hynynen  J,  Cañellas  I,  Del  Rio  M 

(2007).  Individual-tree  diameter  growth  model 
for rebollo oak (Quercus pyrenaica Willd.) cop-
pices.  Forest  Ecology  and  Management  255: 
1011-1022. - doi: 10.1016/j.foreco.2007.10.019

Baskerville GL (1972). Use of logarithmic regres-
sion  in  the estimation  of plant  biomass.  Cana-
dian Journal of Forest Research 2 (1): 49-53.  - 
doi: 10.1139/x72-009

Bevilacqua  E (1999).  Growth responses in  indi-
vidual eastern white pine (Pinus strobus L) trees 
following partial cutting treatments. PhD Disser-
tation,  University of Toronto,  Ontario,  Canada, 
pp. 137.

Bueno-López SW (2009).  Understanding  growth 
and yield of Pinus occidentalis Sw. in La Sierra, 
Dominican Republic.  PhD Dissertation, College 
of  Environmental  Science  and  Forestry,  State 
University  of  New York,  Syracuse,  NY,  USA, 
pp. 266.

Bueno-López SW, Bevilacqua E (2011). Develo-
ping  a  diameter-distribution  prediction  system 
for  Pinus occidentalis Sw. in La Sierra, Domi-
nican  Republic.  Revista  Chapingo,  Serie  Cien-
cias Forestales y del Ambiente 17 (1): 115-132. 
[in Spanish]

Bueno-López SW,  Bevilacqua  E  (2012).  Nonli-
near mixed model approaches to estimating mer-
chantable  bole  volume  for  Pinus  occidentalis. 
iForest 5 (5): 274-254. - doi:  10.3832/ifor0630-
005

Calama  R,  Montero G (2005).  Multilevel  linear 
mixed  model  for  tree  diameter  increment  in 
Stone pine (Pinus pinea): a calibrating approach. 

Silva  Fennica  39:  37-54.  [online]  URL:  http:// 
metla.eu/silvafennica/full/sf39/sf391037.pdf

Davis  LS,  Johnson  KN  (1987).  Forest  manage-
ment. McGraw-Hill Company, New York, USA, 
pp. 790.

Dobler  G,  Peralta  LE,  Debord  LT,  Torres  JG 
(1995).  Investigación  y  manejo  de  especies 
maderables de uso comun en La Sierra: guía téc-
nica. San José de las Matas, Plan Sierra Inc., Re-
publica Dominicana, pp. 269. [in Spanish]

Farjon A, Perez-De la Rosa JA, Styles BT (1997). 
A field guide to the pines of Mexico and Central 
America. The Royal Botanic Gardens, Kew, UK.

Garrett MF, Laird NM, Ware JH (2004). Applied 
longitudinal  analysis.  Wiley-Interscience,  John 
Wiley & Sons, Inc., New Jersey, USA, pp. 536.

Gregoire TG, Schabenberger O (1995).  A nonli-
near mixed-effects model to predict  cumulative 
bole volume of standing trees. Journal of Applied 
Statistics  23:  257-271.  - doi:  10.1080/0266476 
9624233

Gutzwiller KJ, Riffell SK (2007). Using statistical 
models  to  study  temporal  dynamics  of  ani-
mal-landscape  relations.  In:  “Temporal  Dimen-
sions of Landscape Ecology: Wildlife Responses 
to Variable Resources” (Bissonette JA, Storch I 
eds). Spinger-Verlag, New York, USA.

Holdridge L (1987). Ecología basada en zonas de 
vida.  Instituto  Interamericano  de  Cooperación 
para la Agricultura, San José, Costa Rica.

Kiernan  DH,  Bevilacqua  E,  Nyland  RD (2008). 
Individual-tree diameter growth model for sugar 
maple  trees in  uneven-aged northern  hardwood 
stands  under  selection  system.  Forest  Ecology 
and  Management  256:  1579-1586.  -  doi: 
10.1016/j.foreco.2008.06.015

Littell RC, Milliken GA, Stroup WW, Wolfinger 
RD (1996). SAS system for mixed models. SAS 
Institute Inc., Cary, NC, USA, pp. 633.

Monleon VJ (2004). A hierarchical model for tree 
height  prediction.  In: Proceedings of the “2003 
Meeting of the American Statistical Association, 
Section on Statistics and the Environment”.  San 
Francisco  (CA -  USA)  3-7  August  2003.  The 
American  Statistical  Association,  Alexandria, 
VA, USA, pp. 2865-2869.

Palahí M, Pukkala T, Miina J, Montero G (2003). 
Individual tree-growth and mortality models for 
Scots  pine  (Pinus  sylvestrys L.)  in  north-east 
Spain. Annals of Forest Science 60: 1-10. - doi: 
10.1051/forest:2003002

Perry  DA  (1985).  The  competition  process  in 
forest  stands.  In:  “Attributes  of  trees  as  crop 
plants”. Titus Wilson & Son Ltd, Kendal, Cum-
bria, UK, pp. 592.

Popper  KR (1963).  Conjectures  and  refutations. 
Routledge and Kegan Paul, London, UK.

Pukkala T (1989). Predicting diameter growth in 
evenaged  Scots  pine  stands  with  a  spatial  and 
non-spatial  model.  Silva  Fennica  23:  101-116. 
[online] URL: http://hdl.handle.net/10138/15533

Reineke LH (1933). Perfecting a stand-density in-
dex for even aged forest. Journal of Agricultural 
Research 46: 627-638.

Sanchez-Gonzalez  M,  Del  Rio  M,  Canellas  I, 
Montero  G  (2006).  Distance  independent  tree 
diameter  growth  model  for  cork  oak  stands. 
Forest Ecology and Management 225: 262-270. - 
doi: 10.1016/j.foreco.2006.01.002

SAS  Institute  Inc.  (1996).  SAS/STAT  User’s 
guide. SAS Institute Inc., Cary, North Carolina. 
pp. 213.

Swedforest  Consulting  AB (1992).  Plan  maestro 
sector  forestal.  Informe  principal.  Plan  Sierra 
Inc., San José de las Matas, Santiago, Dominican 
Republic, pp. 82.

Uzoh FC, Oliver WW (2008). Individual tree dia-
meter increment  model  for  managed  even-aged 
stands of ponderosa pine throughout the western 
United States using multilevel linear mixed ef-
fects  models.  Forest  Ecology and  Management 
256:  438-445.  -  doi:  10.1016/j.foreco.2008.04. 
046

Vanclay JK (1994).  Modeling forest growth and 
yield:  Applications  to  Mixed  Tropical  Forests, 
CAB International,  Wallingford,  CT,  USA, pp. 
312.

West PW (1981). Simulation of diameter growth 
and  mortality  in  regrowth  eucalypt  forest  of 
Southern Tasmania. Forest Science 27: 603-616.

Westfall  JA  (2006).  Predicting  past  and  future 
diameter  growth  for  trees  in  the  northeastern 
United  States.  Canadian  Journal  of  Forest  Re-
search 36: 1551-1562. - doi: 10.1139/x06-045

Wycoff W (1990). A basal area increment model 
for  individual  conifers  in  the  northern  Rocky 
Mountains. Forest Science 36: 1077-1104.

Zhang L, Gove JH (2005). Spatial assessment of 
model  errors  from  four  regression  techniques. 
Forest Science 51 (4): 334-346.

Zhang L, Peng C, Dang Q (2004). Individual-tree 
basal area growth models for jack pine and black 
spruce in northern Ontario. Forestry Chronic 80 
(3): 366-374. - doi: 10.5558/tfc80366-3

Zhao  D,  Borders  B,  Wilson  M  (2004).  Indivi-
dual-tree diameter growth and mortality models 
for  bottomland  mixed-species  hardwood  stands 
in  the  lower  Mississippi  alluvial  valley.  Forest 
Ecology and Management  199:  307-322.  - doi: 
10.1016/j.foreco.2004.05.043

iForest (2013) 6: 209-216 216  © SISEF http://www.sisef.it/iforest/ 

http://dx.doi.org/10.1016/j.foreco.2004.05.043
http://dx.doi.org/10.1016/j.foreco.2007.10.019
http://dx.doi.org/10.1139/x72-009
http://dx.doi.org/10.3832/ifor0630-005
http://dx.doi.org/10.3832/ifor0630-005
http://metla.eu/silvafennica/full/sf39/sf391037.pdf
http://metla.eu/silvafennica/full/sf39/sf391037.pdf
http://dx.doi.org/10.1080/02664769624233
http://dx.doi.org/10.1080/02664769624233
http://dx.doi.org/10.1016/j.foreco.2008.06.015
http://dx.doi.org/10.1051/forest:2003002
http://hdl.handle.net/10138/15533
http://dx.doi.org/10.1016/j.foreco.2006.01.002
http://dx.doi.org/10.1016/j.foreco.2008.04.046
http://dx.doi.org/10.1016/j.foreco.2008.04.046
http://dx.doi.org/10.1139/x06-045
http://dx.doi.org/10.5558/tfc80366-3

	Diameter growth prediction for individual Pinus occidentalis Sw. trees
	Introduction
	Materials and methods
	General form of the regression models
	Modeling methods
	Models selection and evaluation
	Predictions using the LMM

	Results 
	Discussion
	Conclusions 
	Acknowledgements
	References


